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The physical foundations of unsteady thin-airfoil theory are explored in the general framework of viscous flows.

The thin-airfoil lift formula is derived by using the simple lift formula that contains the vortex lift and the lift

associated with the fluid acceleration. From a broader perspective, the thin-airfoil lift formula could be applicable

evenwhen the flowaroundanairfoil ismoderately separated, fromwhich the classical vonKármán–Sears lift formula

can be recovered as a reduced case. The quantitative relationship between boundary layer and lift generation is

discussed.Direct numerical simulations of low-Reynolds-number flows over a flapping flat-plate airfoil are conducted

to examine the accuracy and limitations of the thin-airfoil lift formula.

Nomenclature

A = heaving amplitude, m
Cl = lift coefficient
c = wing chord, m
Dbl = boundary-layer domain
Dout = outer flow domain
F = aerodynamic force, N
f = flapping frequency, s−1

k = πfc∕U, reduced frequency
k = unit vector normal to the freestream velocity
L, L 0 = lift or sectional lift, N or N · m−1

La, L
0
a = lift or sectional lift associated with the fluid

acceleration, N or N · m−1

Lvor, L
0
vor = vortex lift or sectional vortex lift, N or N · m−1

l = Lamb vector, m · s−2

n = unit normal vector pointing outward from
control boundary

n 0 = −n
p = pressure, Pa
q∞ = dynamic pressure, Pa
Re = Reynolds number
S = wing area, m2

T = flapping period, s
t = time, s
U = incoming flow velocity, m · s−1

u = fluid velocity, m · s−1

Vf = control volume
x = coordinate along the airfoil cord, m
�X; Y; Z� = coordinates in direct numerical simulation, m
xref = reference location, m
�x = �x − xLE�∕c, normalized coordinate
zc = vertical position of airfoil center, m
α = angle of attack, deg

Γ = circulation, m2 · s−1

γ = vortex sheet strength, m · s−1

γ1 = unsteady vortex sheet strength, m · s−1

γw = wake vortex sheet strength, m · s−1

γ0 = quasi-steady vortex sheet strength, m · s−1

∂B = solid boundary of the body (wing) domain
∂Bbl = boundary-layer edge
ρ = fluid density, kg · m−3

Σ = outer surface of a control volume
τ = skin friction, N · m−2

ϕ = velocity potential, m2 · s−1

ω = vorticity, s−1

I. Introduction

T HIN-AIRFOIL theory originally developed by Munk [1] uses a
vortex sheet in a potential flow to model an actual flow over a

thin airfoil, in which the Kutta condition is imposed at the trailing
edge to calculate the lift and moment. The higher-order approx-
imation of thin-airfoil theory was studied by Lighthill [2]. The
pioneering studies on unsteady thin-airfoil theory were conducted by
Wagner [3], Küssner [4], Theodorsen [5], and von Kármán and Sears
[6]. Recently, because of the renewed interests in active flutter control
and flapping flight, considerable efforts have been made to apply
thin-airfoil theory to unsteady flows associated with aeroelastic,
flapping, and flexible wings [7–13]. The formulation given by von
Kármán and Sears [6] based on the application of the vortex impulse is
particularly insightful because the unsteady lift is explicitly expressed
as a sum of the quasi-steady Kutta–Joukowski lift, the added-mass lift,
and the wake-induced contribution. The wake-induced term leads to
the so-called deficiencypreventing the instantaneous lift fromattaining
the quasi-steady state immediately. Interestingly, the von Kármán–
Sears formulation remains the samewhen the nonlinear effects induced
by the wake are incorporated by McCune and Tavares [14]. This
implies that the von Kármán–Sears lift formula could be more generic
in terms of its physical foundations.
The physical foundations of thin-airfoil theory were discussed by

Glauert [15]. His argument is that a vortex sheet is a limitingmodel of
a boundary layer on the airfoil surface as the viscosity approaches to
zero and the integration of the vortex sheet strength is equal to the
magnitude of the circulation generating the lift. The relationship
between unsteady boundary-layer vorticity and bound-vortex sheet
strength was further discussed by Sears [16] along with the
generalized Kutta–Joukowski condition for a blunt trailing edge. It is
clear that a bound-vortex sheet in thin-airfoil theory represents the
airfoil plus its boundary layer, and the circulation is intimately
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connected with the boundary-layer. It is proposed by Sears [16] that
the lift andmoment are calculated by using thin-airfoil theory, and the
circulation is determined by boundary-layer calculation such that
thin-airfoil theory could be applied to a body with boundary-layer
separation near the blunt trailing edge. Although these conceptual
arguments are physically compelling, a derivation of unsteady thin-
airfoil theory from the Navier–Stokes (NS) equations has not been
systematically given in the general framework of viscous flows. The
feasible derivation should be based on a general force expression for
viscous flows.
In an incompressible viscous flow, as shown in Fig. 1, the force

acting on a solid body is given by

F � −
I
∂B
�−pn� τ� dS � −ρ

Z
Vf

a dV �
I
Σ
�−pn� τ� dS (1)

where p is the pressure, τ is the surface shear-stress vector, a �
Du∕Dt is the acceleration, ρ is the fluid density, ∂B denotes a solid
boundary of the body (wing) domain B, Vf denotes the control
volume of fluid, Σ denotes an outer control surface in which the body
is enclosed, and n is the unit normal vector pointing to the outside
of a control surface. By using the equation a � ∂u∕∂t�
ω × u� ∇�q2∕2�, Eq. (1) becomes

F � ρ

Z
Vf

u ×ω dV − ρ

Z
Vf

∂u
∂t

dV −
I
Σ
�p� ρq2∕2�n dS

�
I
Σ
τ dS − ρ

I
∂B
�q2∕2�n dS (2)

where u is the velocity,ω is the vorticity, and q � juj. The first term
in the right-hand side (RHS) of Eq. (2) is a volume integral of the
Lamb vector l � u × ω that represents the vortex force. The second
term is a volume integral of the local acceleration of fluid, re-
presenting the unsteady inertial effect induced by a moving solid
body and self-excited unsteady flow itself. The third and fourth terms
are the surface integrals of the total pressure P � p� ρq2∕2 and the
surface shear stress on the control surface Σ. The fifth term is the
boundary term of the kinetic energy.
Because the static pressure p is difficult to calculate and measure,

the third term related to p in Eq. (2) should be transformed to the
terms related to the velocity that is more measurable. Different
approaches have been used to deal with the troublesome pressure
term, which leads to various force expressions [17–25]. However, for
a general control surface, eliminating the pressure term usually
results in more complicated expressions in which the physical
meanings and relative contributions of some terms cannot be easily
elucidated. The complicated forms of these expressions are not
readily used to derive classical unsteady thin-airfoil theory, par-
ticularly the von Kármán–Sears unsteady airfoil theory. Recently,

Wang et al. [26] circumvented this pressure problem by selecting a
rectangular control volume to obtain a very simple but sufficiently
accurate lift formula. It is found that, for a rectangular control surface
whose upper and lower faces are sufficiently far away from a wing,
the contributions of the third and fourth terms in the RHS of Eq. (2) to
the lift generation can be neglected. Thus, the lift can be approx-
imately decomposed into the two dominant terms: the vortex force
and the fluid acceleration. This leads to the simple lift formula that is
useful in an analysis of the connection betweenvortical structures and
lift generation in complex unsteady flows associated with flapping
wings. The accuracy of the simple lift formula has been evaluated
via direct numerical simulation (DNS) for unsteady low-Reynolds-
number flows [26].
The objective of this work is to explore the physical foundations of

unsteady thin-airfoil theory from a perspective of viscous flow theory
and derive the thin-airfoil lift formula and the classical von Kármán–
Sears lift formula as a reduced case by using the simple lift formula.
The development of this work is briefly outlined as follows. First, for
a two-dimensional (2-D) flow over a thin airfoil, the flowfield is
decomposed into a boundary layer (viscous flow region) and an outer
potential flow. By applying the simple lift formula to this case, the
thin-airfoil lift formula is given, which contains the vortex lift and the
added-mass lift. In this reduction, the boundary layer plus the airfoil
is naturally reduced to a vortex sheet as a key element in unsteady
thin-airfoil theory. Then, to incorporate the wake effect into the
theory, a decomposition of the vortex sheet strength into the quasi-
steady part without considering thewake effect and the unsteady part
induced by the wake. Therefore, a triple decomposition of the lift is
obtained, where the first term is the quasi-steady vortex lift (the
Kutta–Joukowski lift), the second term is the added-mass lift, and the
third term is the wake-induced term. This is a generalized version of
the von Kármán–Sears lift formula with a general wake model. For
the specific Green’s function given by von Kármán and Sears [6] in
the wake integral, the classical von Kármán–Sears lift formula is
recovered. The relationship between a boundary layer and lift
generation is discussed. Further, DNSs of low-Reynolds-number
flows over a flapping flat-plate airfoil are conducted to examine the
accuracy and limitations of the thin-airfoil lift formula in comparison
the simple lift formula.

II. Simple Lift Formula

For a rectangular outer control surface Σ whose upper and lower
faces are sufficiently far away from thewing, the contributions of the
third and fourth terms in the RHS of Eq. (2) to the lift generation can
be neglected. Therefore, the simple lift formula (SLF) given byWang
et al. [26] is expressed in the two dominant terms, i.e.,

L ≈ Lvor � La (3)

In Eq. (3), the vortex lift is given by

Lvor � ρk ·

Z
Vf

u × ω dV (4)

where k is the unit vector normal to the freestream velocity. The lift
associated with the fluid acceleration becomes

La � −ρk ·

Z
Vf

∂u
∂t

dV − ρk ·

I
∂B
�juj2∕2�n dS

� −ρk ·
d

dt

Z
Vf

u dV � ρk ·

I
Σ
n ·

�
1

2
juj2I − uu

�
dS

� −ρk ·
d

dt

Z
Vf

u dV (5)

where I is the identity tensor, andn is the unit normal vector pointing
outward from the control boundary. Because k · n � 0 on the
vertical faces and k · u→ k · iU � 0 on the top and bottom faces,
the term k · n · �0.5juj2I − uu� approaches to zero. It has been

Fig. 1 Rectangular control volume.
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demonstrated that the SLF is sufficiently accurate for complex
unsteady viscous flows generated by flappingwings [26]. Because of
the formal simplicity and physical clarity of the SLF, it is particularly
useful to evaluate the contributions of distinct vortical structures to
the lift in unsteady flows. In a limiting casewhere amoving body is in
a completely inviscid irrotational flowwithu � ∇ϕ,La is interpreted
as the added-mass force projected on the direction of k. In this case,
La is expressed asLa � madUb∕dt, where the addedmass is defined
asma ≈ −ρlref∫ ∂B

�ϕ�k · n� dS, �ϕ � ϕ�Ub�t�lref �−1 is the normalized
velocity potential, and Ub�t� and lref the velocity and the reference
length of the body, respectively.

III. Thin-Airfoil Lift Formula

A 2-D attached flowfield over a thin airfoil can be decomposed
into the outer potential flow and the boundary layer (or the viscous
flow region). Therefore, the velocity is expressed as u �
∇ϕH�x ∈ Dout� � uH�x ∈ Dbl�, where ϕ is the velocity potential,
Dout and Dbl denote the outer flow domain and the boundary-layer
domain (Vf � Dout �Dbl), respectively, and the Heaviside function
is defined asH�x ∈ D� � 1 andH�x ∈= D� � 0. The boundary-layer
edge is denoted by ∂Bbl that separates the two domains. In this case,
the vortex lift is solely contributed by the boundary layer. For a 2-D
attached flow, according to the SLF, the lift per unit span is given by

L 0 � L 0vor � L 0a ≈ ρUeffΓ� ρ
d

dt

Z
∂Bbl

ϕ�k · n 0� dS (6)

where Γ � hωyiDD is the circulation, Ueff � hueffiD is the area-
averaged effective velocity, ueff � uωy∕hωyiD, hωyiD is the area-
averaged spanwise vorticity, u is the velocity component in the x
direction, and n 0 is the unit normal vector pointing outward from
the wing surface (n 0 � −n). The domain-averaged operator
h•iD � D−1∫ D • dV, andD is a rectangular control domain in 2-D.
For a bounded vorticity region (e.g., a boundary layer) that is much
smaller than the control domainD, it is proven byWang et al. [26] that
the effective velocity is equal to the incoming flow velocity (i.e.,
Ueff � U), and thus the Kutta–Joukowski theorem L 0vor � ρUΓ is
recovered. For a rectangular outer control surface Σ, as shown in
Sec. VI, L 0a in Eq. (6) is approximately expressed as the time rate of
the surface integral of the velocity potential on ∂Bbl by using the
Gauss theorem. The underlying assumption for such an approx-
imation is that the integralmomentumof fluid in the boundary layer is
much smaller than that in the inviscid outer flow in unsteady flows. In
other words, L 0a in Eq. (6) mainly represents the added-mass lift
associated with the unsteady outer flow induced by a moving wing,
neglecting the unsteady effects of the viscous flow domain (e.g., the
boundary layer) near the wing.
Further, for a thin airfoil, the circulation is given by the integral of

the physical quantity γ�x; t� along the coordinate x on the chord line
of the airfoil, i.e.,

Γ �
Z
Dbl

ωy dS �
Z
xTE

xLE

γ�x; t� dx (7)

In Eq. (7), γ�x; t� is defined as

γ�x; t� �
Z

δ�

0

ω�y dn 0� �
Z

δ−

0

ω−
y dn

0− ≈ u�xe − u−xe (8)

where the superscripts “�” and “−” denote the quantities on the
upper and lower surfaces of the thin airfoil, respectively; δ denotes the
boundary-layer thickness; n 0 is the normal coordinate directing
outward from the thin airfoil surface; and u�xe − u−xe is the velocity
difference between the boundary-layer edges on the upper and lower
surfaces. The function γ�x; t� is a lumped model of the vorticity
distribution on the airfoil surface. In the limiting case where the
boundary layer becomes very thin as Reynolds number is increased,
γ�x; t� is interpreted as the strength of a vortex sheet in the classical
thin-airfoil theory.

The added-mass lift per unit span is

L 0a ≈ ρ
d

dt

Z
∂Bbl

ϕ�k · n 0� dS ≈ ρ
d

dt

Z
xTE

xLE

�ϕ�e − ϕ−
e � dx

� ρ
d

dt

Z
xTE

xLE

�xref − x�γ�x; t� dx (9)

where xLE and xTE are the leading-edge and trailing-edge locations,
respectively, and the subscript “e” denotes the boundary-layer edge.
In the derivation of the second approximate equality in Eq. (9), it is
assumed that �k · n 0�dS ≈ dx in 2-D. Another approximation is that
the effect of the unsteady boundary-layer edge ∂Bbl is neglected
because xLE and xTE are treated as the time-independent variables.
The effect of the unsteady boundary-layer edge ∂Bbl as a part of
the added-mass forcewill be evaluated in Sec. VI. In the derivation of
the last equality in Eq. (9), integration by parts is carried out, and the
reference location xref is introduced as a parameter when the mean
value theorem is applied. The reference location xref will be deter-
mined later in a classical flow across an accelerating flat plate in
which �xref � 0.5 is found. It is interesting thatL 0a in Eq. (9) is reduced
to the time rate of the vortex impulse (or vortex moment) in unsteady
thin-airfoil theory.
Substitution of Eqs. (7) and (9) into Eq. (6) yields the thin-airfoil

lift formula (TALF):

L 0�t� � L 0vor�t� � L 0a�t�

≈ ρU�t�c
Z

1

0

γ� �x; t� d�x� ρc2
d

dt

Z
1

0

� �xref − �x�γ� �x; t� d �x (10)

where �x � �x − xLE�∕c is the normalized coordinate, �xref �
�xref − xLE�∕c is the normalized reference location, and c is the
chord. The first and second terms in the RHS of in Eq. (10) are
interpreted as the Kutta–Joukowski lift and the added-mass lift,
respectively. The previous analysis shows how Eq. (3) is math-
ematically reduced to Eq. (10), in which a vortex sheet is considered
as an idealized model of a boundary layer (or near-wall shear layer)
for a thin airfoil. This supports the arguments made by Glauert [15]
and Sears [16] on the physical foundations of thin-airfoil theory, in
which a vortex sheet is a limiting model of a boundary layer on the
airfoil surface as the viscosity approaches to zero. Sears [16] obtained
Eq. (10) using the unsteady Bernoulli equation in the framework of
inviscid flows but argued physically that it could be correct even
when the boundary layer is separated. In fact, the aforementioned
derivation of Eq. (10) can be extended to moderately separated flows
by defining the limits δ� and δ− in the integral of the vorticity field
[Eq. (8)] as the sufficiently large distances from the airfoil surface
beyond the viscous flow region. In this sense, the whole separated
flow plus an airfoil is vertically compressed into a vortex sheet with
the strength γ�x; t�.When γ�x; t� is calculated from thevorticity fields
obtained from global velocity measurements and CFD, the nonlinear
effects associated with viscous separated flows could be naturally
incorporated in the TALF particularly in the vortex lift. This will be
critically examined through DNS of low-Reynolds-number flows
over a flapping flat-plate airfoil in Sec. VII.

IV. Wake Effect

In the linear theory of aerodynamics, the formal solution of the
thin-airfoil equation is first sought for γ�x; t�, and then Green’s
function in the wake-induced term is determined. The thin-airfoil
equation is

1

2π

Z
1

0

γ��ξ; t�
�ξ − �x

d�ξ � F0� �x; t� � F1� �x; t� (11)

where �ξ � �ξ − xLE�∕c and �x � �x − xLE�∕c are the normalized
coordinates; c is the chord; and F0� �x; t� and F1� �x; t� are the quasi-
steady velocity normal to the airfoil surface associated with the
wing kinematics and the normal velocity induced by the wake,
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respectively. The singular integrals in Eq. (11) and several other
equations in this paper are in the sense of the Cauchy principal value.
The specific forms of F0� �x; t� and F1� �x; t� are given by Katz and
Plotkin [27]. The wake-induced normal velocity on the airfoil can be
expressed as

F1� �x; t� �
Z

∞

1

S��ξ; �x; t�γw��ξ; t� d�ξ (12)

where S��ξ; �x; t� is related to the distribution of the wake vortices
relative to the airfoil, and γw is the strength of the wake vortex sheet.
From a standpoint of theoretical aerodynamics, to formally isolate

the effect of thewake, a decomposition γ � γ0 � γ1 is used, where γ0
is the quasi-steady part without considering the effect of the wake
vortex sheet, and γ1 is the unsteady part induced by the wake.
Therefore, using the solution of the Cauchy integral equation of the
first kind [28] and imposing the Kutta condition γ� �x � 1; t� � 0, we
have

γ0� �x; t� �
2

π
�����������������
�x�1 − �x�

p Z
1

0

E��ξ; �x�F0��ξ; ; t� d�ξ (13)

γ1� �x; t� �
2

π
�����������������
�x�1 − �x�

p Z
1

0

E��ξ; �x�F1��ξ; ; t� d�ξ (14)

where

E��ξ; �x� �

�����������������
�ξ�1 − �ξ�

q
�x − �ξ

−

�����������������
�ξ�1 − �ξ�

q
1 − �ξ

(15)

It is noted that Eq. (11) is usually solved by using Glauert’s Fourier
series method [15,27]. However, Eqs. (13) and (14) have a more
compact form that is convenient for mathematical manipulation.
Further, by using Eq. (12), the relation between γ1 and γw is given by

γ1� �x; t� �
Z

∞

1

G��ξw; �x; t�γw��ξw; t� d�ξw (16)

where the Green’s function is

G��ξw; �x; t� �
2

π
�����������������
�x�1 − �x�

p Z
1

0

E��ξ; �x�S��ξw; �ξ; t� d�ξ (17)

Substituting γ � γ0 � γ1 into Eq. (10) (the TALF) and using Eq. (16)
and an integral formula given by von Kármán and Sears [6] [Eq. (15)
in their paper] for the wake vortices traveling with the freestream
velocity U, we have

L 0�t� ≈ ρU�t�c
Z

1

0

γ0� �x; t� d �x� ρc2
d

dt

Z
1

0

� �xref − �x�γ0� �x; t� d �x

� ρU�t�c
Z

∞

1

γw��ξ; t�P��ξ; t� d�ξ (18)

where the relevant functions in the wake terms are defined as

P��ξ; t� � dH1��ξ; t�
d�ξ

�H2��ξ; t� (19)

H1��ξ; t� �
Z

1

0

� �xref − �x�G��ξ; �x; t� d�x (20)

H2��ξ; t� �
Z

1

0

G��ξ; �x; t� d�x (21)

In Eq. (18), the first term in theRHS is the quasi-steady vortex lift, the
second term is the added-mass lift, and the third term describes the
effect of thewake on the lift, which explicitly depends on the strength
distribution of the wake vortex sheet. Clearly, Eq. (18) is a reduced
form of the TALFwhen the decomposition γ � γ0 � γ1 is introduced
and the solution of the thin-airfoil equation is applied. On the other
hand, Eq. (18) is considered as a generalized form of the von
Kármán–Sears lift formula, which will be discussed in Sec. V.
The total circulation condition Γ0�t� � Γw�t� � Γ1�t� � 0 gives

the following integral equation for γw:

Γ0�t� � −
Z

∞

1

γw��ξ; t�Q��ξ; t� d�ξ (22)

where Q��ξ; t� � H2��ξ; t� � 1 is the kernel, and

Γ0�t� �
Z

1

0

γ0� �x; t� d �x; Γ1�t� �
Z

1

0

γ1� �x; t� d �x;

Γw�t� �
Z

∞

1

γw��ξ; t� d�ξ (23)

For a specific formQ �
��������������������
�ξ∕��ξ − 1�

q
considered by vonKármán and

Sears [6], Eq. (22) recovers the Wagner integral equation. When the
wake vortices are carried away with the freestream velocity, Eq. (22)
has an approximate convolution form

Γ0�σ� � −
Z

σ�t�

0

γw�s�Q�σ − s� ds (24)

where s � σ�t� − �ξ� 1, σ�t� � R�t�∕c, andR�t� � ∫ t0U�t� dt is the
downstream extremity of the wake. Therefore, a formal solution of
Eq. (24) is

γw�σ� �
Z

∞

0

Γ0�σ 0�W1�σ − σ 0� dσ 0 (25)

where W1 � −L−1�1∕L�Q�� is a Green’s function, and L and L−1

denote the Laplace transform and the inverse Laplace transform,
respectively. The third term in the RHS of Eq. (18) that represents the
wake effect can be formally written as

L 0w�t� � ρU�t�c
Z

σ

0

γw�s�P�σ − s� ds

� ρU�t�c
Z

∞

0

Γ0�σ 0�W2�σ − σ 0� dσ 0 (26)

where W2 � −L−1�L�P�∕L�Q�� is a Green’s function that can be
evaluated by using contour integral [29]. It is noted that the previous
treatment of the wake effect based on the integral equation is just
formally neat. From a computational viewpoint, however, discrete
vortex methods are much easier and more effective to evaluate the
wake effect [27].

V. Von Kármán–Sears Lift Formula

The vortex impulse was originally used by von Kármán and Sears
[6] to calculate the unsteady lift. In fact, Eq. (18) can be directly used
to calculate the unsteady lift. When a rigid wake vortex sheet is
aligned and traveled with the freestream velocity, von Kármán and
Sears [6] gave a specific time-independent Green’s function:

G��ξ; �x� � 1

π

1

�ξ − �x

�����������
1 − �x

�x

r �����������
�ξ

�ξ − 1

s
(27)

Substitution of Eq. (27) into Eqs. (20) and (21) (�ξ > 1) yields

H1��ξ� � � �xref − 0.5�

�����������
�ξ

�ξ − 1

s
� ��ξ − �xref� −

�����������������
�ξ��ξ − 1�

q
(28)
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H2��ξ� �

�����������
�ξ

�ξ − 1

s
− 1 (29)

Therefore, the Green’s function P��ξ� in Eq. (19) is

P��ξ� � 0.5 − �xref

4

�������������������
�ξ��ξ − 1�3

q � 1

2

�����������������
�ξ��ξ − 1�

q (30)

The reference location �xref can be determined based on a classical
solution for the cross flow over an accelerating flat plate in fluid. In

this case, the vortex sheet strength is γ � −4w�t�η∕
����������������
1 − 4η2

p
, where

w�t� is the velocity of the flat plate and η � �x − 0.5 [27]. According
to Eq. (10), the added-mass force on the flat plate is

L 0a�t� � ρc2
d

dt

Z
1∕2

−1∕2
�ηref − η�γ�η; t� dη � π

4
ρc2 _w − 4ρc2 _wηrefI0

(31)

where _w � dw∕dt is the acceleration, ηref � �xref − 0.5 is the
reference location relative to the midpoint, and I0 is a divergent
integral given by

I0 �
Z

1∕2

−1∕2

η����������������
1 − 4η2

p dη (32)

If Eq. (31) is consistent with the classical solution L 0a�t� �
�π∕4�ρc2 _w, the necessary condition is ηref � 0 or �xref � 0.5 such
that the term with I0 is nullified. Therefore, when the reference
location is at the midpoint of a thin airfoil ( �xref � 0.5), the first term
of the RHS of Eq. (30) vanishes. As a result, Eq. (18) is reduced to the
von Kármán–Sears lift formula:

L 0�t� � ρU�t�cΓ0 � ρc2
d

dt

Z
1

0

�0.5 − �x�γ0� �x; t� d �x

� ρU�t�c
Z

∞

1

γw��ξ; t�
0.5d�ξ�����������������
�ξ��ξ − 1�

q (33)

Thus, the von Kármán–Sears vortex impulse formulation in the
inviscid-fluid case is consistent with Eqs. (3) and (10), and the von
Kármán–Sears lift formula is a reduced form of the TALF when the
specific wake model is used for a thin airfoil.

VI. Boundary Layer and Lift Generation

The relationship between a boundary layer and lift generation is
further discussed by using the SLF. For a flow over a wing (or an
airfoil in 2-D), as shown in Fig. 1, the flowfield is decomposed into
the outer potential flow domainDout and the boundary-layer domain
Dbl that are separated by the boundary-layer edge ∂Bbl. Therefore,
the velocity is expressed as u � ∇ϕH�x ∈ Dout� � uH�x ∈ Dbl�,
where ϕ is the velocity potential, and the Heaviside function is
defined asH�x ∈ D� � 1 andH�x ∈= D� � 0. In this case, the vortex
lift is only contributed by the boundary layer. Under the boundary-
layer approximation, the Lamb vector is l � u ×ω ≈
0.5n 0∂�u21 � u22�∕∂x3, where �u1; u2� is the velocity vector along
the surface, x3 is the coordinate normal to the surface, and n 0 is the
unit normal vector pointing outward from the wing surface
(n 0 � −n). Therefore, the vortex lift is given by

Lvor � ρk ·

Z
Dbl

u ×ω dV ≈ 0.5ρk ·

Z
∂Bbl

n 0�u21e � u22e� dS (34)

where �u1e; u2e� is thevelocity vector at the boundary-layer edge ∂Bbl

along the surface. Substitution of Bernoulli’s equation 0.5ρ�u21 �
u22� � p0 − pe − ρ∂ϕ∕∂t into Eq. (34) leads to

Lvor ≈ −k ·

Z
∂Bbl

n 0pe dS − ρk ·

Z
∂Bbl

n 0
∂ϕ
∂t

dS (35)

Because the integral momentum of fluid in the boundary layer is
much smaller than that in the outer flow, the lift associated with the
fluid acceleration is

La ≈ −ρk ·
d

dt

Z
Dout

∇ϕ dV � −ρk ·
d

dt

Z
Σ�∂Bbl

ϕn dS (36)

where Σ denotes the rectangular outer control surface, ∂Bbl denotes
the edge boundary of the boundary-layer domain, and n is the unit
normal vector of the boundary. As shown in Fig. 1, the surface
integral on the rectangular surface Σ in Eq. (36) vanishes because
k · n � 0 on the vertical faces AD and BC, and dϕ∕dt on the upper
and lower faces AB and DC is not only decreased rapidly in the far
field but also canceled out. The use of the Leibniz integral rule yields

La ≈ −ρk ·
d

dt

Z
∂Bbl

ϕn dS � ρk ·

Z
∂Bbl

n 0
∂ϕ
∂t

dS� La0 (37)

where the term associated with the unsteady boundary-layer edge
∂Bbl is given by

La0 � ρ

Z
∂Bbl

��ϕk · ∇�ub � ∇ · �ϕk�ub − �∇ · ub��ϕk�� · n 0 dS

(38)

ub is the moving velocity of ∂Bbl as a geometric boundary, and
n 0 � −n on ∂Bbl directs outward from the boundary layer.
According to Eq. (37), La is interpreted as the added-mass lift in this
case. Based on Eqs. (35) and (37), the liftL ≈ Lvor � La is expressed
as

L ≈ −k ·

Z
∂Bbl

n 0pe dS� La0 (39)

The first term in the RHS of Eq. (39) is the contribution calculated by
integrating the pressure on the boundary-layer edge ∂Bbl around the
wing. The second term represents the added-mass effect induced by
the unsteady boundary-layer edge ∂Bbl. The previous analysis gives a
direct link between a boundary layer and lift generation. Because a
boundary layer is also the source of the skin friction drag, the skin
friction drag could be considered in a certain sense as a cost of
generating the lift in addition to the induced drag.

VII. Flapping Flat-Plate Airfoil

A. Kinematics and Numerical Method

To evaluate the accuracy and limitations of the thin-airfoil lift
formula, the 2-D flows over a flapping flat-plate airfoil at a low
Reynolds number are investigated through DNS. The plate has a
chord length c and zero thickness, heaving vertically and rotating
around the center of the plate in a uniform flow. The Cartesian system
O − XYZ fixed in the space is used inDNS. As shown in Fig. 2, theX
axis directs downstream in parallel to the freestream, the Z axis is

Fig. 2 Flapping flat-plate airfoil and coordinate system in DNS.
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perpendicular to the freestream pointing upward, and the Y axis is
normal to the XZ plane along the wingspan. The kinematics of the
flapping plate is described by the pitching angle (the geometrical
angle of attack, or AOA) and the vertical position of the center of the
plate, i.e.,

α � α0 � αm cos�2πft� (40)

zc � zc0 � A sin�2πft� (41)

where α is the instantaneous AOA, α0 is the time-averaged AOA, and
αm is the pitching amplitude. zc is the vertical position of the center of
the plate, zc0 is the time-averaged vertical position of the center, andA
is the heaving amplitude. f is the pitching and/or heaving frequency.
The reduced frequency of the flapping wing is defined as k �
πfc∕U. The kinematic parameters in the four cases studied in DNS
are given in Table 1.
The flow around the flapping airfoil is determined by the

incompressible NS equations. The Reynolds number based on the
chord length of the plate and uniform upstream flow is Re �
Uc∕ν � 300. The unsteady flows with the moving boundaries are
simulated by using the immersed boundary method based on the
discrete stream function formulation developed by Wang and Zhang
[30]. In this method, the discrete stream function method (or exact
projection method, null space method) proposed by Chang et al. [31]
is used to solve the NS equations on a Cartesian Eulerian grid. The
geometry and kinematics of the moving boundaries are described by

a Lagrangian grid. The effects of the boundaries on the flow are
represented by adding a force term in the NS equations. The force
term is determined by solving a linear system regarding the inter-
polation between the Lagrangian and Eulerian grid points. The
validations and the details of the numerical method can be found in
our previous work for various flows [26,30].
The computational domain used in the present work is �−12; 20� ×
�−16; 16� in the streamwise (X) direction and vertical (Z) direction for
2-D flows. The unstructured Cartesian mesh with the hanging nodes
is used in the simulations to refine the mesh around the plate. The
minimum grid size is dh � 0.02, and the maximum grid size is
dh � 0.32. The time step is selected to keep the maximum Courant–
Friedrichs–Lewy number at 0.5. The independence of the lift co-
efficient on the grid resolution for the flow over the flapping plate has
been examined. In all the simulations, the uniform upstream flow is
set at the inlet, and the free convection flow is set at the outlet. The
nonslip boundary condition is specified at the surface of the plate/
rectangular wing. The zero-shear slip-wall boundary conditions are
used at other boundaries. The initial condition for the flow is
�U; 0; 0�. A rectangular control volume is used for lift calculation by
using the SLF. The top and bottom faces of the control volume are at
Z � �12c. The left face is at X � −2c, and the right face is at
X � XTE, where XTE is the maximum streamwise position of the
trailing edge of the airfoil.

B. Flowfields and Unsteady Lift

The four cases shown in Table 1 are considered for a flapping
flat-plate airfoil at Re � Uc∕ν � 300. The low-frequency flapping
motion is first studied in cases A and C, in which the reduced
frequency is k � πfc∕U � 0.06π. However, in case C, the non-
dimensional heaving amplitude isA∕c � 0.25 and the time-averaged
AOA is α0 � 10 deg, which are 10 times as large as those in case A.
Figures 3a and 4a show the vorticity fields around the airfoil at the
instants when the lift reaches the maximum andminimum for case A.
Although the boundary layer is weakly separated at the sharp leading
edge in case A, the shear layers are still close to the upper and lower
surfaces of the airfoil in case A, in which the flapping frequency,

Table 1 Kinematical parameters of a flapping
flat-plate airfoil

Case k � πfc∕U A∕c α0, deg αm, deg zc0∕c
A 0.06π 0.025 1 3 0
B 0.6π 0.025 1 3 0
C 0.06π 0.25 10 30 0
D 0.6π 0.25 10 30 0

Fig. 3 Vorticity fields around the plate when the lift reaches the maximum in a) case A, b) case B, c) case C, and d) case D.
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heaving amplitude, and time-averaged AOA are small. In contrast,
the flow around the airfoil in caseC is considerably separated because
the heaving amplitude and the time-averaged AOA are much larger.
The distributions of the vortex sheet strength γ�x; t� along the plate
are calculated by using Eq. (8), where the sufficiently large values of
δ� and δ− are selected such that the limits of the integral in Eq. (8) are
beyond the viscous separated flow domain. Figures 5a and 5c show
the typical distributions of γ�x; t�when the lift reaches the maximum
andminimum for cases A and C. It is noted that the Kutta–Joukowski
condition γ�xTE; t� � 0 is satisfied only in case A, but it is not met in
the other cases where the flow is considerably separated.
The lift coefficient is calculated by using the thin-airfoil lift

formula (TALF) [Eq. (10)], based on the distribution of γ�x; t�.
Figure 6a shows the histories of the lift coefficient given by the TALF
and the simple lift formula (SLF) [Eq. (3)] for case A, where the DNS
data are obtained by directly integrating the surface pressure and skin
friction fields. The SLF is in excellent agreement with the DNS in
all the cases. It is expected that the TALF gives the result that is
consistent with the DNS data in case A, and the waveform of the lift
coefficient remains sinusoidal. More interestingly, as shown in
Fig. 6c, the TALFgives a good prediction of the lift coefficient in case
C where the flow around the airfoil is considerably separated. The
waveform of the lift coefficient is no longer sinusoidal, indicating
that the nonlinear effects associated with the separated flow are
significant due to the high-amplitude flapping motion. This indicates
that the TALF is still applicable for the separated flows around the
airfoil at small Strouhal numbers. As argued by Sears [16], it seems
reasonable to use a vortex sheet as a model of a compressed viscous
separated flow plus the airfoil. Therefore, the nonlinear effects are
intrinsically incorporated into the TALF such that it could be
applicable beyond the linear theories.
Furthermore, according to Eqs. (3) and (10), the lift can be

decomposed into the vortex lift (L 0vor) and the lift associated with the
fluid acceleration (L 0a). However, a subtle difference is that L

0
a in the

TALF is interpreted as the added-mass lift, which is a reduced case of
the SLF. Figure 7 shows the lift coefficients associatedwith the vortex
lift and the fluid acceleration in the TALF and the SLF, where

Cla � L 0a∕�0.5q∞c� and Clvor � L 0vor∕�0.5q∞c� are the lift
coefficients and q∞ is the dynamic pressure. As shown in Figs. 7a
and 7c, the lift coefficients associated with the vortex lift and the fluid
acceleration in the TALF and the SLF are consistent in both cases A
and C. The time-averaged lift is mainly contributed by the vortex lift
L 0vor, whilereas L

0
a contributes considerably to the temporal variation

of the lift coefficient. The vortex lift L 0vor given by the TALF is
consistent with the SLF in all the cases. This supports the argument
made in Sec. III that the nonlinear effects associated with viscous
separated flows could be incorporated particularly in the vortex lift in
the TALF. However, the lift decomposition reveals that the added-
mass lift L 0a is the main contributor to the error of the TALF, which is
particularly large in cases B and D. As indicated in Sec. III, L 0a in
Eq. (10) does not include the effect associated with the unsteady
vortical structures in the viscous flow region and the effect of the
unsteady boundary ∂Bbl. These effects could be significant in
massively separated flows. In contrast to the TALF, L 0a in the SLF
includes all the unsteady effects of the flows.
The high-frequency flapping motion is considered in cases B and

D, where the reduced frequency is k � 0.6π. The vorticity fields
shown in Figs. 3 and 4 indicate the highly separated flows with
energetic vortex shedding from the leading and trailing edges of the
airfoil. In case B, where the heaving amplitude is small, as shown in
Fig. 7b, the waveform of the lift coefficient given by the TALF
remains basically sinusoidal, which is consistent with the SLF and
DNS. However, the result given by the TALF has a phase shift of
about 36 deg. As shown in Fig. 7d, in case D where the heaving
amplitude is large, the result given by the TALF significantly deviates
from those given by the SLF and DNS in both the waveform and
phase. This deviation of the TALF from the truth is mainly caused by
the added-mass lift L 0a.

C. Limitations of Linear Models

Following the derivation of the TALF in Sec. III, we know that the
TALF could cope with the nonlinear effects associated with viscous
separated flows when the vortex sheet strength distribution γ�x; t� is
calculated from the vorticity fields obtained from global velocity

Fig. 4 Vorticity fields around the plate when the lift reaches the minimum in a) case A, b) case B, c) case C, and d) case D.
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Fig. 5 Distributionsof thevortexsheet strengthalongtheplatewhen the lift reaches themaximumandminimumina)caseA,b) caseB,c) caseC,andd)caseD.

Fig. 6 Lift coefficients given by the TALF, the SLF, and DNS in a) case A, b) case B, c) case C, and d) case D.
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Fig. 7 Lift coefficients associated with the vortex lift and the fluid acceleration in the TALF and the SLF in a) case A, b) case B, c) case C, and d) case D.

Fig. 8 Lift coefficients given by the Theodorsen lift formula, the SLF, and DNS for a) case A, b) case B, c) case C, and d) case D.
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measurements and CFD. Next, in Sec. IV, the thin-airfoil equation is
solved to determine γ�x; t� that is decomposed into the quasi-steady
part and the wake-induced part. In this step, the linear model for
γ�x; t� is imposed in the TALF, and thus the von Kármán–Sears lift
formula is derived essentially based on the linear model of aero-
dynamics. Indeed, the examples of steady-state oscillations con-
sidered by vonKármán and Sears [6] are the linear cases in which the
sinusoidal waveform of the lift remains unchanged. However, the
tripe decomposition form of the von Kármán–Sears lift formula is
consistent with the TALF and SLF given in the framework of viscous
flows. Therefore, as long as γ�x; t� is obtained from reliable nonlinear
theories, CFD, or measurements, the von Kármán–Sears lift formula
is more applicable, in which the nonlinear effects of flows could be
naturally incorporated. This is different from other linear unsteady
aerodynamic models.
Theodorsen gave a linear aerodynamic model for a harmonically

flapping flat plate based on potential flow theory [5]. The Theodorsen
lift formula has the noncirculatory and circulatory terms. The non-
circulatory term is essentially the added-mass force generated purely
by the unsteadymotion of the plate. The circulatory term is the quasi-
steady lift modulated by the Theodorsen function depending on the
reduced frequency to take the effect of the infinite straight wake into
account. The Theodorsen lift formula used in our case is Cl �
2π� _α� �zc� � 4πC�α� _zc � _α∕2�, where C is the Theodorsen
function of the reduced frequency (C � 0.514 and C � 0.633 for
k � 0.6π and k � 0.06π, respectively). Figure 8 shows the lift
coefficients given by the Theodorsen lift formula in comparison with
those given by the SLF and DNS. Only when the flapping frequency,
heaving amplitude, and time-averaged AOA are sufficiently small in
case A, the Theodorsen lift formula gives a good prediction. In the
other cases, it fails to predict correctly the magnitude, waveform,
and phase of the lift coefficient. It is not surprising because the
Theodorsen lift formula is strictly linear, which is not applicable for
unsteady separated flows.

VIII. Conclusions

Unsteady thin-airfoil theory is revisited by applying the simple lift
formula (SLF) that is accurate for a sufficiently large rectangular
control volume enclosing a wing in viscous flows. The SLF, which
contains the vortex lift (the Lamb vector integral) and the lift
associatedwith the fluid acceleration, allows a direct derivation of the
thin-airfoil lift formula (TALF) for a 2-D flowfield decomposed into
the outer potential flow and the boundary layer. Accordingly, the
TALF contains the Kutta–Joukowski lift and the added-mass lift.
This derivation illustrates that the viscous flow around an airfoil is
essentially compressed into a vortex sheet with the strength cal-
culated by integrating the vorticity field around the airfoil along the
vertical direction. From this perspective, the TALF could be
applicable even when the flow around the airfoil is moderately
separated. Further, after the vortex sheet strength distribution is
decomposed into the quasi-steady part and thewake-induced part, the
TALF recovers the classical von Kármán–Sears lift formula. In
addition, the analysis based on the SLFgives a direct link between the
boundary layer and lift generation. Direct numerical simulations
(DNSs) of the flows around a flapping flat-plate airfoil at Reynolds
number of 300 are conducted in the four cases with the different
flapping frequencies and heaving amplitudes. In the cases with the
low reduced frequency (k � 0.06π), the lift coefficients given by the
TALF are in good agreement with the DNS even when the flow is
considerably separated around the flapping airfoil with the large
heaving amplitude. In contrast, in the cases with the high reduced
frequency (k � 0.6π), the predicted lift coefficients by the TALF
deviate significantly from the truth in their waveform andmagnitude.
This deviation of the TALF is mainly caused by the added-mass lift
that does not include the effect associated with the unsteady vortical
structures in the viscous flow region and the effect of the unsteady
boundary-layer edge. These effects could be significant in massively
separated flows. Nevertheless, the vortex lift in the TALF is
consistent with that in the SLF in all the cases, indicating that the

TALF could cope somewhat with the nonlinear effects associated
with viscous separated flows.
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