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a b s t r a c t

This letter describes numerical simulation of the unsteady flow over a slow-flying bat by using the
immersed boundarymethod based on themeasured batwing geometry and kinematics. Themain vortical
structures around the bat flappingwings are identified, illuminating the lift-generating role of the leading-
edge vortices generatedmainly in the downstroke. Furthermore, the lift decomposition indicates that the
vortex lift has the dominant contribution to the time-averaged lift and the lift associated with the fluid
acceleration has the relatively moderate effect.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Biological flapping flight has been an inspirational source of
flight for humanbeing before the remarkable development ofmod-
ern fixed-wing aircraft is made. Recently, there is considerable re-
newed interest to flapping flight in the communities of aeronautics
and flow physics due to the need of developing birdlike micro air
vehicles (MAV) [1,2]. Animal flight has been traditionally studied
by avian zoologists, and most studies have focused on two groups
of flyers: birds and insects. Bats are the only flying mammals that
are comparable to small birds in terms of the flight characteris-
tics. However, bats have someunique features that are significantly
different from birds, including the special skeletal anatomical
structure with more degrees of freedom, highly deformable wing-
membrane skin, and more complicated wing kinematics [3]. Bats
aremoremaneuverable and capable in slow flight [4–7]. Compared
with a large body of literatures on birds and insects, limited results
on bat flight are recently obtained fromwing kinematics measure-
ments and particle image velocimetry (PIV) measurements [8–12].
However, a sufficient understanding of three-dimensional (3D) un-
steady flow fields over a flying bat is still lacking. The objective of
this work is to conduct numerical simulations of the unsteady flow
over a slow-flying bat and investigate the unsteady flow structures
and aerodynamic lift generated by the bat flapping wings.

The morphology of the bat wing is reconstructed based on the
measurements of Watts et al. [13], where the outline of the wing
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at its maximum wingspan is provided. The outline provided by
Watts et al. [13] is rescaled based on the relatively positions of the
shoulder, wrist, wingtip, 5th digit and foot at the instant when the
wingspan reaches the maximum according to the kinematics data
of Wolf et al. [10]. The rescaled outline of the wing and the coor-
dinate system is shown in Fig. 1. The kinematics of the wing in the
present numerical model is reconstructed based on the measure-
ments ofWolf et al. [10], and themotions of thewingtip, wrist, and
5th digit are prescribed while the shoulder and foot are fixed. The
other points on the wing are interpolated from the five key points
by using the bi-linear interpolation. The motions of the wingtip,
wrist, and 5th digit are fitted by using the Fourier series. The tra-
jectories of the wingtip, wrist, and 5th digit in this work are shown
in Fig. 2 in comparisonwith thosemeasured byWolf et al. [10]. The
key parameters of themodel are listed in Table 1. It is noted that the
bat studied byWatts et al. [13] for thewingmorphology is the gray-
headed flying fox (Pteropus poliocephalus), while the bat studied by
Wolf et al. [10] for the wing kinematics is the Pallas long-tongued
bats (Glossophaga soricina). In this sense, the wing geometric and
kinematic model in this work is a combination of the two different
bat species which serves as a generic bat model.

The flow around the flapping bat wings is obtained by numeri-
cally solving the incompressible Navier–Stokes equations. The un-
steady flows with the moving boundaries are simulated by using
the immersed boundary (IB) method based on the discrete stream
function formulation developed byWang and Zhang [14]. The com-
putational domain used in the present work is [−10c, 22c] ×

[−12c, 12c] × [−16c, 16c] in the streamwise (x), spanwise (y),
and vertical (z) directions, where c is the mean chord length. The
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Fig. 1. The rescaled outline of the bat wing based on the measurements of Watts
et al. [13].

Table 1
Key parameters of the bat model.

Flight speed U∞/(m.s−1) 1
Mean chord length c/m 0.037
Average wing area S/c2 4.7
Maximum wingspan Lmax/c 6.6
Flapping amplitude (wingtip) A/c 1.83
Flapping frequency fA/c 1.36
Real Reynolds number Rer = U∞c/νr 2450
Simulation Reynolds number Re = U∞c/ν 1000

unstructured Cartesian mesh with the hanging-nodes is used in
the simulations to refine the mesh around the bat model. The
minimum grid size is dh = 0.02c , and the maximum grid size
is dh = 0.32c. The time step is selected to keep the Courant–
Friedrichs–Lewynumber at 0.5. In the simulations, the uniformup-
stream flow is set at the inlet, and the free convection flow at the
outlet. The non-slip boundary condition is specified at the surface
of the batmodel. The zero-shear stress slipwall conditions are used
at other boundaries. The initial condition for the flow is (U∞, 0, 0).
The independence of the lift coefficient on the grid resolution has
been examined. The details of the numerical method and code
validations for various flows have been described by Wang and
Zhang [14] and Wang et al. [15,16]. In this work, the Reynolds
number based on the mean chord length c and the freestream ve-
locity U∞ is Re = U∞c/ν = 1000 and the Strouhal number is
St = fA/U∞ = 1.36, where f is the flapping frequency.

Figure 3 shows the top views of the vortical structures around
the flapping bat wings at four different phases of a flapping cy-
cle (the start of downstroke, middle of downstroke, start of up-
stroke, and middle of upstroke), where the vortical structures are
identified using the λ2-criterion [17] and colored by the stream-
wise vorticity. The distinct features are the leading-edge vortices
(LEVs) generated in the downstroke that are responsible to the vor-
tex lift generation. In contrast, there is no strong and coherent LEV
generated in the upstroke. This observation is consistent with the
previous reports that the stable LEVs correspond to high lift gen-
eration [12]. Figure 4 shows the spanwise vorticity distributions
in three spanwise slices when the bat wingspan reaches the maxi-
mum in the downstroke. The flow fields in the left column are from
the PIV measurements of a Pallas long-tongued bat at 1.5 m/s by
Muijres et al. [12]. The flow fields in the right column are from the
DNS in the present model at a speed of 1m/s. It is found the vortic-
ity distributions in the three spanwise slices obtained from theDNS
are very similar to those obtained in the PIVmeasurements byMui-
jres et al. [12]. The vortex shedding from the leading edge on the
upper surface can be observed in both the DNS andmeasurements,
which considerably contribute the vortex lift generation. Thewake
structures are also similar in the DNS and measurements.
a

b

Fig. 2. Trajectories of the wingtip, wrist, and 5th digit used in the present work in
comparison with those provided in the measurements of Wolf et al. [10] in (a) x–y
plane and (b) z–y plane. The brown point is at (0, 0.15, 0), which is the position of
the shoulder.

The lift coefficient Cl(t) = L(t)/(q∞Savg) is calculated in one
flapping period, where L is the lift, q∞ = ρU2

∞
/2 is the dynamic

pressure, Savg is the time-averaged projected wing area, and is the
forward flight velocity. The drag coefficient is defined similarly.
Figure 5 shows the time histories of the lift coefficients of the flying
bat in one period. The time history of Cl is similar to that for a
fruit bat at a higher Reynolds number [18]. The time-averaged lift
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Fig. 3. (Color online) The vortical structures around the slow-flying bat at (a)
start of downstroke, (b) middle of downstroke, (c) start of upstroke, (d) middle
of upstroke. The vortical structures are identified by using the λ2-criterion (λ2 =

−150). The color shows the streamwise vorticity.

coefficient in one flapping period is ⟨Cl⟩T = 12.9, where ⟨•⟩T is a
time-averaging operator.

To elucidate the relationship between the lift generation and
the vortical structures, the lift decomposition is applied. For
a columnar control volume whose upper and lower faces are
sufficiently far away from a wing and the vertical faces enclose all
the vortical structures between the leading and trailing edges of
the wing, the simple lift formula for forward flight is given in the
two dominant terms, i.e., L ≈ Lvor + Lacc [15]. The vortex lift is

Lvor = ρk ·


Vf
u × ωdV , (1)

and the lift associated with the fluid acceleration is

Lacc = −ρk ·


Vf

∂u
∂t

dV − ρk ·


∂B


|u|

2/2

ndS, (2)

where u is the velocity, ω is the vorticity, q = |u| is the veloc-
ity magnitude, Vf denotes the rectangular control volume of fluid,
Fig. 4. (Color online) Thedistributions of spanwise vorticitywhen the batwingspan
reaches themaximum in the downstroke in 3 different spanwise slices at (a) 35%, (b)
50%, (c) 65% of the semi-wingspan, respectively. The flow fields in the left column
are obtained from the PIV measurements of a Pallas long-tongued bat at 1.5 m/s by
Muijres et al. [12]. The flow fields in the right column are obtained from the DNS in
the present model at a speed of 1 m/s.

∂B denotes the boundary of the wing domain, k is the unit vector
normal to the freestream velocity, and n is the unit normal vector
pointing to the inside of the wing body. The volume integral of the
Lamb vector u × ω in Eq. (1) represents the vortex force. In gen-
eral, Lacc contains the contributions from the fluid motion induced
by a moving body and all other intrinsic unsteady phenomena. In
the limiting case where the flow is inviscid and irrotational, Lacc is
reduced to the added-mass lift. The coefficients of the vortex lift
and the lift associated with the fluid acceleration are defined as
Clvor = Lvor/(q∞Savg) and Clacc = Lacc/(q∞Savg), respectively. The
time histories of Clvor and Clacc in one flapping period are shown in
Fig. 5. Interestingly, it is found that the vortex lift coefficient Clvor
is positive in both the downstroke and upstroke, indicating that
the LEVs can still contribute lift generation even when they are de-
tached from the wing in the upstroke. The time-averaged vortex
lift coefficient of the flying bat is ⟨Clvor⟩T = 9.2 that is about 71% of
the total time-averaged lift coefficient. As observed in Fig. 5, Clacc
is positive in the downstroke and negative in most of the upstroke,
and it has also the positive contribution to the time-averaged lift.
The time-averaged value is ⟨Clacc⟩T = 3.7 that is about 29% of the
total time-averaged lift coefficient.

In summary, the numerical simulation indicates that the LEVs
generated particularly in the downstroke are the main flow struc-
tures contributing the lift generation of the slow-flying bat. The lift
can be decomposed into the vortex lift and the lift associated with
the fluid acceleration. The vortex lift is dominant in the bat flight,
which remains positive in not only the downstroke but also up-
stroke. In addition, the lift associated with the fluid acceleration
contributes the time-averaged lift largely due to the added-mass
force associated with the unique geometry and kinematics of the
bat wings.
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Fig. 5. Time histories of the lift coefficients of the flying bat in one period.
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