
Physica A 440 (2015) 139–146

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

An accurate treatment of diffuse reflection boundary
conditions for a stochastic particle Fokker–Planck algorithm
with large time steps
Thomas Önskog a,∗,1, Jun Zhang b,c

a Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
b James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ,
United Kingdom
c State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

h i g h l i g h t s

• A stochastic particle algorithm for simulation of flows of wall-confined gases is presented.
• The algorithm is constructed for large time steps which reduces the computational cost.
• Numerical simulations verify that the proposed algorithm reproduces the correct boundary behaviour.

a r t i c l e i n f o

Article history:
Received 10 February 2015
Received in revised form 24 April 2015
Available online 21 August 2015

Keywords:
Rarified gas flows
Fokker–Planck equation
Langevin simulation
Boundary conditions
Stochastic differential equations
First hitting time

a b s t r a c t

In this paper, we present a stochastic particle algorithm for the simulation of flows of
wall-confined gases with diffuse reflection boundary conditions. Based on the theoretical
observation that the change in location of the particles consists of a deterministic part and a
Wiener process if the time scale is much larger than the relaxation time, a new estimate for
the first hitting time at the boundary is obtained. This estimate facilitates the construction
of an algorithmwith large time steps for wall-confined flows. Numerical simulations verify
that the proposed algorithm reproduces the correct boundary behaviour.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

At present, the most widely used particle method for simulating gas flows is the direct simulation Monte Carlo (DSMC)
method [1] proposed by Bird in the 1960s. The fundamental idea behind the DSMC method is to track a large number
of representative molecules, with their motions and inter-molecular collisions assumed uncoupled. Molecular motions
are modelled deterministically according to the Newtonian equations of motion, while molecular collisions are modelled
statistically by selecting collision pairs in cells. To correctly reproduce the transport properties of gases, the sizes of the cells
within whichmolecular collision partners are selectedmust not exceed themean free path of molecules, and the time steps
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should be less than the mean collision time [2,3]. Therefore, the DSMC method becomes very expensive for simulation of
small Knudsen number flows.

In contrast, the particle Fokker–Planck model uses a Langevin equation to describe a continuous stochastic process in
velocity space. The velocities of each particle are separately updated according to the drag force and stochastic force, and no
individual particle collisions need to be considered. This allows the sizes of cells and time steps to be chosen independently of
themean free path andmean collision time, respectively. Accordingly, for the simulation of small Knudsen number flows, the
computational efficiency is much higher than for the DSMC method. A stochastic particle algorithm for solving the particle
Fokker–Planck model was proposed by Jenny et al. [4]. Since then, great progress has been made and the applications have
been extended to a variety of gas flows [5–7].

A general review of Langevin simulation of gas flows was presented in Ref. [8], where two critical issues of such
simulations are discussed. The first issue is related to the transport properties of Langevin models. Using the Green–Kubo
formula, Zhang et al. [9] obtained analytical expressions for the transport coefficients, including the diffusion, viscosity and
thermal conductivity coefficients. It was shown that the simple Langevin model predicts a false Prandtl number for gas
molecules. This problem could, however, be solved using the cubic nonlinear Langevin model proposed by Gorji et al. [7]
and the Langevin acceleration model proposed by Heinz [10,11].

The second issue concerns boundary conditions. In the absence of boundarywalls, the Langevinmodel proposed in Ref. [4]
is statistically exact for constantmacroscopic velocity and energy for any size of the time steps. If a boundarywall is present,
some particles will, in each calculating time step, hit the wall during the stochastic diffusion process. To employ boundary
conditions, it is very crucial to determine as exactly as possible when the particles hit the boundary. In Ref. [4], a simple
linear interpolation method was used to obtain the hitting time. However, this approximation is only accurate in the limit
of very small time steps. According to the analysis of the Langevin equation carried out in the article at hand, two distinct
characteristics exist in the short time and long time limits, respectively. In the short time limit, themovement of the particles
is free, and hence themeandisplacement is linear in time. In this case, it is reasonable to use linear interpolation to determine
the hitting time. In the long time limit, on the other hand, the movement of the particles is a diffusion process and the mean
displacement is proportional to the square root of time. Therefore, linear interpolation is no longer applicable for large time
steps. As shown in Section 4, the scheme of Ref. [4] with linear interpolation predicts a higher density close to the wall.
This effect is due to linear interpolation overestimating the hitting time and, consequently, underestimating the remaining
time after the boundary hit. This implies that the simulated particles do not have sufficient time to move away from the
boundary and, thus, more particles are found close to the wall. In this article we address the problem of determining the
hitting time accurately, as this is the main remaining obstacle for constructing an efficient Langevin model with large time
steps for wall-confined flows.

The DSMC method is very efficient for flows with large Knudsen number (Kn > 0.1), and the particle Fokker–Planck
model proposed in Refs. [4,7] is efficient for flowswithmoderate Knudsen number (0.01 < Kn < 0.1). Our aim is to develop
an efficient particle Fokker–Planck model for flows with small Knudsen number (Kn < 0.01) using large time steps. In this
article, we consider one-dimensional, wall-confined flows with zero macroscopic velocity and no external forces and we
postpone the more general case of multi-dimensional flows with nonzero macroscopic velocity to a future article.

This article is arranged as follows. In Section 2, we present some basic mathematical results for the Langevin model and
derive an estimate for the first hitting time of the boundary in the limit of large time steps. In Section 3, we present a new
stochastic particle Fokker–Planck algorithm using the first hitting time estimate from Section 2. Simulation results for a
particular wall-confined flow are demonstrated in Section 4 and some conclusions are presented in Section 5.

2. Mathematical analysis of the stochastic model

In this sectionwe provide amathematical basis for the algorithm proposed in this article. In the absence of amacroscopic
velocity and external forces, the solution to the Fokker–Planck equation can be transformed into the equivalent Itō processes
Xt andMt satisfying

dXt = Mtdt, (2.1)

dMt = −
1
τ
Mtdt +


4es
3τ

dWt , (2.2)

for t ≥ 0, with initial conditions X0 = x and M0 = m, see for example Ref. [4]. Here τ is the relaxation time, that is
the average time between two particle collisions, and es is the average kinetic energy of particles. The process Xt can be
interpreted as the position and the process Mt as the velocity of a particle moving along the flow. Using Itō calculus on Xt
andMt , it is straightforward to verify that, given the location Xtn and velocityMtn at some time tn, the position and velocity
evolves according to

Xtn+t = Xtn + Mtnτ

1 − e−t/τ 

+


4esτ
3

 t

0


1 − e(s−t)/τ  dWs, (2.3)

Mtn+t = Mtne
−t/τ

+


4es
3τ

 t

0
e(s−t)/τdWs, (2.4)
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for t > 0, in the absence of a macroscopic velocity. The correlations between Xt and Mt conditioned on the history of the
processes up to time tn are

E


Xtn+t − Xtn

2
|Ftn


= M2

tnτ
2 1 − e−t/τ 2

+
2esτ 2

3


2t
τ

−

3 − e−t/τ  1 − e−t/τ  , (2.5)

E

M2

tn+t |Ftn


= M2

tne
−2t/τ

+
2es
3


1 − e−2t/τ  , (2.6)

and

E

Xtn+t − Xtn


Mtn+t |Ftn


= M2

tnτe
−t/τ 1 − e−t/τ 

+
2esτ
3


1 − e−t/τ 2 , (2.7)

as was previously stated in Ref. [4]. In this article, we consider wall-confined flows and we want the position process to
satisfy Xtn+t ∈ [L1, L2], for t > 0, with diffuse reflection at the boundaries. To accomplish this, we need to determine if and
when Xtn+t hits the boundary, and we do this, by first investigating Xtn+t in the limits of very small and very large values of
t , respectively.

For t ≪ τ , a Taylor expansion of (2.5) in the variable t/τ shows that the location Xtn+t is normally distributed withmean
Xtn +Mtn t and variance 4est3/9τ . IfM2

tn is of the same order as es, which it should be in themean aswe have E

M2

tn


= 2es/3,

then the stochastic part is negligible compared to the deterministic part and Xtn+t ≈ Xtn + Mtn t . This corresponds to the
decoupling of the velocity and position updates for small time steps in the numerical algorithm proposed in Ref. [6].

For t ≫ τ , the exponential terms in (2.5) are insignificant. Note for example that already for t ≈ 4τ the relative
contribution of the exponential terms to the variance of the location is of the order 10−2. Hence, for large t , the location
Xtn+t is normally distributed with mean Xtn + Mtnτ and variance 2esτ (2t − 3τ) /3. It is interesting to note here that the
mean change in location Xtn + Mtnτ is independent of t and occurs on a time scale of size τ , whereas the stochastic change
in location increases in time at the same rate as for a Wiener process. For large t , we could hence model Xtn+t as

Xtn+t = Xtn + Mtnτ +


4esτ
3
Wt−3τ/2, (2.8)

for some standard Wiener process W .

2.1. First hitting times for Wiener processes

As we are interested in the boundary behaviour of Xtn+t and we have seen above that for t ≫ τ , the process Xtn+t
behaves like a Wiener process, we shall derive a few results regarding hitting times for Wiener processes. Let W a

t denote a
Wiener process with variance σ 2 starting at location a > 0 at time zero. The first hitting time T a ofW a

t at zero is defined as
T a

= inf

t > 0 : W a

t = 0

and has the well-known density

P

T a

∈ dt


=
a

√
2πσ 2t3

exp


−
a2

2σ 2t


dt. (2.9)

The Wiener process has independent increments so the joint density of T a and W a
T , for T

a
≤ T , is simply given by

P

T a

∈ dt,W a
T ∈ db


= P


T a

∈ dt

P

W 0

T−t ∈ db

. (2.10)

Conditioning on the location of the Wiener process at time T , we obtain, using the well-known density of a Wiener process
with drift σ ,

P

T a

∈ dt|W a
T = b


=

P

T a

∈ dt,W a
T ∈ db


P

W a

T ∈ db
 =

P (T a
∈ dt) P


W 0

T−t ∈ db


P

W a

T ∈ db


= a


T

2πσ 2 (T − t) t3
exp


(a − b)2

2σ 2T
−

a2

2σ 2t
−

b2

2σ 2 (T − t)


dt. (2.11)

The probability that aWiener process starting at a at time zero and ending up at b at time T hits zero during the time interval
[0, T ] is obtained by integrating the conditional density P


T a

∈ dt|W a
T = b


over [0, T ], that is

P

T a

≤ T |W a
T = b


=

a
σ


T
2π

exp


(a − b)2

2σ 2T

 T

0

exp

−

a2

2σ 2t
−

b2

2σ 2(T−t)




(T − t) t3
dt. (2.12)
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Using Laplace transforms it is straightforward to show that, for positive a and b, T

0

exp

−

a2

2σ 2t
−

b2

2σ 2(T−t)




(T − t) t3
dt =

σ

a


2π
T

exp


−
(a + b)2

2σ 2T


, (2.13)

and hence, since the sign of bmight be either positive or negative,

P

T a

≤ T |W a
T = b


=

exp


−
2ab
σ 2T


, if b ≥ 0

1, if b < 0
(2.14)

where the statement for b < 0 is obvious. This theoretical result is an important ingredient in the algorithm below and we
note that it has been used before in numerical algorithms for reflected and stopped stochastic differential equations, see for
example Ref. [12].

To obtain an efficient algorithm for the boundary behaviour of the stochastic model, we need a good estimate of the
hitting times at the boundary. It is hard to sample hitting times directly from the density (2.11), but, fortunately, we can
obtain an analytical expression for the expected first hitting time conditioned on the fact that the boundary is hit during
[0, T ]. From (2.11) and (2.14), we obtain

E

T a

|W a
T = b, T a

≤ T


=

 T

0
tP

T a

∈ dt|W a
T = b, T a

≤ T


=

 T

0
t
P

T a

∈ dt|W a
T = b


P

T a ≤ T |W a

T = b


=
a
σ


T
2π

exp


(a + |b|)2

2σ 2T

 T

0

exp

−

a2

2σ 2t
−

b2

2σ 2(T−t)


√

(T − t) t
dt. (2.15)

Using Laplace transforms it is straightforward to show that, for positive a and b, T

0

exp

−

a2

2σ 2t
−

b2

2σ 2(T−t)


√

(T − t) t
dt = π erfc


a + b

√
2σ 2T


, (2.16)

where erfc is the complementary error function. Hence

E

T a

|W a
T = b, T a

≤ T


=
a
σ


πT
2

exp


(a + |b|)2

2σ 2T


erfc


a + |b|
√
2σ 2T


. (2.17)

Note here that with the variables u = a/
√
2σ 2T and v = |b| /

√
2σ 2T , the expected first hitting time can be compactly

expressed as

E

T a

|W a
T = b, T a

≤ T


= Tu
√

π erfcx (u + v) , (2.18)

where erfcx is the scaled complementary error function. Since
√

π erfcx (x) < 1/x for all x > 0, the expected first hitting
time is always smaller than the hitting time obtained by using linear interpolation based on a and b. Moreover,

√
π erfcx (x)

→ 1/x as x → ∞, so asymptotically the expected first hitting time coincides with the hitting time obtained by linear
interpolation.

2.2. First hitting times for the stochastic model

Equipped with the results in Section 2.1, we are now ready to analyse the process Xtn+t confined to an interval [L1, L2].
The following arguments correspond to the case L1 = 0 and L2 = ∞, but can easily be generalized to any L1 and L2 satisfying
L1 < L2. Consequently, the algorithm in Section 3 is stated in the setting of general L1 and L2. In the followingwe let [tn, tn+1]
denote a time step whose length 1tn := tn+1 − tn is of the order 10τ .

We first investigate if Xtn+t < 0 for some t ∈ [0, 4τ ], that is for values of t for which the large t approximation does not
apply. Let ε := 10τ

√
es so that ε, according to (2.5), exceeds two and a half standard deviations of Xtn+4τ . If Xtn + Mtnτ < ε,

there is a non-negligible probability that Xtn+t has left the domain during the interval [0, 4τ ]. In that case, we will not be
able to resolve the boundary behaviour with a single time step whose length is significantly larger than τ . Instead, we can
run a simulation with the scheme of Ref. [6] with time steps significantly smaller than τ and investigate if Xtn+t < 0 at the
end of any of these smaller time steps. If so, we can use linear interpolation to estimate the exit time Te from the domain.
The simulation for t > Te is described at the end of this section.

If Xtn + Mtnτ > ε, then we simulate a value of

Xtn+1 ,Mtn+1


based on the scheme of Ref. [4]. If Xtn+1 < 0, then we know

with certainty that the process has crossed the boundary. But also for Xtn+1 > 0, there is a non-zero probability that the
process has left the domain. Based on (2.8) and (2.14), the probability that Xtn+t < 0 for some t ∈ (0, 1tn) is

exp


−

3Xtn+1


Xtn + Mtnτ


(21tn − 3τ) esτ


. (2.19)
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Hence, using this probability, we can determine whether Xtn+t has hit the boundary during the time step. If this is the case,
we may use (2.18) to calculate the following estimate of the hitting time

Te = tn +
3τ
2

+ T
x

√
2σ 2T

√
π erfcx


x + |y|
√
2σ 2T


, (2.20)

where x = Xtn + Mtnτ , y = Xtn+1 , T = 1tn − 3τ/2 and σ =
√
4esτ/3. Note that the term 3τ/2 is added to the estimate of

the first hitting time to compensate that the change of location of Xt during a time interval of length 1tn is modelled by the
change of location of a Wiener process during a time interval of length 1tn − 3τ/2.

If the process has left the domain, either for small t or for large t , we now have an estimate of the first exit time Te. At
the exit time, we sample a new velocity MTe from a truncated Maxwellian distribution, see Ref. [4]. We use the scheme of
Ref. [6] with small time steps to simulate the behaviour of the process during the remainder [Te, tn+1] of the time step. If
Xt < 0 at the end of any of these smaller time steps, we use linear interpolation to determine the first exit time T ′

e , sample
a new Maxwellian velocity and use the scheme of Ref. [6] with small time steps to simulate the behaviour of the process
during the remainder


T ′
e, tn+1


of the time step. This procedure may have to be iterated a number of times.

To conclude this section, we discuss extensions to other types of reflecting boundary conditions. For specular reflection,
one can simply use the algorithm of Ref. [4] with large time steps with the following correction. If Xtn+1 is found outside the
domain, it is orthogonally reflected into the domain and the sign of the velocity is altered. An extension toMaxwell boundary
conditions is straightforward by combining specular and diffuse reflection with a proper accommodation coefficient.

3. Algorithm

In this section we describe the algorithm for generating the solution to (2.1)–(2.2) confined to an interval [L1, L2] with
diffuse reflection at the boundary. Let the length of the time step be 1tn = 10τ and let τ , es, tn, Xtn and Mtn be given. Let N
be an integer with default value 200. We assume that L2 − L1 ≫ 10τ

√
4es/3, so that the probability that a particle travels

from one boundary to the other in only one time step is insignificant (see step 5 below). Note that we have used Xtn ,Mtn and
1tn as variables in the pseudocode below and their values may change during the execution of the code.

(1) If Xtn + Mtnτ > L1 + 10τ
√
es and Xtn + Mtnτ < L2 − 10τ

√
es, go to (3). Else let t(k) = tn + k1tn/N and go to (2).

(2) For k = 1 : N , generate Xt(k) and Mt(k) based on Xt(k−1) and Mt(k−1) using the scheme of Ref. [6] with time step 1tn/N .
If Xt(k) < L1 for some k ∈ {1, . . . ,N}, let

Te = tn +
1tn
N


k +

Xt(k) − L1
Xt(k−1) − Xt(k)


,

and go to (8). If Xt(k) > L2 for some k ∈ {1, . . . ,N}, let

Te = tn +
1tn
N


k +

L2 − Xt(k)

Xt(k) − Xt(k−1)


,

and go to (9). Else go to (11)
(3) Generate Xtn+1 and Mtn+1 based on Xtn and Mtn using the scheme of Ref. [4] with time step 1tn.
(4) If Xtn+1 < L1, go to (6). If Xtn+1 > L2, go to (7). Else go to (5).
(5) Generate a uniformly distributed random variable V on [0, 1]. If

V < exp


−

3

Xtn+1 − L1

 
Xtn + Mtnτ − L1


(21tn − 3τ) esτ


,

go to (6). Else if

V < exp


−

3

L2 − Xtn+1

 
L2 − Xtn − Mtnτ


(21tn − 3τ) esτ


go to (7). Else go to (11).

(6) Let

Te = tn +
3τ
2

+ T
x

√
2σ 2T

√
π erfcx


x + |y|
√
2σ 2T


,

with x = Xtn + Mtnτ − L1, y = Xtn+1 − L1, T = ∆tn − 3τ/2 and σ =
√
4esτ/3. Go to (8).

(7) Let

Te = tn +
3τ
2

+ T
x

√
2σ 2T

√
π erfcx


x + |y|
√
2σ 2T


,

with x = L2 − Xtn − Mtnτ , y = L2 − Xtn+1 , T = ∆tn − 3τ/2 and σ =
√
4esτ/3. Go to (9).
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Fig. 1. Average first hitting time t for particles initially found at a distance y from the boundary as predicted by the scheme in Ref. [4] with linear
interpolation and by the scheme presented in Section 3, respectively.

(8) GenerateMTe > 0 from a Maxwellian distribution and go to (10).
(9) GenerateMTe < 0 from a Maxwellian distribution and go to (10).

(10) Let l be the smallest integer being greater than or equal to the quotient N (tn+1 − Te) /1tn, let t (k) = Te+k(tn+1−Te)/l,
define Xt(0) = L1 and Mt(0) = MTe . For k = 1 : l, generate Xt(k) and Mt(k) based on Xt(k−1) and Mt(k−1) using the scheme
of Ref. [6] with time step (tn+1 − Te) /l. If Xt(k) < L1 for some k ∈ {1, . . . , l}, let

T ′

e = Te +
tn+1 − Te

l


k +

Xt(k) − L1
Xt(k−1) − Xt(k)


,

let Te = T ′
e and go to (8). If Xt(k) > L2 for some k ∈ {1, . . . , l}, let

T ′

e = Te +
tn+1 − Te

l


k +

L2 − Xt(k)

Xt(k) − Xt(k−1)


,

let Te = T ′
e and go to (9). Else go to (11).

(11) Save the values of Xtn+1 and Mtn+1 and use them as input during the next time step of length 10τ (that is go to (1)).

4. Simulations

In this section, we simulate a gas of Argon molecules confined to a one-dimensional box using the algorithm presented
in Section 3. The initial state of the gas is given by standard conditions, that is, the temperature is 273 K and the pressure
is 1 atm. The length of the box is 1000λ, where λ is the mean free path of gas molecules, and this corresponds to Knudsen
number 0.001. The wall temperature is fixed at 273 K. Diffusive reflections are assumed at the boundary wall, meaning that
molecules colliding with the wall rebound with a half-range Maxwellian distribution at the temperature of the correspond-
ing wall. In order to obtain the distribution of macroscopic quantities, the simulation domain is divided into 300 cells, and
each cell is assigned 500 molecules at the initial state. The calculating time step is 10τ , where τ is the relaxation time.

Firstly, we compare the average first hitting time predicted by the scheme presented in Section 3 to the average first
hitting time predicted by the scheme in Ref. [4] with linear interpolation. To obtain this comparison, we proceed as follows.
In each calculating time step, if a molecule collides with one of the walls we record the hitting times predicted by our
scheme and the distance y between the previous location of the molecule and the hitting wall. In addition, we record the
virtual hitting time obtained by linear interpolationmethod according to the previous location and the virtual new location.
After 103 simulation steps, the hitting times corresponding to a specific distance y are averaged. Fig. 1 demonstrates how
the expected first hitting time during time steps of length 10τ depends on the initial distance between the particle and the
boundary and Fig. 2 shows the number of samples used for determining the first hitting times in Fig. 1. Note that the number
of molecules colliding with the wall decreases as the distance y to the wall increases.

For small y, the particles start close to the boundary and the scheme in Section 3 then uses small time steps with linear
interpolation to determine the first hitting time. Hence the two curves in Fig. 1 coincide in the limit of small y. Note that the
expected first hitting time does not converge to zero as y tends to zero. This, perhaps surprising, result is due to half of the
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Fig. 2. Histogram of the number of samples used for determining the first hitting time for different values of the distance y to the boundary.

Fig. 3. Normalized density of molecules as predicted by the scheme in Ref. [4] with linear interpolation and by the scheme presented in Section 3,
respectively.

particles starting with a velocity directed away from the boundary. The motion of the particles for very small time steps is
almost deterministic along the initial velocity and a strictly positive period of time will therefore elapse before the particles
with initial velocity pointing away from the boundary will turn towards the boundary and hit it.

For larger y, Fig. 1 shows that the hitting time predicted by the scheme in Ref. [4] with linear interpolation exceeds the
hitting time predicted by the scheme by the linear interpolation method is larger than that predicted by the scheme in
Section 3. This is due to the molecular movement being a Wiener process rather than a linear process in the limit of large
time steps. Note that the difference between the two estimates of the first hitting time has a maximum at approximately
8λ and then decreases as y is increased. The decreasing difference must occur since in the limit of infinite y both estimates
should be 10τ . Note also that, as seen in Fig. 2, molecules which are initially found further than 20λ away from a wall are
very unlikely to collide with the wall in a single time step. Therefore, these particles are excluded from the plot in Fig. 1.

Fig. 3 shows the distribution of molecules along the one-dimensional box. The results are obtained by first simulating
103 time steps and then averaging over the next 103 time steps. Consequently, the number of samples for each cell is about
5 · 105 and the corresponding fractional error is about 1.4 · 10−3 according to standard statistical mechanics [13]. Since the
wall temperature and the initial gas temperature coincide, we expect the molecules to be uniformly distributed in this case.
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Indeed, the algorithmpresented in Section3predicts a uniformdistribution,with the variation betweendifferent locations in
the box being less than 0.5%. On the other hand, the scheme in Ref. [4], which uses linear interpolation to estimate the hitting
time, clearly overestimates the density near the boundary walls, as shown in Fig. 1. This effect is due to linear interpolation
overestimating the hitting time, as was described in the introduction.

5. Conclusions

The numerical scheme presented in Section 3 is shown to be an efficient stochastic particle Fokker–Planck algorithmwith
large time steps for wall-confined flows. The scheme at hand proves to be much more accurate close to the wall compared
to the scheme of Jenny et al. [4] with only a slight increase in computational cost. There are schemes with small time steps,
such as that of Gorji and Jenny [6], which obtain similar results close to the wall as the scheme presented in this article,
but these schemes are much less computational efficient. To conclude, the scheme at hand predicts the correct near wall
behaviour with a minimum of computational cost.

The authors are currently working on applying the algorithm presented in Section 3 to a variety of gas flows. Note that
we present here only a one-dimensional algorithm, but the scheme could in the future be extended to two-dimensional
and three-dimensional gas flows as well. Since our scheme is applicable for large time steps, it makes the simulation of
large-scale gas flows using particle methods possible.
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