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Abstract This work deals with the coupling interaction of a screw dislocation with a bimaterial interface
and a nearby circular inclusion. Explicit series solutions are obtained by the complex potential and conformal
mapping technique. Then the solutions are cast into new expressions with the coupling interaction effects
separated. The new expressions converge rapidly and provide good first-order approximation formulae. The
interaction energy and image force fields are formulated, evaluated, and shown graphically. It is found that
the inclusion severely distorts the neighboring interaction energy contours and image force lines. There must
be one unstable equilibrium point in Material 2 where the inclusion is located, whereas there may be zero,
one or two equilibrium points (stable or unstable) in Material 1 without any inclusion, which depends on
a combination of three material shear moduli and the nondimensional distance between the inclusion and
bimaterial interface. It is interesting to notice that the direction of some local image forces in Material 1 may
be inversed by a nearby inclusion in Material 2, and the inverse region is close to but not connected to the
bimaterial interface.

Keywords Dislocations ·Bimaterial · Inclusions ·Coupling interaction ·Dislocationmechanics ·Dislocation
equilibrium point

1 Introduction

Themovement of dislocations in thematerials can determine the strength ofmaterials and how theywill deform
under a load, and how they accommodate strain [1]. Bimaterials are extensively used in many engineered-
material systems, such as composite structures, electronic packaging and thin-film constructions. The inter-
action of dislocations with a bimaterial interface is a very important topic, which has attracted considerable
attention in the past decades.

Head [2] first derived the image force on a dislocation near a perfect bimaterial interface. He found that the
dislocationwas either repelled or attracted by the interface, depending on the combination ofmaterial constants.
Dundurs [3]made a systematic review on the early continuummechanics studies of elastic interactions between
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dislocations and inhomogeneities, and he also investigated the interaction of a screw dislocation with the
interface. By using the continuous dislocation technique, Huang and Kardomateas [4] presented a method
for obtaining the mixed-mode stress intensity factors for interface cracks or cracks parallel to the interface in
half-plane configurations. Kuo [5] presented a numerical procedure for the analysis of the elastic field due to
an edge dislocation in a multilayered composite. Hejazi et al. [6] derived exact analytical solution in explicit
forms for the transient response of Volterra-type dislocation in a half-plane by using the Cagniard-de Hoop
method of Laplace inversion. The interactions of dislocations with various imperfect bimaterial interfaces have
also been investigated by many researchers (see, for example, [7–9]).

The interaction between dislocations and inclusions of finite size is another important research topic. It
is revealed that interaction energy and dislocation force acting on dislocations are influenced by the shape of
inclusions, the nature of inclusion/matrix interfaces and the size of inclusions.

The influence of the inclusion shape on the interaction of dislocations with the inclusion has been well
studied. Smith [10] analyzed circular and elliptic inclusions. Sendeckyj [11] obtained the elastic fields of a
screw dislocation near an arbitrary number of elastic circular cylindrical inclusions, where the inclusions can
have arbitrary radii and shearmoduli. By using the Eshelby equivalent inclusionmethod, Li and Shi [12] studied
the inclusion of arbitrary shape and obtained a set of simple approximate formulae with satisfactory accuracy.
Gutkin et al. [13] derived and analyzed in detail the stress field and strain energy of a screw dislocation in
an elastically isotropic solid containing two cylindrical voids by the technique of infinite ensembles of image
dislocations. As an extension to the piezoelectric issue, Shen et al. [14] investigated the interaction between a
screwdislocation and apiezoelectric fiber compositewith a semi-infinitewedge crack.Zeng et al. [15] dealtwith
the interaction between piezoelectric screw dislocations and two asymmetrical interfacial cracks emanating
from an elliptic hole under combined mechanical and electric load at infinity. Zhang et al. [16] presented a
numerical solution of interaction between cracks and a circular inclusion in a finite plate, in which distributed
dislocations were used to model the cracks and boundaries. The nature of the inclusion/matrix interface plays
an important role in the study of the interaction of dislocations with an inclusion. Various interfaces have
been considered, which include perfect and imperfect interface [17,18], uniform coating [19,20], nonuniform
coating [21] and interfacial cracks [22]. When the inhomogeneity is small to nano-size, since the equilibrium
lattice spacing in the interface is different from that in the bulk, the interface stress effect must be considered.
In recent years, with the extensive preparation and application of nanomaterials, researches on the nano-size
began to emerge in large numbers (see, for example, [23–25]).

There often are third-phase inclusions near a bimaterial interface, and a strong coupling interaction of
dislocations with the inclusions and the bimaterial interface arises. Such a coupling interaction plays an
important role in bimaterial interface properties. However, this coupling interaction cannot be obtained by a
linear superposition of existing solutions for an isolated inclusion and an isolated bimaterial interface. A basic
understanding of such coupling interaction effects must be gained to achieve the full potential of bimaterials
and to design novel bimaterials and bimaterial structures. This work deals with the coupling interaction of a
screw dislocation with a bimaterial interface and a nearby circular inclusion, with focus on the derivation of
the analytical solution where the coupling interaction effects are separated, and on the revelation of interesting
coupling interaction phenomena that cannot be shown by the existing solutions.

2 Model and basic equations

The physical problem under consideration is shown in Fig. 1a, where S1, S2 and S3 denote the regions occupied
by Material 1, Material 2 and the inclusion (with the radius R1), respectively. �1 and �2 are the bimaterial
interface and the inclusion/Material 2 interface. The origin of a Cartesian coordinate system lies at the center
of the inclusion, and the x-axis is perpendicular to the bimaterial interface. h represents the distance between
the inclusion and bimaterial interface. The materials in three regions are assumed to be transversely isotropic.
A screw dislocation with the Burgers vector b is located at an arbitrary point z0 in Material 1 (S1) or Material
2 (S2).

For the convenience of analysis, the following conformal mapping is introduced:

z = m(ζ ) = R2ζ + R2
1

ζ + R2
, (1)

where z = x + iy, ζ = ξ + iη and R2 = (R1 + h) +
√

(R1 + h)2 − R2
1. The regions S1, S2 and S3 in the

z-plane (refer to Fig. 1a) are, respectively, mapped onto the regions S′
1 (|ζ | > R2), S′

2(R1 < |ζ | < R2) and S′
3
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Fig. 1 aA screw dislocation near the bimaterial interface as well as near a circular inclusion. bMapping regions and characteristic
points in the ζ -plane

(|ζ | < R1) in the ζ -plane (refer to Fig. 1b). The interfaces �1 and �2 are mapped onto the concentric circles
Π1 and Π2, respectively. The coordinate origin O , the infinity and the points z0 are mapped onto the points
O ′(ζ = −R2

1/R2), K (ζ = −R2) and ζ0, respectively.
Referring to [26] and our recent work [27], the displacement w, the shear stress components τzx and τzy

and the resultant force T along any arc AB (not pass through interfaces of dissimilar phases) can be expressed
in terms of a complex potential function ϕ(ζ ) in the ζ -plane

w = 1

2μ

[
ϕ(ζ ) + ϕ(ζ )

]
, (2)

τxz − iτyz = ϕ′(ζ )

m′(ζ )
, (3)

T =
B∫

A

τznds =
B∫

A

(
τxzdy − τyzdx

) = i

2

[
ϕ(ζ ) − ϕ(ζ )

]B′

A′ . (4)

where μ is the shear modulus of the material, the overbar represents the complex conjugate, the superscript
prime denotes the differentiation with respect to the argument, τzn denotes the normal component of the shear
stress on any arc AB in the z-plane, and [•]B′

A′ signifies the change in the bracketed function in going from the
point A′ to the point B ′ along the arc A′B ′, where A′B ′ is the mapping arc in the ζ -plane corresponding to
AB in the z-plane.

The assumption of perfect bonding between dissimilar materials implies the continuity conditions of
displacements and stresses on two interfaces. By introducing three complex potentials, ϕ1(ζ ), ϕ2(ζ ) and
ϕ3(ζ ), in the corresponding regions, Material 1, Material 2 and the inclusion, and using Eqs. (2) and (4), the
continuity conditions can be expressed as
(i) displacements continuity conditions

⎧
⎪⎨
⎪⎩

μ2

[
ϕ1(t) + ϕ1(t)

]
S′
1

= μ1

[
ϕ2(t) + ϕ2(t)

]
S′
2

on 	1

μ3

[
ϕ2(t) + ϕ2(t)

]
S′
2

= μ2

[
ϕ3(t) + ϕ3(t)

]
S′
3

on 	2
, (5)

(ii) stresses continuity conditions
⎧
⎪⎨
⎪⎩

[
ϕ1(t) − ϕ1(t)

]
S′
1

=
[
ϕ2(t) − ϕ2(t)

]
S′
2

on 	1[
ϕ2(t) − ϕ2(t)

]
S′
2

=
[
ϕ3(t) − ϕ3(t)

]
S′
3

on 	2
, (6)

where the subscripts, S′
1, S

′
2 and S′

3, refer to the function values as approached from the three corresponding
regions, respectively.
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3 Complex potential solutions

In this section, the complex potential solutions and their new expressions with various interaction effects
separated will be given for the two cases that the screw dislocation is located in Material 2 and Material 1,
respectively.

3.1 A dislocation inside Material 2

Referring to Ref. [27], when the screw dislocation is located in Material 2, the complex potential in S′
2 can be

written as

ϕ2(ζ ) = ϕ2S(ζ ) + ϕ20(ζ ) = μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ ϕ20(ζ ), (7)

where the first term ϕ2S(ζ ) is the singular part. In the annular region S′
2 (R1 < |ζ | < R2), the holomorphic

part ϕ20(ζ ) can be expanded into a Laurent series

ϕ20(ζ ) = GP(ζ ) + GN (ζ ) =
∞∑

n=1

Cnζ
n +

∞∑

n=1

Dnζ
−n, (8)

where the constant term representing the rigid displacement is neglected. Using the continuity conditions of
displacements and stresses (5)–(6) and following the works in Refs. [26] and [27], the complex potentials can
be obtained

ϕ1(ζ ) = 1 + k1
2

μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ k3 − 1

2

μ2b

2π i
ln

ζ − R2
1/ζ0

ζ + R2
1/R2

+ 1 − k3
2

GP(R2
1/ζ )

+ k1 − 1

2
GP

(
R2
2/ζ

) + k1 − k3
2

GN (ζ ) (9)

ϕ3(ζ ) = 1 + k3
2

μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ k1 − 1

2

μ2b

2π i
ln

ζ − R2
2/ζ0

ζ + R2
+ k3 − 1

2
GN

(
R2
1/ζ

)

+ 1 − k1
2

GN
(
R2
2/ζ

) + k3 − k1
2

GP(ζ ) (10)

where GP(ζ ) =
∞∑
n=1

Cnζ
n,GN (ζ ) =

∞∑
n=1

Dnζ
−n, k1 = μ1/μ2 and k3 = μ3/μ2. The complex coefficients

Cn and Dn in the solutions (8)–(10) are
⎧
⎪⎪⎨
⎪⎪⎩

Cn = (k1−1)μ2b
2Lπi

(
(k3 + 1)

(−1)n R−n
2 −R−2n

2 ζ0
n

n + (k3 − 1)
(−1)nβ2n R−n

2 −β2nζ−n
0

n

)

Dn = (k3−1)μ2b
2Lπi

(
(k1 − 1)

(−1)nβ2n Rn
2−β2nζ n0

n + (k1 + 1)
(−1)nβ2n Rn

2−R2n
1 ζ0

−n

n

) (11)

where L = (k1 + 1)(k3 + 1) − (k1 − 1)(k3 − 1)β2n and β = R1/R2.
When μ3 = μ2 (i.e., k3 = 1), the solution (8) degenerates into the previous solution of a screw dislocation

near a bimaterial interface without any third-phase inclusion [3]

ϕ2(ζ ) = ϕ2S(ζ ) + ϕInt0(ζ ) = μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ k1 − 1

k1 + 1

μ2b

2π i
ln

ζ − R2
2/ζ0

ζ + R2
, (12)

where ϕ2S(ζ ) refers to the singular part in Eq. (7) and ϕInt0(ζ ) is a holomorphic function, which represents the
interaction of the screw dislocation with the bimaterial interface. If μ1 = μ2 (i.e., k1 = 1), the solution (8)
degenerates into the previous solution of a screw dislocation near a circular inclusion in an infinite medium
[10]

ϕ2(ζ ) = ϕ2S(ζ ) + ϕInc0(ζ ) = μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ k3 − 1

k3 + 1

μ2b

2π i
ln

ζ − R2
1/ζ0

ζ + R2
1/R2

, (13)
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where ϕInc0(ζ ) is also a holomorphic function, which represents the interaction of the screw dislocation with
a circular inclusion.

In terms of basic solutions (12) and (13), the complex potential ϕ2(ζ ) can be cast into a new expression
ϕ2New(ζ ) with various interaction effects separated:

ϕ2New(ζ ) = ϕ2S(ζ ) + ϕInt0(ζ ) + ϕInc0(ζ ) + ϕCpl(ζ ), (14)

where ϕCpl(ζ ) is the only series term representing the coupling interaction of the dislocation with the bimaterial
interface and inclusion. Compared with Eq. (7), ϕCpl(ζ ) is given as

ϕCpl(ζ ) = (k1 − 1)(k3 − 1)
μ2b

2π i

∞∑

n=1

(−1)nβ2n R−n
2 − β2nζ−n

0

nL
· ζ n

+ (k1 − 1)2(k3 − 1)

k1 + 1

μ2b

2π i

∞∑

n=1

(−1)nβ2n R−n
2 − β2n R−2n

2 ζ0
n

nL
· ζ n

+ (k3 − 1)(k1 − 1)

(k3 + 1)

μ2b

2π i

∞∑

n=1

{
(k3 + 1)

[
(−1)nβ2n Rn

2 − β2nζ n
0

]

nL

+ (k3 − 1)[(−1)nβ4n Rn
2 − R2n

1 β2nζ0
−n]

nL

}
· ζ−n, (15)

Since the coupling interaction ϕCpl(ζ ) is a higher-order interaction effect than ϕInt0(ζ ) and ϕInc0(ζ ), the
convergence of ϕ2New(ζ ) is much better than that of ϕ2(ζ ), especially in the case when the dislocation is near
the inclusion or bimaterial interface. The first-order approximation of Eq. (14) [taking the first term of Eq.
(15)] is of high accuracy, which can be shown by using the similar way in our recent work [27].

3.2 A dislocation inside Material 1

Similarly, when the screw dislocation is located in Material 1, the complex potentials in three regions can be
derived as

ϕ1(ζ ) = μ1b

2π i
ln

ζ − ζ0

ζ + R2
+ 1 − k3

2
G ′

P

(
R2
1/ζ

) + k1 − 1

2
G ′

P

(
R2
2/ζ

) + k1 − k3
2

G ′
N (ζ ), (16)

ϕ2(ζ ) = G ′
P(ζ ) + G ′

N (ζ ) =
∞∑

n=1

C ′
nζ

n +
∞∑

n=1

D′
nζ

−n, (17)

ϕ3(ζ ) = μ1b

2π i
ln

ζ − ζ0

ζ + R2
+ k3 − 1

2
G ′

N

(
R2
1/ζ

) + 1 − k1
2

G ′
N

(
R2
2/ζ

) + k3 − k1
2

G ′
P(ζ ). (18)

The complex coefficients C ′
n and D′

n are⎧
⎪⎨
⎪⎩

C ′
n = (k3+1)μ1b

(
(−1)n R−n

2 −ζ−n
0

)

nLπi

D′
n = (k3−1)μ1b

(
(−1)n R2n

1 R−n
2 −R2n

1 ζ0
−n

)

nLπi

, (19)

where L = (k1 + 1)(k3 + 1) − (k1 − 1)(k3 − 1)β2n . The complex potential with various interaction effects
separated in Material 1 is obtained similarly

ϕ1New(ζ ) = μ1b

2π i
ln

ζ − ζ0

ζ + R2
+ k3 − 1

k3 + 1

μ1b

2π i
ln

ζ − R2
1/ζ0

ζ + R2
1/R2

+ 1 − k1
k1 + 1

μ1b

2π i
ln

ζ − R2
2/ζ0

ζ + R2

+ (1 − k1)(k3 − 1)

(k1 + 1)(k3 + 1)

μ1b1
2π i

∞∑

n=1

M

L
· (−1)nβ2n Rn

2 − R2n
1 ζ0

−n

n
· ζ−n, (20)

where M = (k1 − 1)(k3 + 1) − (k1 + 1)(k3 − 1)β2n . The new expression ϕ1New also more rapidly converges
than the original solution ϕ1 in Eq. (16). The first-order approximation of the new expression (20) is of high
accuracy.
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4 Interaction energy and image force

4.1 Nondimensional expressions of the interaction energy and image force

The interaction energy and image force acting on dislocations are of practical importance in understanding
the behavior of inhomogeneous materials. Referring to our recent work [27], the nondimensional interaction
energy and image force can be, respectively, written as

W̃i = 2π

μ2b
Im [ϕi0(ζ0)] ζ0 ∈ S′

i , (21)

F̃i = 2πR1

μ2b2
(
Fix − iFiy

) = 2πR1i

μ2b

[
ϕ′
i0(ζ )

m′(ζ )

]

ζ=ζ0

ζ0 ∈ S′
i , (22)

where i = 1, 2, Fx and Fy are the image force components in the x-axis and y-axis directions, respectively.
In the following subsection, the numerical examples are presented to demonstrate the intricate and inter-

esting coupling interaction induced by the inclusion and bimaterial interface.

4.2 Interaction energy contours and image force lines

In terms of Eqs. (21) and (22), the interaction energy and image force of a screw dislocation can be evaluated for
different combinations of parameters (two modulus ratios k1 = μ1/μ2 and k3 = μ3/μ2 and a nondimensional
distance h/R1). Noting the symmetry of the solutions, we need only to consider two cases of modulus ratios:
(1) k1 = μ1/μ2 < 1 and k3 = μ3/μ2 < 1, (2) k1 = μ1/μ2 < 1 and k3 = μ3/μ2 > 1.

First consider case (1) and take an extrememodulus ratio k3 = 0 (the inclusion is a hole) for the convenience
of discussion. For different values of k1 and h/R1, nondimensional interaction energy contours [W̃ , refer to Eq.
(21)] and image force lines [F̃ , refer to Eq. (22)] are depicted in Fig. 2, where the interaction energy contours
are denoted by dashed lines with the values of W̃ being marked and the image force lines are denoted by
solid lines with the directions of F̃ being marked. Figure 2 shows that the two families of curves are severely
distorted. A dislocation near the hole in Material 2 is always attracted by the hole due to k3 = 0, at the same
time a dislocation near the bimaterial interface in Material 2 is also always attracted by the bimaterial interface
due to k1 < 1. Therefore, there must be one unstable dislocation equilibrium point (E1, as shown in Figs. 2a–c)
between the hole and bimaterial interface in Material 2.

The equilibrium points inMaterial 1 aremore intricate and interesting, which depend on thematerial elastic
dissimilarity as well as the nondimensional distance between the hole and bimaterial interface. When h/R1
is large enough and/or k1 is small enough, the repulsion from the bimaterial interface cannot be exceeded by
the attraction from the hole, and the direction of the image force remains unchanged. There is no equilibrium
point in Material 1, as shown in Fig. 2a, where k1 = 0.7 and h/R1 = 1. However, when h/R1 is small enough
and/or k1 is large enough (but it is still <1), two equilibrium points appear. Such a case is shown in Fig. 2b,
where k1 = 0.8 and h/R1 = 0.5. Refer to the insets in Fig. 2b, it is seen that E2 is a stable equilibrium point,
whereas E3 is an unstable equilibrium point. It is specially interesting that the image force inverse its direction
between E2 and E3. Figure 2c shows a transition from Fig. 2a, b, where k1 = 0.71335 and h/R1 = 0.5. The
point E2, which coincides with E3, also is a stationary point of the image force on the x-axis, and a detailed
discussion refers to Sect. 4.3.

Now, consider the case (2) k1 < 1 and k3 > 1. For an extreme example k1 = 0 (i.e., the bimaterial interface
reduces to the free surface), nondimensional interaction energy contours and image force lines in Material 1
degenerate to the results in the previous work [27]. For k1 �= 0, the dislocation in Material 1 is always repelled
by the bimaterial interface and the inclusion, and there is no any equilibrium point; the dislocation in Material
2 is attracted by the bimaterial interface, whereas repelled by the inclusion, and there is only one unstable
equilibrium point on the left of the hole. It is similar with the extreme example k1 = 0 and is not be shown to
save space.

It is easy to find that the interaction energy and image force fields in case (3), k1 > 1 and k3 > 1, and
case (4), k1 > 1 and k3 < 1, are similar to those in case (1), k1 < 1 and k3 < 1, and case (2), k1 < 1 and
k3 > 1, respectively, except that the interaction energy and image force change their signs. As a result, all the
equilibrium points become unstable.
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Fig. 2 Interaction energy contours and image force lines for k3 = μ3/μ2 = 0, where the dashed lines denote contours of the
nondimensional interaction energy W̃ (values of W̃ are marked) and the solid lines show the direction of the nondimensional
image force. a k1 = 0.7 and h/R1 = 1; b k1 = 0.8 and h/R1 = 0.5; c k1 = 0.71335 and h/R1 = 0.5

4.3 A discussion on the image force and dislocation equilibrium points

Now further examine the variations of the image force and locations of dislocation equilibrium points. Figure 2
shows that there is always one and only one unstable dislocation equilibrium point in Material 2 with an
inclusion. There is no any equilibrium point in Material 1 without inclusion in cases (2) and (4), whereas there
may be zero, one or two equilibrium points in Material 1 in case (1) and (3). So the following discussion
focuses on cases (1) and (3).

From Fig. 2, it is seen that the equilibrium points always lie on the x-axis because of the symmetry, and
the image force on the x-axis varies most dramatically. Whether equilibrium points will appear depends on
two material parameters: k1 = μ1/μ2, k3 = μ3/μ2 and a geometrical parameter h/R1.

First consider case (1) and observe the influence of material parameters. Taking k3 = 0 and h/R1 = 0.5,
variations of the nondimensional image force F̃ with δ/R1 for various values of k1 are shown in Fig. 3, where
F̃ = 2πR1F1x/μ2b2, and δ is the distance from a point on the x-axis to the bimaterial interface. From Fig. 3,
it is observed that for a small value of k1 (k1 < 0.71335 as k3 = 0 and h/R1 = 0.5), no equilibrium point
in Material 1 appears and the direction of the image force always leaves from the bimaterial interface. When
k1 > 0.71335, two equilibrium points, E2 and E3, appear and the direction of the image force becomes contrary
within the region between E2 and E3. With the increase of k1, E2 moves toward the bimaterial interface (from
E2(1) to E2(2)), whereas E3 moves in a contrary direction (from E3(1) to E3(2)). As a result, the image force
reversion region expands. When k1 = 0.71335, two equilibrium points (E2(0) and E3(0)) coincide.

It is interesting to note that the reversion region of the image force induced by the inclusion (hole in the
extreme case) does not connect with the bimaterial interface, but has a certain distance from the bimaterial
interface. Such an interesting phenomenon was also observed by other researchers. For example, Gutkin and
Romanov [29] found that the edge dislocation in a thin two-phase plate might have from one to five equilibrium
(stable and unstable) positions because of the reversible image forces, which depend on the Burgers vector
orientation and the ratio between the elastic moduli of layers. In addition, in nanoindentation tests of crystals
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Fig. 3 Variations of the nondimensional image force F̃ inMaterial 1 versus δ/R1 for various values of k1, where k3 = μ3/μ2 = 0
and h/R1 = 0.5

Fig. 4 Variations of the nondimensional image force F̃ in Material 1 versus δ/R1 for various values of h/R1, where k1 =
μ1/μ2 = 1.3 and k3 = μ3/μ2 = 105

[30,31], dislocation nucleation first occurs at a position of certain depth from the surface, which does not
connect with the surface.

Now, discuss case (3) and examine the influence of the geometrical parameter h/R1. Taking k1 = 1.3 and
k3 = 105, variations of the nondimensional image force F̃ in Material 1 with δ/R1 for different values of h/R1
are shown in Fig. 4. From Fig. 4, it is observed that when the inclusion is far from the bimaterial interface,
the influence of the inclusion in Material 2 on the image force in Material 1 becomes negligible, and when
h/R1 > 0.65561, no equilibrium point in Material 1 appears. If h/R1 < 0.65561, two equilibrium points, E ′

2
and E ′

3, appear and the direction of image forces in the region between E ′
2 and E ′

3 becomes contrary. With the
decrease of h/R1, E ′

2 and E ′
3 have the similar trendy of motion with E2 and E3 as shown in Fig. 3.

As shown in Figs. 3 and 4, both the interaction energy and image force become unbounded as the dislocation
approaching the bimaterial interface. This physically unsatisfactory result arises because of the idealization
of a singular dislocation. However, the solutions are of practical importance. As pointed out by Dundurs [3],
when the distance between the dislocation and bimaterial interface δ > 3b (b is the module of the Burgers
vector b) and the mismatch in the moduli is small, such solutions give accurate results.

5 Conclusion

The coupling interaction of a screw dislocation with a circular inclusion and the bimaterial interface is dealt
with. Explicit series solutions are obtained by using the complex potential and conformal mapping technique.
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Then the solutions are cast into new expressions where the coupling interaction effects are separated. The new
expressions converge more rapidly, and their simple first-order approximation formulae are of high accuracy.

The interaction energy and image force acting on the dislocation are formulated and shown graphically. It
is seen that the coupling interaction effects induced by the inclusion and bimaterial interface severely distort
the interaction energy contours and image force lines when the inclusion and the bimaterial interface close to
each other and material properties severely mismatch. It is found that there must be an unstable dislocation
equilibrium point in Material 2 with a circular inclusion, whereas there may be zero, one or two equilibrium
points in Material 1 without any inclusion, which depends on a combination of material properties and the
nondimensional distance between the inclusion and bimaterial interface. It is interesting that an inclusion near
the bimaterial interfacemay inverse the direction of image forces in a certain region of another material without
any inclusion, and the image force inverse region does not connect with the bimaterial interface.
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