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a b s t r a c t

Uniaxial compressed stiff films on soft substrates can evolve into the period-doubling and folding
instabilities, beyond the onset of sinusoidal wrinkling. The substrate is modeled as a neo-Hookean solid
with a pre-stretch prior to film attachment, and its nonlinearity is obtained. Both the pre-stretch and the
external nominal strain imposed on the film/substrate system can induce different substrate non-
linearity, and thus have different effects on the post-buckling mode evolution of the system. This study
shows that the critical strain of period-doubling instability is linear to the pre-stretch. As the
compressive nominal strain increases, the folding mode occurs beyond the onset of period-doubling
in both the pre-tension and the pre-compression case, due to the softening/hardening effects for the
inward/outward displacements generated by the positive substrate nonlinearity.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin stiff films bound to thick compliant substrates can lose
stability when the in-plane compressive stress exceeds a critical
value, giving rise to micro and nano-scale wrinkles [1]. Such
instability phenomenon is apparent in nature, such as human
skins [2], tubular organs of animals [3] and hard exocarp/soft
sarcocarp plants [4,5]. The buckling of the stiff film/compliant
substrate system has been treated as a desirable means of
generating various self-organized patterns with intrinsic wave-
lengths [6–8]. It finds a broad range of potential applications in, for
instance, the thin-film metrology [9,10], tunable optical gratings
[11,12], and stretchable electronics which can undergo a consider-
able deformation with the internal stress being less than the
material strength [13–16].

The post-buckling behavior of film/substrate systems has
received increasing attention due to the variety of instability
modes. The primary instability modes include wrinkling [17],
creasing [18,19], and buckle delamination [20,21], while the
secondary bifurcation modes consist of period-doubling [22],
period-tripling [23], localized ridges [24,25] and folds [26,27]. If
a film is well-bonded to a substrate, and the film modulus is much
higher than that of the substrate, the buckle delamination and
creasing instability can be avoided [25,28]. Therefore, the initial
flat state of the thin film will lose stability and switch into

sinusoidal wrinkles when the compressive stress reaches the onset
of wrinkling. The compression is commonly generated by the
release of substrate pre-stretch imposed prior to film attachment
[7,8,14]. Further compression of the system can induce period-
doubling [22], period-tripling [23], folds [27] and localized ridges
[25]. Some previous studies revealed that the substrate pre-stretch
and the film/substrate modulus ratio determine the occurrence
and evolution of the post-buckling modes [23–25,28]. Localized
ridges appear when the pre-stretch is sufficiently large and folds
form in systems that have low film/substrate modulus ratio
[25,28]. The period-doubling configuration forms in a wide range
of pre-stretch and modulus ratios [25,28]. The period-tripling
morphology is identified in the low modulus ratio case, and can
occur instead of period-doubling at a later secondary bifurcation
point [23]. However, the quantitative connections between the
onset of these post-buckling modes and the system parameters
have not been established. In this study, we focus on the period-
doubling instability, and an approximate relationship governing
the onset of this instability mode is presented.

Some theoretical and numerical investigations have focused on
the role of substrate nonlinearity in the occurrence of the various
post-buckling modes [22,24,29–31]. An elastic strut supported by
an elastic foundation experiences mode jumping due to the
stiffening effect of the cubic nonlinearity [31,32]. Zhuo and Zhang
[33] revealed that the substrate quadratic nonlinearity in the stiff
film/soft substrate system causes mode coupling and then induces
the period-doubling, which is regarded as a pitchfork bifurcation
[34]. The experiment carried by Brau et al. [22] also showed that
the period-doubling instability is triggered by the substrate quad-
ratic nonlinearity, which induces asymmetric traction–displacement
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relation: the normal tension/compression on the substrate surface is
no longer equivalent for the same given outward/inward displace-
ment. In addition, the pre-tension and pre-compression imposed on
the substrate prior to film attachment have different effect on the
substrate nonlinearity, giving rise to the formation of localized ridges
and folds, respectively [24,25]. Hutchinson [30] established the rela-
tion between the pre-stretch and the nonlinearity of a neo-Hookean
substrate and identified that the pre-stretch is one of the parameters
that control the instability of the film/substrate bilayer. In this study,
the expression for the nonlinear effect is further given as a function of
the pre-stretch and the overall nominal strain. Moreover, the mode
transition from period-doubling to folding is possible as the compres-
sion increases considerably.

This study explores the role of substrate nonlinearity in the
morphology evolution of a compressed stiff film on a compliant
substrate. Based on the perturbation method, the nonlinear res-
ponse of a neo-Hookean half-space under periodic displacement
constraints is presented and the substrate nonlinearity is obtained.
Finite element simulations of neo-Hookean film/substrate systems
are also carried out, which show the morphology transitions from
sinusoidal wrinkling to period-doubling and then the folding
mode. The model also predicts the critical strain of period-dou-
bling instability.

2. Nonlinear traction–displacement behavior of a neo-
Hookean substrate

In this section, a perturbation analysis is presented to analyze
the nonlinear response of a semi-infinite neo-Hookean substrate
which undergoes plane-strain deformation. Fig. 1 illustrates three
different states during the wrinkling of a stiff thin film/soft
substrate bilayer. An elastomeric (e.g., poly(dimethylsiloxane)

(PDMS)) substrate of length L and height H in the undeformed
state (Fig. 1(a)) is uniformly pre-stretched prior to the attachment
of a stiff thin film (Fig. 1(b)). Lagrangian coordinates, Xi and xi
i¼ 1;2ð Þ, specify the material points in the undeformed state and
pre-stretched state, respectively. The pre-stretches in three prin-
cipal axes X1, X2 and X3 are denoted by λ01, λ

0
2 and λ03, respectively.

To characterize the plane-strain deformation, the pre-stretch in X3

direction is set zero, i.e., λ03 ¼ 1. The material is assumed to be
incompressible, i.e., λ01λ

0
2 ¼ 1. The coordinates of the material

points with respect to the pre-stretched state are related to that
of the undeformed state by the following

xi ¼ λ0i Xi i¼ 1;2ð Þ: ð1Þ

In the buckled state (Fig. 1(c)), the coordinates are denoted by

x1 ¼ λ1X1þu1

x2 ¼ λ2X2þu2

(
; ð2Þ

where u1 and u2 are the displacements parallel to the coordinate
axes X1 and X2, respectively. λi i¼ 1; 2ð Þ is the stretch of the
substrate, which is defined as the length in the current state (the
buckled state) divided by the length in the reference state (the
undeformed state). It is related to the pre-stretch by

λ1 ¼ λ01 1�εð Þ
λ2 ¼ λ02= 1�εð Þ

8<
: ; ð3Þ

where ε¼ λ01�λ1
� �

=λ01 is the nominal strain (positive for com-

pression), as shown in Fig. 1(c). The strain ε should be compressive
to induce the buckling of the film/substrate system, which means

that the stretch λ1oλ01 from Eq. (3).
The substrate is assumed to be an incompressible neo-Hookean

material and hence its strain energy densities in the pre-stretched
(WΙ) state and the buckled state (W ΙΙ) are given as follows [35]

W I ¼
μs

2
λ01

� �2
þ λ02
� �2

�2
� �

; ð4Þ

and

W II ¼
μs

2
λ1þu1;1
� �2þu2

2;1þ λ2þu2;2
� �2þu2

1;2�2
h i

: ð5Þ

Therefore, the increment of the strain energy density in passing
from the pre-stretched state to the buckled state is thus given as
the following

ΔW ¼W II�W I ¼ μs
1
2

u2
1;1þu2

1;2þu2
2;1þu2

2;2

� �
þλ1u1;1þλ2u2;2þ f ε

� �
; ; ð6Þ

where f ε ¼ λ01
� �2

1�εð Þ2�1
h i

þ λ02
� �2

1= 1�εð Þ2�1
h i

; μs ¼ Es=

2 1þνsð Þ½ � is the shear modulus of the substrate; Es and νs are the
Young’s modulus and Poisson’s ratio, respectively.

The incompressibility condition of the substrate in the buckled
state is written as [35]

J�λ1λ2 ¼ λ2u1;1þλ1u2;2þu1;1u2;2�u1;2u2;1 ¼ 0; ð7Þ

where J is the determinant of the deformation gradient, namely,
the volume change from the reference state to the current state.

Let Q ¼Q X1;X2ð Þ be the function to be determined which has
the same period as the surface displacements [19,30]. Here a
Lagrangian multiplier q is introduced to enforce the incompressi-
bility condition in Eq. (7) [30]. Physically, the Lagrangian multip-
lier q indicates the hydrostatic pressure, namely, q¼ q0þΔq¼
μs rþQð Þ, where r¼ λ2=λ1 ¼ 1=λ21. q0 ¼ μsr is the pressure in the
pre-stretched state and Δq¼ μsQ is the increment of the pressure
from the pre-stretched state to the buckled state [26]. The change
of the total potential energy in passing from the pre-stretched
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Fig. 1. Schematics of the wrinkling process of the film/substrate bilayer and the
coordinate systems. (a) The initially undeformed substrate of length L and of height
H. (b) The substrate undergoes a pre-stretch λ01 before attaching the thin film.
(c) The film is buckled and the substrate stretch is λ1 compared to the undeformed
state. The nominal compressive strain applied on the bilayer is ε¼ λ01�λ1

� �
=λ01.
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state to the buckled state is therefore [19,30]

ϕ¼
Z
V
ΔW�q J�λ1λ2

� �� 	
dV�ϕs

¼ μs

Z l0

0

Z 0

�1

1
2

u2
1;1þu2

2;2þu2
1;2þu2

2;1

� ��
�r u1;1u2;2�u1;2u2;1

� ��Q λ2u1;1þλ1u2;2
�

þu1;1u2;2�u1;2u2;1
�þ f ε�dX1dX2

�
Z l0

0
T1 X1ð Þu1 X1;0ð ÞþT2 X1ð Þu2 X1;0ð Þ½ �dX1; ð8Þ

where l0 is the period of both the surface displacements and the
function Q with respect to coordinate X1; Ti i¼ 1;2ð Þ are forces
per unit undeformed area on the substrate surface exerted by the
film; ϕs ¼

R l0
0 T1 X1ð Þu1 X1;0ð ÞþT2 X1ð Þu2 X1;0ð Þ½ �dX1 is the work

done by the surface forces. The Euler equations are obtained from
the condition of a vanishing first variation of ϕ in Eq. (8), which
are given as follows [30]

∇2u1�λ2Q ;1�Q ;1u2;2þQ ;2u2;1 ¼ 0
∇2u2�λ1Q ;2�Q ;2u1;1þQ ;1u1;2 ¼ 0
λ2u1;1þλ1u2;2þu1;1u2;2�u1;2u2;1 ¼ 0

8><
>: ; ð9Þ

where ∇2 ¼ ∂2

∂X1
2þ ∂2

∂X2
2 is the Laplace operator. Based on the follow-

ing facts: (1) The displacement components are (assumed) peri-
odic in the X1 direction with the period/wavelength l0; (2) The
substrate is modeled as a half-space (the displacements far away
from the top surface must be vanished), the boundary conditions
are given as

ui 0;X2ð Þ ¼ ui l0;X2ð Þ
ui X1; �1ð Þ ¼ 0

(
; ð10Þ

where i¼ 1;2. The expressions for the surface tractions Ti are also
obtained by the vanishing of the first variation of ϕ, namely

T1 ¼ μs u1;2þ rþQð Þu2;1
� 	



X2 ¼ 0

T2 ¼ μs u2;2� rþQð Þu1;1�λ1Q
� 	



X2 ¼ 0

8<
: : ð11Þ

The period-doubling morphology occurs due to the coupling of
different sinusoidal modes [33]. To analyze the response of the
substrate when this non-sinusoidal configuration appears after the
wrinkling instability, the surface displacements are assumed to
consist of two modes with different wavelength, which gives the
following [30,33]

u1 X1;0ð Þ ¼ k�1
0 δa1 sin k0X1ð Þþδ2a2 sin nk0X1ð Þ

h i
u2 X1;0ð Þ ¼ k�1

0 δb1 cos k0X1ð Þþδ2 b2 cos nk0X1ð Þþcð Þ
h i

8><
>: ; ð12Þ

where δ is a small parameter; both ai and bi represent the

dimensionless amplitude factor; k0 ¼ 2π=l0 is the wave number;
n is an arbitrary coefficient (na1) to indicate the difference in
wave numbers of these two modes. Particularly, the mode arising
from the period-doubling based on the incompressibility condi-
tion, which is presented in Appendix. With the application of the
perturbation method, the solution of the nonlinear boundary
value problem (Eqs. (9)–(12)) is obtained (see Appendix for
details). Meanwhile, the surface tractions listed in Eq. (11) can be
derived by the substitution of the displacements and the function
Q . By enforcing the tangential displacement constraint, i.e.,
a1 ¼ a2 ¼ 0, the normal traction T2 is given by

T2 ¼ μs 1þr�1� �
δb1 cos k0X1ð Þþδ2b2n cos nk0X1ð Þ

� �

þδ2

λ1

3 r2�1
� �

μs

r 3r2þ10rþ3
� �b21 cos 2 k0X1ð Þ�1=2

� 	 ð13Þ

here we only contains the case of tangential displacement con-
straint, a full analysis should include the case of tangential traction
constraint [30].

To illustrate the nonlinear traction–displacement relation of
the neo-Hookean substrate clearly, we consider the case of
wrinkling, whose morphology is sinusoidal (b2 ¼ 0). The surface
transverse displacement becomes u2 ¼ δk�1

0 b1 cos k0X1ð Þ, and Eq.
(13) can thus be approximately written as

T2 � K1k0u2 X1;0ð ÞþK2k
2
0u

2
2 X1;0ð Þ; ð14Þ

where K1 ¼ μs 1þr�1
� �

and K2 ¼ 3 r2�1
� �

μs

� 	
= λ1r 3r2þ10rþ3

� �� 	
are associated with the linearity and nonlinearity. The stretch ratio

r is related to the nominal strain by r¼ r0= 1�εð Þ2, where

r0 ¼ 1= λ01
� �2

is the pre-stretch ratio. In comparison with the

expression obtained by Hutchinson [30], Eq. (14) presents a
different traction–displacement relationship, which considers the
effect of the nominal strain ε, and it is applicable to the situation
when the system is further compressed.

For a substrate in the pre-stretched state (ε¼ 0, i.e., r¼ r0), K2

is positive for pre-compression case (r041) but becomes negative
for pre-tension case (r0o1). The traction–displacement relation-
ship of Eq. (14) is sensitive to the change in the magnitude of the
pre-stretch. We define the positive u2 as the outward displace-
ment and the negative u2 as the inward one. A nonlinear response
occurs due to the pre-stretch, as shown in Fig. 2. Pre-tension
generates the softening effect ð T2j jo K1k0u2



 

Þ on the outward
displacement (u240) and the hardening effect ( T2j j4 K1k0u2



 

) on
the inward one (u2o0), while pre-compression leads to a contrary
effect on the same displacements. In addition, a linear response
occurs when no pre-stretch exerted on the substrate (r0 ¼ 1).
These trends also match the finite element results of Zang et al.
[24] and the theoretical solutions of Hutchinson [30]. However,
these trends can be altered as the external compressive strain ε
increases. Fig. 3 illustrates the traction–displacement relationship
in both the pre-tension and the pre-compression cases. Pre-
compression causes same effects on the surface displacements of
the substrate as ε increases. Fig. 3(a) shows that the outward
displacement is always stiffened and the inward one is softened,
even though ε is as large as 0.6. But when the strain reaches to a
high level (e.g., ε¼ 0:6), pre-tension produces contrary effects
compared with the case of ε¼ 0, as seen in Fig. 3(b).

3. Numerical simulations of the post-buckling modes

To further investigate the formation of different post-buckling
modes, the finite element simulation of the system is performed. A
two-dimensional plane strain model as well as the boundary
conditions is illustrated in Fig. 4. The bilayer is compressed

Fig. 2. The effect of pre-stretch ratio r0 on the normalized surface traction–
displacement relationship for a neo-Hookean half-space.
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by the horizontal displacement load u along the right side, w
hile the left side is constrained in the horizontal direction. Thus
the nominal compressive strain is defined as ε¼ u=L, where L is
the original length of the system. The ratio of the substrate depth
H to the film thickness h is set to be about 200, so that the
substrate is sufficiently deep and can be regarded as a half-space.

The simulations are carried out via the commercial finite
element software of ABAQUS. Given that the maximum strain in
this study is as large as �0.3, both the film and the substrate are
modeled as a hyperelastic solid. The incompressible neo-Hookean
constitutive model provides a good description of the hyperelastic
materials within the range of strain considered here [25,36]. The
hybrid plane strain quadrilateral element (CPE8RH) is adopted and
the meshes near the film/substrate interface are refined. We use
the method reported in [25] to impose the substrate pre-stretch.
The post-buckling analysis is then carried out using the arc-length
method (“Riks”).

In our simulations, the film is perfectly-bonded to the sub-
strate, i.e., no buckle delamination occurs during the compression
of the system. Moreover, the film modulus is much higher than
that of the substrate, and hence the creasing instability can hardly
set in. Consequently, three different post-buckling modes will
occur. The sinusoidal wrinkling mode firstly appears and keeps
stable at relatively large strain, as shown in Fig. 5(a) for ε¼ 0:19.
When ε� 0:22, the sinusoidal mode loses stability and grows into
the period-doubling mode, as shown in Fig. 5(b). Additionally,
Budday et al. [23] revealed that some distinct instability patterns,
including period-doubling, period-tripling, and period-quadrupling,

can occur as secondary bifurcations by altering the domain width of
the simulation model. But period-doubling is energetically favorable
over other modes [23]. As the nominal strain increases to approxi-
mately 0.28, several folds are fully developed on the surface of the
system (Fig. 5(c)), which is similar to the experiment of Pocivavsek
et al. [27].

4. The onset of period-doubling instability

Although the critical condition of wrinkling instability has been
thoroughly studied (e.g., [1, 17, 37, 38]), it is still not clear when the
period-doubling instability will occur and how the critical condition
varies with the system parameters. In this section, the dimensional
analysis is performed to investigate the effects of the system
intrinsic parameters, including the film thickness h, the substrate
pre-stretch λ01 and the shear moduli (μf for the film and μs for the
substrate), on the onset of period-doubling instability. Given that
the critical strain of period-doubling instability εPD is a dimension-
less quantity, but there is no other independent length parameter to
normalize the film thickness, i.e., εPD is independent of h. As a
result, εPD can be written as the following implicit function

εPD ¼ f
μf

μs
; λ01

� �
; ð15Þ

which involves two independent variables, the modulus ratio μf =μs
and the pre-stretch λ01. However, the function presented in Eq. (15)
is difficult to determine analytically. Here, the effects of the
parameters μf =μs and λ01 are examined by the finite element
simulations as follows.

Fig. 6(a) shows the variations of εPD as a function of the
modulus ratio μf =μs for different values of the pre-stretch. It
indicates that εPD almost keeps constant as the modulus ratio
varies. In addition, a recent investigation [23] shows that the
critical strain of period-doubling is marginally sensitive to the
alternation of the modulus ratio only in the system with the low
film/substrate stiffness ratio. Therefore, the effect of the modulus
ratio is negligible here for the system with very large ratios of
μf =μs, which agrees with the result presented by Cao and Hutch-
inson [25]. In this situation, εPD is the function with the only
variable of pre-stretch. Fig. 6(b) plots the variations of εPD with
respect to λ01 for different modulus ratios (e.g. 500 and 1000). By
fitting the data presented by the finite element model, the relation

Fig. 3. Normalized surface traction–displacement relationships of a neo-Hookean substrate at different levels of the nominal strain for the case of (a) pre-compression and
(b) pre-tension.

h 
 

H 

u  

Fig. 4. Schematic of the boundary conditions of a stiff film/soft substrate system for
the finite element simulations. Both the shear traction and the horizontal
displacement on the left side are zero. On the bottom surface, the shear traction
and the vertical displacement are vanished while the top surface of the film is
traction free.
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between εPD and the pre-stretch is given as follows:.

εPD ¼ 0:42λ01�0:22; ð16Þ
Eq. (16) indicates that εPD is a linear function of the pre-stretch;

moreover, the variation of the modulus ratio makes no difference to
the proportion, which further corroborates that the effect of the
modulus ratio can be neglected. These trends are in accordance
with the experiment and simulation carried by Auguste et al. [36]. If
the substrate is not pre-stretched (λ01 ¼ 1), it can be seen from
Eq. (16) that the critical strain of period-doubling reaches about 0.2,
which is in good agreement with the previous experimental and
numerical predictions [22,25]. If the substrate is pre-deformed, the
critical strain should be smaller for pre-compression and larger for
pre-tension. It should be pointed out that those conclusions hold
true only under the assumption that the film/substrate modulus
ratio is very large.

5. The transition from period-doubling to folding

Under further compression, the film/substrate system will
evolve into the folding mode beyond the onset of period-
doubling instability. In general, the period-doubling and folding
morphologies appear when the system favors inward displace-
ment [24]. It implies that K2, which is associated with the
substrate nonlinearity, must be positive so as to produce softening
for the inward displacement and hardening for the outward one.
K2 is obtained as presented in Eq. (14), whose variation as a
function of the compressive strain ε is demonstrated in Fig. 7 for
several values of the pre-stretch λ01. If λ

0
1r1 (pre-compression or

no pre-stretch), K2 remains positive over the full range of nominal
strain (from 0 to 0.5). The corresponding traction–displacement
relation is shown in Fig. 3(a) for λ01 ¼ 0:5. It suggests that the film/

substrate system always favors inward displacements when the
substrate is pre-compressed. Hence the folding mode appears
under further compression.

However, pre-tension (λ0141) leads to the negative K2 initially,
which can become positive as ε increases (see Fig. 7). Fig. 3(b)
illustrates the surface traction–displacement relations for λ01 ¼ 1:5.
It indicates that the softening effect on the inward deformation is
generated only when the nominal strain exceeds a threshold. For
example, point “b” is such a threshold with ε¼ 0:33 for λ01 ¼ 1:5
(the traction–displacement relationship is linear as shown in Fig. 3
(b)). Moreover, the threshold grows as the pre-tension increases
(as point “a”moves to point “b” in Fig. 7). Thus, the critical strain of
the period-doubling instability which should be larger than this
threshold also increases with increasing pre-tension, as shown in
Fig. 6(b). If the nominal strain increases beyond the onset of

Sinusoidal wrinkling Period-doubling Folding

Fig. 5. Finite element simulation of three types of instability of the stiff film on a soft substrate with no pre-stretch, including (a) the sinusoidal wrinkling (ε¼ 0:19), (b) the
period-doubling (ε¼ 0:22) and (c) the folding (ε¼ 0:28). The shear modulus ratio is μf =μs ¼ 1000.

Fig. 6. The critical strain of period-doubling bifurcation as a function of (a) the shear modulus ratio μf =μs and (b) the substrate pre-stretch λ01. The points represent the results
obtained by finite element method and the lines are the corresponding fitting curves.

Fig. 7. Variations of K2 as a function of the nominal strain for different pre-stretch.
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period-doubling mode, the value of K2 can be large enough to
produce a strong softening for the inward displacement. As a
result, the folding mode can also arise after the period-doubling
mode. The finite element simulations showed in Fig. 8(a) and
(b) further validate that the folding morphology can occur in both
the pre-tension and the pre-compression case. Besides, it should
be pointed out that K2 keeps negative even if the nominal strain
reaches a high level (e.g., ε¼ 0:5) for a sufficiently large pre-
tension (e.g., λ01 ¼ 2), as shown in Fig. 7. Hence the substrate
nonlinearity produces softening for the outward deformation and
the system favors the ridge mode rather than folding, which has
been investigated numerically in [25].

6. Conclusions

The nonlinearity of the neo-Hookean substrate, which depends
on both the pre-stretch and the external nominal strain, has
significant influences on the formation of the period-doubling
morphology and the transition from period-doubling to folding.
The positive K2 produces softening effect on the surface inward
displacement relative to the outward one, and thus facilitates
the formation of the period-doubling morphology. For a pre-
compressed substrate, K2 remains positive. But for a substrate
with pre-tension, K2 is initially negative and then becomes
positive when the nominal strain exceeds a threshold. Hence,
the occurrence of period-doubling instability can occur in both the
pre-compression and pre-tension cases, which are also corrobo-
rated by the finite element simulations. The positive K2 becomes
larger as the film/substrate system is further compressed, causing
the transition from period-doubling to folding and the folds are
fully developed when the compressive strain is sufficiently large.
The threshold at which K2 changes to be positive grows as the pre-
tension increases, causing the onset of period-doubling instability
also rises with increasing pre-tension. In conjunction with the
dimensional analysis and the finite element method, we reveal
that the critical strain of period-doubling is linearly proportional
to the substrate pre-stretch only, or say that the critical strain is
independent of the film/substrate modulus ratio and the film
thickness. Here an important assumption is used: that the film/
substrate modulus ratio is very large. The exact formula of this
critical strain in the general case is still not clear for the neo-
Hookean system and further study is needed.
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Appendix

In view of the form of the surface displacements in Eq. (12), the
perturbation form of the solution to Eq. (9) is assumed to be the
following:

u1 ξ;η
� �¼ δk�1

0 f η
� �

sin ξ
� �þδ2k

� 1
0
2λ1

F1 η
� �

sin nξ
� �þF2 η

� �
sin 2ξ

� �� 	
u2 ξ;η

� �¼ δk�1
0 g η

� �
cos ξ

� �þδ2k
� 1
0
2λ1

G0 η
� �þG1 η

� �
cos nξ

� �þG2 η
� �

cos 2ξ
� �� 	

λ1Q ξ;η
� �¼ δh η

� �
cos ξ

� �þδ2 1
2λ1

H0 η
� �þH1 η

� �
cos nξ

� �þH2 η
� �

cos 2ξ
� �� 	

8>>>><
>>>>:

ð17Þ
where ξ¼ k0X1, η¼ k0X2 are the normalized coordinates in the
undeformed state. f , g, h, Fi, Gi and Hi i¼ 0;1;2ð Þ are functions of η
to be determined. Once these functions are determined, the
solution to the boundary value problem in the main text is
obtained. By substituting Eq. (17) into Eq. (9) and requiring all
terms of order δ to vanish, the ordinary differential equations
(ODEs) with respect to f , g and h are listed as follows:

f 00 � f þrh¼ 0; g00 �g�h0 ¼ 0; rf þg0 ¼ 0; ð18Þ
Again, r here is the stretch ratio defined as r¼ λ2=λ1 ¼ r0=

1�εð Þ2, where r0 ¼ λ02=λ
0
1. The boundary conditions in Eq. (10)

require f and g to vanish as η-�1. Moreover, Eq. (12) requires f
and g at η¼ 0 to satisfy the following conditions:

f 0ð Þ ¼ a1; g 0ð Þ ¼ b1: ð19Þ
Hence f , g and h are solved as follows:

f ¼ �A1erη�A2r�1eη

g ¼ A1erηþA2eη

h¼ A1 r�r�1
� �

erη

8><
>: ; ð20Þ

where A1 ¼ � ra1þb1ð Þ= r�1ð Þ and A2 ¼ r a1þb1ð Þ= r�1ð Þ.
By leaving all terms of order δ2 to vanish, the ODEs governing

Fi, Gi and Hi are obtained as

G0
0þgf 0 þ f g0 ¼ 0

G″0�H0
0� f h0 �hf 0 ¼ 00

(
ð21Þ

F″1�n2F1þnrH1 ¼ 0
G″1�n2G1�H0

1 ¼ 0
nrF1þG0

1 ¼ 0

8><
>: ; ð22Þ

and

F″2�4F2þ2rH2 ¼ gh0 �g0h
G″2�4G2�H0

2 ¼ f h0 � f 0h

2rF2þG0
2 ¼ f 0g� f g0

8><
>: ð23Þ

G0 and H0 in Eq. (21) can be further expressed as follows

G0 ¼ � f g; H0 ¼ � f gð Þ0 � f h ð24Þ

Pre-compressionPre-tension

Fig. 8. Folding mode evolved in the stiff film/soft substrate system (μf =μs ¼ 1000) when the substrate pre-stretch is (a) tensile (λ01 ¼ 1:1) and (b) compressive (λ01 ¼ 0:9).
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In conjunction with Eqs. (19) and (24), the parameter c in
Eq. (12) is obtained as c¼ G0 0ð Þ= 2λ1

� �¼ �a1b1= 2λ1
� �

. Given that
Eq. (24) is derived from the third equation of Eq. (9) in the main
text, the parameter c is introduced as a consequence of the
incompressibility condition. Similar to Eq. (18), Eq. (22) can be
solved analytically and the expressions for F1, G1 and H1 are
obtained as follows:

F1 ¼ �B1enrη�B2r�1enη

G1 ¼ B1enrηþB2enη

H1 ¼ B1 r�r�1
� �

nenrη

8><
>: : ð25Þ

The coefficients in Eq. (25) are determined by the boundary
conditions, which require the functions to satisfy F1 0ð Þ;G1 0ð Þð Þ ¼
2λ1 a2; b2ð Þ. Therefore B1 and B2 are given as

B1 ¼ � 2λ1
r�1

ra2þb2ð Þ;B2 ¼
2λ1r
r�1

a2þb2ð Þ: ð26Þ

By substituting the functions f , g and h into Eq. (23), the system
of ODEs is reduced to a fourth-order differential equation with
respect to one of the functions, say G2, namely

G″″2�4 r2þ1
� �

G″2þ16r2G2 ¼ �3c1c2
r

rþ1ð Þ2 r�1ð Þ3e rþ1ð Þη: ð27Þ

The solution to Eq. (27) is constructed as the sum of a
homogenous solution and a particular solution, satisfying
G2 �1ð Þ ¼ 0 and G2 0ð Þ ¼ 0, and thus it is given as follows:

G2 ¼ C1e2rηþC2e2η�
3A1A2 rþ1ð Þ2 r�1ð Þ3e rþ1ð Þη

r rþ1ð Þ4�4 r2þ1
� �

rþ1ð Þ2þ16r2
h i; ð28Þ

where C1 and C2 are coefficients to be determined later. The
functions F2 and H2 can be determined by substituting function G2

into Eq. (23), gives

F2 ¼ �C1e2rη�C2r�1e2η�A1A2 3r3þ5r2�7r�1
� �
r 3r2þ10rþ3
� � e rþ1ð Þη; ð29Þ

and

H2 ¼ 2C1 r�r�1� �
e2rηþA1A2 r�1ð Þ2 3r2þ6rþ1

� �
r2 3rþ1ð Þ e rþ1ð Þη: ð30Þ

The coefficients C1 ¼ � A1A2 r�1ð Þ 3r2þ8rþ3
� �

= r 3r2þ10rþ���
3ÞÞÞ and C2 ¼ 2A1A2 r�1ð Þð Þ= 3r2þ10rþ3

� �� �
, which are deter-

mined by the boundary condition, F2 0ð Þ ¼ G2 0ð Þ ¼ 0.
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