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Using nonperturbative quantum electrodynamics, we develop a scattering theory for high harmonic
generation (HHG). A transition rate formula for HHG is obtained. Applying this formula, we cal-
culate the spectra of high harmonics generated from different noble gases shined by strong laser
light. We study the cutoff property of the spectra. The data show that the cutoff orders of high
harmonics are greater than that predicted by the “3.17” cutoff law. As a numerical experiment,
the data obtained from our repeated calculations support the newly derived theoretical expression
of the cutoff law. The cutoff energy of high harmonics described by the new cutoff law, in terms
of the ponderomotive energy Up and the ionization potential energy Ip, is 3.34Up + 1.83Ip. The
higher cutoff orders predicted by this theory are due to the absorption of the extra photons, which
participate only the photon-mode up-conversion and do nothing in the photoionization process.
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1 Introduction

Laser induced high harmonic generation (HHG) from no-
ble gases has attracted people’s attentions since the first
observation in 1987 [1]. Many experimental and theoret-
ical studies have been done over the last three decades.
The HHG spectra carry information not only from the
laser fields, but also from the atoms of gas media. The
information extracted from atoms may be used in the
tomographic reconstruction of atoms [2]. The observed
high harmonics were of odd orders. Different electron re-
combination models were developed to account for HHG
spectra. Most of the models were in the category of semi-
classical theories. A notable one among those theories
was a so-called three-step model [3, 4]. It successfully
derived a cutoff law qc�ω = 3.17Up +1.32Ip for the HHG
energy. In the expression of the cutoff law, Up is the pon-
dermotive energy, Ip the ionization potential energy, ω

the laser photon frequency, and qc the cutoff order of
HHG. There were also some nonperturbative quantum

electrodynamics (NPQED) theories to account for phe-
nomena in HHG with some artificial assumptions [5–7].
HHG is a very complicated physical process. New find-
ings from new experiments in this area are still booming
up. But all semiclassical and NPQED theories with ar-
tificial assumptions cannot truly account for all physical
subprocesses. To correctly reveal all the physical sub-
processes and to give experimental measurements bet-
ter interpretations, it is necessary to develop a rigorous
NPQED theoretical approach to HHG.

In a very recent experiment, ultrahigh-order harmon-
ics were observed, up to orders greater than 5000 [8].
These high orders look going beyond the cutoff order
predicted by the “3.17” law. To interpret this new ex-
perimental result, re-deriving HHG transition formula
becomes an immediate need. With the transition rate
formula, one can study the features of HHG and the cut-
off law.

In this paper, we derive the HHG transition rate for-
mula strictly according to the NPQED theory [9–10]. In
this approach, quantum-field Volkov states are used as
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intermediate states, followed by an electron transition
back to the original atomic bound state [12]. With the
derived transition rate formula, we calculate HHG spec-
tra for He, Ne, Ar, Kr, Xe atoms in different laser beam
intensities and wavelengths. In our calculations, all al-
lowed photon-induced electron transitions are included.
We find that photons participating mode up-conversion
are not only those ionization photons. There are also
some photons which participate the mode up-conversion,
but do not participate the photoionization.

2 The rate formula of high harmonic
generation

We consider a quantized laser field of frequency ω corre-
sponding to a wavevector k. The harmonic mode, treated
as a spontaneous emission, is of frequency ω′ and a
wavevector k′. In this paper, we use � = 1, c = 1, and
e = −|e|. In the Schrödinger picture, the Hamiltonian of
the atom-radiation interaction system is [13]

H = H0 + U(r) + V + V ′, (1)

where

H0 =
(−i∇)2

2me
+ ωNa + ω′N ′

a (2)

is the noninteraction part of the Hamiltonian. Here, Na

and N ′
a are photon number operators of the laser and

the spontaneously emitted photon mode, respectively.
And U(r) is the atomic binding potential, me the elec-
tron rest mass. The total electron–photon interaction is
V + V ′ with

V = − e

2me
[A(r) · (−i∇) + (−i∇) · A(r)] +

e2A(r)2

2me

V ′ = − e

2me
[A′(r) · (−i∇) + (−i∇) · A′(r)]

+
e2A(r) · A′(r)

me
, (3)

where A(r) and A′(r) denote the vector potential of
the laser photon mode and the spontaneously emitted
photon mode, respectively. We use A(r) = g(εeik·ra +
ε∗e−ik·ra†), where g = (2V0ω)−1/2, with V0 being the
normalization volume of the photon field, and ε =
εx cos (ξ/2) + iεy sin(ξ/2) being the polarization vector.
The angle ξ determines the degree of polarization, such
that ξ = π/2 corresponds to circular polarization and
ξ = 0 to linear polarization.

The transition matrix element, according to Guo,
Åberg, and Crasemann (GAC) [9], is

Tfi =
∑

µ(Eµ=Ei)

〈Φf , nf , 1(|Ψµ, n′
s〉 + |Ψµ, n′

s〉′)

×(〈Ψµ, n′
s| + 〈Ψµ, n′

s|′)(V + V ′)|Φi, ni, 0〉, (4)

where

|Ψµ, n′
s〉′ =

∑

µ′
|Ψµ′ , n′′

s 〉
〈Ψµ′ , n′′

s |V ′|Ψµ, n′
s〉

E(μ, n′
s) − E(μ′, n′′

s )
(5)

is the first-order correction to the wavefunction per-
turbed by the harmonic mode. Here, n′

s and n′′
s denote

the spontaneously emitted photon number, ni the initial
photon number of laser mode, and nf the final one. The
index μ ≡ {Pn} characterizes a quantum-field Volkov
state [14]:

|Ψµ〉 = V −1/2
e

∑

l

exp{i[P + (up − l)k] · r}

×X−l(zc, zs)|n + l〉, (6)

which describes a nonrelativistic electron with momen-
tum P moving in a field of photon number n, and the
corresponding energy Eµ = P 2/(2me)+ (n+up +1/2)ω,
where Ve is the normalization volume of electron, |n + l〉
the Fock state of the laser photon mode, l the number
of transferred photons, up = Up/ω the ponderomotive
energy per laser photon energy. In latter text, we use
eb instead of Ip/ω, and e′b = eb + up for simplification.
The phased Bessel function Xm(z) and the generalized
phased Bessel (GPB) functions [15] Xl(zc, zs) are defined
as

Xm(z) = Jm(|z|)eiarg(z),

Xj(zc, zs) =
∑

m

Xj−2m(zc)Xm(zs),

with zc = [2|e|Λ/(meω)]P · ε and zs = (1/2)upε · ε.
In Eq. (5), the summing index μ′ means {P ′n′}. In Eq.

(4), n′
s and n′′

s = 0 or 1, denoting none or one harmonic
photon, respectively. Treating the harmonic interaction
as a perturbation, we obtain the reduced transition ma-
trix element as a sum of the following three terms [13]:

T1 =
∑

µ(Eµ=Ei)

〈Φf , nf , 1|Pn, 1〉〈Pn, 1|V ′|Φi, ni, 0〉,

T2 =
∑

µ(Eµ=Ei)

〈Φf , nf , 1|Pn, 1〉〈Pn, 1|′V |Φi, ni, 0〉,

T3 =
∑

µ(Eµ=Ei)

〈Φf , nf , 1|Pn, 0〉′〈Pn, 0|V |Φi, ni, 0〉, (7)

where the sum over μ can be performed as
∑

µ ≡ ∑
P n =

Ve
−1(2π)3

∑
n

∫
d3P .

According to the energy conservation between the ini-
tial state and the final state required by the scattering
theory, we obtain the frequency condition for the har-
monic

ω′ = Ebf − Ebi + (ni − nf )ω. (8)
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In the case when the excited photoelectron jumps back
to the initial state, we have Φf = Φi and Ebf = Ebi.
Then Eq. (8) becomes

ω′ = (ni − nf )ω ≡ qω. (9)

After a lengthy manipulation, we obtain explicit ex-
pressions for these three terms:

T1 =
|e|g′ε′∗·
me(2π)3

∑

j�[e′
b ]+1

∫
d3PΦf (P ′)∗Φi(P ′+k′−qk)

×X−j(zc, zs){(P ′ − qk)X−j−q(zc, zs)∗

+|e|[εΛX−j−q+1(zc, zs)∗

+ε∗ΛX−j−q−1(zc, zs)∗]}, (10)

with

P =
√

2meω(j − e′b)

∑

j�[e′
b
]+1

∫
d3P =

∑

j�[e′
b
]+1

[2(j − e′b)m
3
eω

3]
1
2

∫
dΩp,

P ′ = P + (up − j + q)k,

T2 =
|e|g′ε′∗·
me(2π)3

∑

j′�[e′
b]+1

∫
d3PX−j′ (zc, zs)Φf (P ′′)∗

×Φi(P ′′ − qk + k′)
∑

j

(up − j)ω
ΔKE + (j − j′)ω

×X−j(z′c, zs)∗
{

(P ′′ + j′k)Xj′−j+q(zk′)

+
1
2
k[zcXj′−j−1+q(zk′ ) + z∗c Xj′−j+1+q(zk′)

+2(zsXj′−j−2+q(zk′) + z∗sXj′−j+2+q(zk′))]

+|e|Λ[εXj′−j−1+q(zk′)

+ε∗Xj′−j+q+1(zk′)]
}

, (11)

with

P =
√

2meω(j′ − e′b),

z′c =
2|e|Λ
meω

P ′·ε, zk′ =
2|e|Λ
meω

k′·ε,
P ′ = P − (j′ − j + q)k + k′, P ′′ = P + (up − j′)k,

ΔKE =
P

me
· [(j′ − j + q)k − k′],

T3 =
|e|g′ε′∗·
me(2π)3

∑

j�[e′
b ]+1

∫
d3PΦf (P ′′ + qk − k′)∗

×X−j(zc, zs)∗Φi(P ′′)
∑

j′
X−j′(z′c, zs)

× (up − j)ω
ΔKE + (j′ − j)ω

{
(P ′′ + jk)Xj′−j+q(zk′ )

+
1
2
k[zcXj′−j+q−1(zk′ ) + z∗c Xj′−j+q+1(zk′)

+2(zsXj′−j+q−2(zk′) + z∗sXj′−j+q+2(zk′))]

+|e|Λ[εXj′−j+q−1(zk′)

+ε∗Xj′−j+q+1(zk′)]
}

, (12)

with

P =
√

2meω(j − e′b),

P ′ = P − (j − j′ − q)k − k′, P ′′ = P + (up − j)k,

ΔKE =
P

me
· [(j − j′ − q)k + k′],

where z′c and z′k are as defined earlier with noting that a
defferent P ′ from the previous one is involved.

The physical meanings of the sub-processes described
in above rate formula can be understood by detailed in-
spection of the involved summation processes. For exam-
ple, in the T3 term, the index j stands for the ionization
photon number, and the harmonic order q = j+(n−nf ).
The difference q−j = n−nf stands for the extra photon
absorptions when the harmonic order q is high enough.
Those extra photons do not participate the photon ion-
ization process. They only participate, joining with ion-
ization photons, the photon-mode up-conversion. This
process can be called accompanying Roman effect, be-
side the photoionization effect.

This formula allows us to calculate HHG propagating
in all directions. In our all-direction calculations, we find
that the rate of HHG in any other direction is much less
than that in the propagation direction of the laser beam.
This fact also agrees with experimental observations [16].
In this paper, we only calculate spectra of high harmon-
ics propagating in the laser beam direction.

In the direction k′//k, the three terms simplify as:

T1 =
|e|g′(2meω

3)1/2

(2π)3
∑

j�[e′
b]+1

(j − e′b)
1/2

∫
dΩΦf (P )∗

×Φi(P )X−j(zc, zs){ε′∗ · PX−j−q(zc, zs)∗

+|e|Λ[ε′∗ · εX−j−q+1(zc, zs)∗

+ε′∗ · ε∗X−j−q−1(zc, zs)∗]}, (13)

T2 =
|e|g′(2meω

3)1/2

(2π)3
∑

j′�[e′
b]+1

(j′−e′b)
1/2

∫
dΩP Φf (P )∗

×Φi(P )X−j′ (zc, zs)
{

ε′∗·P up−j′−q

Bq
X−j′−q(zc, zs)∗

+|e|Λ[ε′∗ · εup − j′ − q + 1
B(q − 1)

X−j′−q+1(zc, zs)∗

+ε′∗ · ε∗up − j′ − q − 1
B(q + 1)

X−j′−q−1(zc, zs)∗]
}

, (14)
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T3 =
|e|g′(2meω

3)1/2

(2π)3
∑

j�[e′
b]+1

(j−e′b)
1/2

∫
dΩP Φf (P )∗

×Φi(P )X−j(zc, zs)∗
{

ε′∗ · P up − j

−Bq
X−j+q(zc, zs)

+|e|Λ[ε′∗ · ε up − j

−B(q − 1)
X−j+q−1(zc, zs)

+ε′∗ · ε∗ up − j

−B(q + 1)
X−j+q+1(zc, zs)]

}
, (15)

where B ≡ 1 − P · k/(meω).
The final transition rate of HHG can be calculated by

dW

dΩk′

∣∣∣∣
k′//k

=
qω4e2me

(2π)8
|T1 + T2 + T3

D
|2, (16)

where we use D ≡ |e|g′(2meω
3)1/2/(2π)3 to replace the

coefficients of T1, T2, and T3.

3 Numerical calculations and discussion

With the transition rate formula, we are able to cal-
culate the HHG spectra from all atoms. The atomic
wave functions are calculated with Dirac–Hartree–Fock
method [17].

In the following we show the main results from our
calculations. We choose Xe 5P3/2 as the sample atomic
bound state, shined by linearly polarized laser light of
wavelength 800 nm. The laser beam intensity is chosen
in four different values from 5×1014 to 2×1015 W/cm2.
Figure 1 shows the calculated HHG spectra which have
a plateau and a clear cutoff structure.

Fig. 1 HHG spectra generated from Xe atom driven by the
laser pulses of wavelength 800 nm and intensities 0.5, 1.0, 1.5
and 2.0×1015 W/cm2 from (a) to (d), respectively. The left
dashed line and right dashed line in each subgraph refer to the
cutoff orders from the cutoff law qc�ω = 3.17Up + 1.32Ip and
qc�ω = 3.34Up + 1.83Ip, respectively.

In these spectra, there are no even order harmonics.
This feature can be understood directly from the parity

property of GPB functions in these three terms T1, T2

and T3 which are shown in Eqs. (13), (14) and (15). The
nonvanishing of the integrals requires the integrants to
be even functions. Now we change the momentum vector
P to −P to test the parity property of the integrands.
The phased Bessel and GPB functions have parity prop-
erty [15]:

Xm(−z) = (−1)mXm(z),

Xj(−zc, zs) = (−1)jXj(zc, zs), (17)

with zc = [2|e|Λ/(meω)]P · ε and zs = (1/2)upε · ε, we
get Xj(−zc, zs) = (−1)jXj(zc, zs). In Eq. (13), we get
Φf (P )∗Φi(P ) = 4π|Φi(|P |)|2, and

X−j(−zc, zs){ε′∗ · (−P )X−j−q(−zc, zs)∗

+|e|Λ[ε′∗ · εX−j−q+1(−zc, zs)∗

+ε′∗ · ε∗X−j−q−1(−zc, zs)∗]},
= (−1)(−q+1)X−j(zc, zs){ε′∗ · PX−j−q(zc, zs)∗

+|e|Λ[ε′∗ · εX−j−q+1(zc, zs)∗,

+ε′∗ · ε∗X−j−q−1(zc, zs)∗]}. (18)

In the integration over P , the integrand is an odd func-
tion when q is even due to the factor (−1)−q+1. Noting
the denominator B ≡ 1 − P · k/(meω) ≈ 1 in the non-
relativistic limit, with the same analysis in Eqs. (14) and
(15), the integrand is odd when q is even, which leads to
the vanishing of the integral.

We also compute HHG spectra for He, Ne, Ar, and
Kr, shined by linearly polarized laser light of wavelength
800 nm and intensity 1.5×1015 W/cm2. These spectra
show some common features: a well formed plateau and
a sharp cutoff structure. The calculated spectra are pre-
sented in Fig. 2.

Fig. 2 HHG spectra generated from (a) He, (b) Ne, (c) Ar, and
(d) Kr atom driven by the laser pulses of wavelength 800 nm and
intensities 1.5×1015 W/cm2. The left dashed line and right dashed
line in each subgraph refer to the cutoff orders from the cutoff law
qc�ω = 3.17Up + 1.32Ip and qc�ω = 3.34Up + 1.83Ip, respectively.
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There are many discussions on the plateau of the spec-
tra in literatures. In this paper, we focus on the discus-
sion of the cutoff property of the spectra.

In a very recent theoretical work [18], we obtained
an expression of the cutoff law for HHG spectra, qcω =
3.34Up + 1.83Ip, where we only used the cutoff property
of ordinary Bessel functions and the Einstein photoelec-
tric law in the multiphoton case, without any spectra
calculation. The data from a very recent experiment [8]
support the new cutoff law. Now we have the transition
rate formula to calculate the HHG spectra. Those spectra
obtained from our rate calculation will offer a strong nu-
merical check to the new cutoff law, also to the previously
well-accepted cutoff laws. In Fig. 3, the circle points show
the cutoff orders from our spectra calculation. The sam-
ple atomic state to ionize is Xe 5P3/2, shined by linearly
polarized laser light of wavelength 800 nm. We choose
16 different beam intensities from 5 × 1014 to 2 × 1015

W/cm2. The best fitting line of these scattered points
coincides well with the line 3.34Up + 1.83Ip.

Fig. 3 The circle points refer to the cutoff orders obtained from
the HHG spectra calculation. The best fitting line to the circle
points coincides with the line 3.34Up + 1.83Ip.

Why the cutoff order predicted by our theory is higher
than that predicted by the “3.17” law? To answer this
question, we need to look into the details in our for-
mulas for the calculation. In a good quantum mechanic
theory, all kinds of conservation laws should be automat-
ically derived from the theory. If a transition subprocess
is mathematically allowed, it must meet all kinds of con-
servation laws. Thus, one has to include any possible
transition subprocess as an open channel in the calcula-
tion. In our formula, the participating photons for HHG
are not only the ionization photons, but also some non-
ionization photons which participate the photon-mode
up-conversion. The process for a photoelectron absorbing

non-ionization photons in photon-mode up-conversions
may be called the accompanying Raman effect. It is the
accompanying Raman effect which makes the cutoff or-
der of HHG greater than the one predicted by semi-
classical theories. The laser photons to participate the
photon-mode up-conversion are not only those ionization
photons which show up in the Einstein’s photo-ionization
law, but also some non-ionization photons. In a full quan-
tum mechanical treatment, all possible transition chan-
nels must occur if they are not ruled out by mathemat-
ical restrictions which embody all kinds of conservation
laws in physics. The absorbed laser photons to partici-
pate the photon-mode up-conversion are from both, the
photo-ionization effect and the accompanying Raman ef-
fect.

4 Summary

The transition rate formula for HHG is strictly derived
from the NPQED scattering theory. This formula allows
us to calculate the HHG rates for different atoms in laser
beams of arbitrary intensities and arbitrary wavelengths.
Applying the transition rate formula, we calculate the
HHG spectra for He, Ne, Ar, Kr, and Xe atoms. These
applications can be used for future studies of HHG spec-
tra.

According to the calculated spectra, we study the
cutoff properties of HHG. In the spectra calculation,
we neither use the commonly accepted cutoff law [3, 4]
qc�ω = 3.17Up +1.32Ip, nor the one derived recently [18]
qc�ω = 3.34Up + 1.83Ip. Thus, the spectra calculation
presented here offers an independent reference to differ-
ent cutoff laws.
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