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With shock capturing capability and spectral like resolution, weighted compact schemes are good choices
for supersonic turbulent flow simulation. However, because of the implicit nature of compact schemes,
accuracy decrease at one point would contaminate the overall solution. The recently proposed com-
pact-reconstructed WENO (CRWENO) scheme (Ghosh and Baeder, 2012) is an efficient weighted compact
scheme. Analysis shows that the accuracy of the CRWENO scheme is only second order for points near
discontinuities. In this paper, a multi-step strategy is proposed to increase the accuracy of the
CRWENO scheme near discontinuities. Instead of constructing the fifth order compact scheme directly
from three third order compact schemes, two fourth order compact schemes are first constructed. The
final fifth order scheme is then obtained by these two fourth order schemes. In this way, the accuracy
of the CRWENO scheme is increased to third order for points near discontinuities. The dissipation and
dispersion properties of the new scheme are analyzed by employing the modified wave number method.
Several examples, including linear advection cases, three one-dimensional shock tube problems, two-
dimensional isentropic vortex convection, double Mach reflection, and shock/mixing layer interaction
problems, are considered to assess the present method. Numerical results show that the present mul-
ti-step CRWENO scheme has lower dissipation and higher resolution in both smooth and discontinuous
regions compared with the original scheme.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical simulation of supersonic turbulence is still a
challenging field for both scientists and engineers. As shock and
multi-scale problems present simultaneously in supersonic turbu-
lent flow, numerical schemes are required to be able to resolve
both of these two phenomena at the same time. Generally, for mul-
ti-scale problems such as turbulence and acoustics, minimal dissi-
pation and dispersion are demanded to ensure high resolution of
the wave number range that considered. For discontinuities such
as shock waves, a numerical method should remove spurious
numerical oscillation by introducing numerical dissipation which
leads to high dissipation near discontinuity as well as in smooth
regions of the flow field. Due to the contradictory requirements
of these two phenomena for numerical methods, most existing
methods may only be successful in handling one of the problems.

The purpose of developing shock capturing schemes is to
resolve discontinuities without numerical oscillation while keep-
ing high accuracy. The most influential shock capturing scheme
at present is the weighted essentially non-oscillatory scheme
introduced by Jiang and Shu [1] (referred as WENO-JS). Based on
the ENO (Essentially non-oscillatory) scheme by Harten et al. [2]
and the finite volume WENO scheme by Liu et al. [3], it is devel-
oped in the frame of finite difference and more efficient for mul-
ti-dimensional problems. With improved smoothness indicators,
the WENO-JS scheme captures discontinuity well and maintains
high order in smooth region compared to traditional low order
schemes such as TVD schemes [4] and ENO schemes [2]. In spite
of these advantages, numerical experiments show that the
smoothness indicator of WENO-JS is too dissipative for complex
flow structures such as turbulence [5]. Moreover, the weighting
function of WENO-JS fails to recover designed coefficients at
critical points where the first derivative equals 0. To improve the
accuracy of WENO-JS at critical points, Henrick et al. [6] proposed
a mapping function for the original weights of WENO-JS. However,
the additional computational cost brought by the mapping func-
tion is not preferable. Another approach is the WENO-Z scheme
of Borges et al. [7] which employs a new weighting function and
achieves low dissipation and ideal order at low computational cost.
Yamaleev and Carpenter [8] proposed the ESWENO scheme which
guarantees designed order for arbitrary number of zero derivatives.
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Martin et al. [9] developed a set of symmetric WENO schemes
for direct and large eddy simulation of compressive turbulence.
Martin’s schemes are optimized to achieve maximum order of accu-
racy and bandwidth with minimized dissipation. Nevertheless, Shen
and Zha [10] showed that the accuracy of above mentioned WENO
schemes is only second order near discontinuities.

For multi-scale dominated problems, the compact scheme is a
better choice than the shock capturing scheme in terms with wave
resolution. The compact scheme did not draw much attention until
Lele’s pioneering work [11]. He developed a class of central com-
pact schemes with spectral-like resolution. Based on Fourier anal-
ysis, Lele also analyzed the spectral behavior of different
approximations. After that compact schemes were widely used in
turbulence [12,13] and acoustics simulations [14]. Inspired by
Lele’s central compact scheme, different kinds of compact schemes
[12,15,16] were developed with optimized parameters to minimize
dissipation and dispersion. Tam and Webb [17] showed that even
the optimized compact scheme of Lele may produce incorrect wave
speed, and the dispersion-relation-preserving (DRP) finite-differ-
ence scheme was proposed to solve this problem and improve
resolution. For hyperbolic conservation laws such as the Euler
equations, upwind compact schemes were developed [18–21]
and it was shown that they are more robust than the central
compact schemes for advection dominated problems. Although
compact schemes have high resolution for multi scale problems,
they incur oscillations near shock and thus are not suitable for
supersonic flow simulation.

In order to capture shock wave without numerical oscillation
while taking advantage of the spectral-like resolution of compact
schemes, a class of hybrid schemes is proposed by combining the
shock capturing scheme with the compact scheme. Adams and
Shariff [22] developed a hybrid compact-ENO scheme coupled by
a simple detection method for shock turbulence interaction simu-
lation. Pirozzoli [23] followed Adams’s method and proposed a
compact-WENO scheme with a similar criterion. Ren et al. [24]
introduced a more sophisticated switch function and developed a
characteristic-wise hybrid compact-WENO scheme. Hill and
Pullin [25] coupled the tuned center-difference scheme with the
WENO scheme that a switch indicator based on the smoothness
indicator of WENO was used. Kim and Kwon [26] combined several
central difference schemes with the WENO scheme using the same
switch function as Ren et al. All above mentioned switch functions
always need an artificial (or empirical), problem-dependent
parameter to determine whether the shock capturing scheme
should be used. This may cause some problems such as loss of
accuracy and robustness and is inefficient in parallel computation
[27]. To develop parameter free hybrid schemes, a function based
on the WENO smoothness indicators of Jiang and Shu [1] and
Borges et al. [7] was proposed to detect shock regions by Shen
and Zha [28], and a high resolution finite compact scheme was
constructed which treats detected discontinuity as internal
boundary.

A way to avoid switch functions is to construct a compact
scheme based on the idea of WENO schemes and ENO schemes.
Jiang et al. [29] developed a weighted compact scheme based on
Lele’s central compact scheme. This scheme is a weighted combi-
nation of several lower order compact schemes on different sub-
stencils. Deng and Zhang [30] developed a weighted compact
scheme that the cell edge flux of a cell centered compact scheme
is approximated by the WENO scheme. Zhang et al. [27] extended
Deng’s scheme to higher orders. Recently, a more efficient fifth
order compact reconstructed WENO scheme (CRWENO) was pro-
posed by Ghosh and Baeder [31]. The reconstruction process of this
scheme is similar to that of Jiang’s but in conservative form that
the final fifth order compact scheme is constructed by three third
order compact schemes. The CRWENO scheme has good shock
capturing capability and high wave resolution. Numerical experi-
ments [32] showed that the CRWENO scheme is capable of resolv-
ing finer wave structures than the WENO scheme at the same grid
size.

As analyzed by Shen and Zha [10], a 2r þ 1th order WENO
scheme which is constructed directly from r candidate fluxes
may decrease the accuracy near discontinuities, so does the
CRWENO scheme. For the traditional WENO scheme, the recon-
structed flux at the cell interface is an explicit interpolation of cell
central flux values, accuracy decrease at one point has few effect on
the accuracy of other points during the reconstruction process.
However, due to the implicit feature of the compact scheme, accu-
racy decrease at one point would contaminate all points. For direct
and large eddy simulation of supersonic turbulence, shocklets
[33,34,13] are fundamental and important phenomena. Numbers
of shocklets may simultaneously appear in supersonic turbulent
flow. Serious accuracy decrease due to shocklets may invalidate
the numerical simulation if one applies the weighted compact
scheme for such flow. Therefore, the improvement of the accuracy
near discontinuities is vital. In this paper, we analyze the accuracy
of the CRWENO scheme near discontinuities, and then a multi-step
method is introduced to improve the accuracy of the CRWENO
scheme. Several numerical examples are presented to show that
the new scheme is efficient and accurate.

This paper is organized as follows. Section 2 describes the con-
struction process of the CRWENO scheme. Section 3 analyzes the
accuracy of the CRWENO scheme near discontinuities. In
Section 4, a multi-step CRWENO scheme is constructed to improve
the original scheme. Numerical results of scalar equation, one-
dimensional and two-dimensional Euler equations as well as two-
dimensional Navier–Stokes equations are showed in Section 5.
Finally, discussion and conclusion are presented in Section 6.

2. The CRWENO scheme of Ghosh and Baeder

To describe the CRWENO scheme, we consider a general scalar
conservation law in 1D expressed as:

ut þ f x ¼ 0 ð1Þ

where uðx; tÞ is the conserved variable and f ðuÞ is the flux function.
To solve (1) numerically, we transform it into semi-discretized form
for uniformly discretized space:

dui

dt
¼ �

f̂ iþ1
2
� f̂ i�1

2

Dx
ð2Þ

in which ui is the numerical approximation of u at xi; f̂ iþ1
2

is the

numerical flux of f at cell interface xiþ1
2

and Dx ¼ xiþ1 � xi. The

numerical flux f̂ iþ1
2

at cell interface is interpolated with discrete f i

values at xi. The linear fifth order compact scheme is expressed as:

3
10

f̂ i�1
2
þ 6

10
f̂ iþ1

2
þ 1

10
f̂ iþ3

2
¼ 1

30
f i�1 þ

19
30

f i þ
10
30

f iþ1 ð3Þ

(3) can be obtained from the weighted sum of three third order
compact schemes:

2
3

f̂ i�1
2
þ 1

3
f̂ iþ1

2
¼ 1

6
f i�1 þ

5
6

f i ð4aÞ

1
3

f̂ i�1
2
þ 2

3
f̂ iþ1

2
¼ 5

6
f i þ

1
6

f iþ1 ð4bÞ

2
3

f̂ iþ1
2
þ 1

3
f̂ iþ3

2
¼ 1

6
f i þ

5
6

f iþ1 ð4cÞ

with weights c0 ¼ 2
10 ; c1 ¼ 5

10 and c2 ¼ 3
10 respectively.
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Based on the idea of the WENO scheme, the CRWENO scheme
[31] is constructed as:

2
3
x0 þ

1
3
x1

� �
f̂ i�1

2
þ 1

3
x0 þ

2
3
ðx1 þx2Þ

� �
f̂ iþ1

2
þ 1

3
x3 f̂ iþ3

2

¼ x0

6
f i�1 þ

5ðx0 þx1Þ þx2

6
f i�1 þ

x1 þ 5x2

6
f i�1 ð5Þ

where the weights xk are defined as:

xk ¼
akP

iai
ð6Þ

ak ¼
ck

ðeþ bkÞ
p ð7Þ

in which

b0 ¼
13
12
ðf i�2 � 2f i�1 þ f iÞ

2 þ 1
4
ðf i�2 � 4f i�1 þ 3f iÞ

2 ð8aÞ

b1 ¼
13
12
ðf i�1 � 2f i þ f iþ1Þ

2 þ 1
4
ðf i�1 � f iþ1Þ

2 ð8bÞ

b2 ¼
13
12
ðf i � 2f iþ1 þ f iþ2Þ

2 þ 1
4
ð3f i � 4f iþ1 þ f iþ2Þ

2 ð8cÞ

where bk are the smoothness indicators [1] and e is a small number
to avoid division by zero.

For common construction procedure of the WENO scheme [1], it
has been shown that the weighting function (7) is too dissipative
and does not guarantee fifth order accuracy when the first deriva-
tive approximates 0. A mapping function [6] is introduced to
improve the accuracy of the final weights:

gkðxÞ ¼
xðck þ c2

k � 3ckxþx2Þ
c2

k þxð1� 2ckÞ
ð9Þ

xM
k ¼

gkP
igi

ð10Þ

However, mapping function (9) leads to much computational
expense. An alternative weight [7] is given by:

ak ¼ ck 1þ s
bk þ e

� �
ð11Þ

where s ¼ jb0 � b2j. Another important issue about the implemen-
tation of the WENO weights is the choice of the small number e.
For the weights of Jiang and Shu, e ¼ 1� 10�6 is advised. For weight
(9) and (11), 1� 10�40 or 1� 10�20 (depending on the structure of
computers) is recommended. In this paper, e is set to be 1� 10�6

for all numerical experiments. Readers may refer to [10] for discus-
sion on the weighting function and e.

3. Accuracy analysis at points near discontinuities

Compared to the fifth order WENO scheme, the CRWENO
scheme has better resolution and dissipation properties [31].
However, as shown below, the accuracy near discontinuities is
not ideal. Due to the implicit feature of compact schemes, accuracy
decrease at one point would decrease the overall accuracy. This is a
main drawback of the CRWENO scheme as well as for other
weighted compact schemes. For complex flow such as shock/
boundary layer interaction and supersonic turbulent flow with
shocklets, the flow field we are interested in always lies near or
between discontinuities.

For the 5th order CRWENO scheme, there are five points
involved to calculate the numerical flux. Here, as an example, we
evaluate the accuracy at such a model stencil that there are 6
points between two discontinuities (see Fig. 1). For each of the
two points at the left and right boundaries (point 0 and 5), only
one 3-point candidate stencil is smooth, i.e., (x0; x1; x2) and
(x3; x4; x5). For point 0, discontinuity lies in its first and second can-
didate stencils thus x0 ! 0; x1 ! 0 and x2 ! 1. Therefore, at
point 0, (3) becomes:

2
3

f̂ 0þ1
2
þ 1

3
f̂ 0þ3

2
¼ 1

6
f 0 þ

5
6

f 1 ð12Þ

For point 1, discontinuity lies in its first stencil. Then we have
x0 ! 0; x1 ! 5

8 ; x2 ! 3
8 and

5
24

f̂ 1�1
2
þ 2

3
f̂ 1þ1

2
þ 3

24
f̂ 1þ3

2
¼ 28

48
f 1 þ

20
48

f 2 ð13Þ

Following the above process for remainder of the points we obtain:

3
10

f̂ 2�1
2
þ 6

10
f̂ 2þ1

2
þ 3

24
f̂ 2þ3

2
¼ 1

30
f 1 þ

19
30

f 2 þ
1
3

f 3 ð14Þ

3
10

f̂ 3�1
2
þ 6

10
f̂ 3þ1

2
þ 3

24
f̂ 3þ3

2
¼ 1

30
f 2 þ

19
30

f 3 þ
1
3

f 4 ð15Þ

9
21

f̂ 4�1
2
þ 12

21
f̂ 4þ1

2
¼ 2

42
f 3 þ

35
42

f 4 þ
5

42
f 5 ð16Þ

2
3

f̂ 5�1
2
þ 1

3
f̂ 5þ1

2
¼ 1

6
f 4 þ

5
6

f 5 ð17Þ

(12)–(17) can be written in matrix form:

2=3 1=3 0 0 0 0
5=24 2=3 3=24 0 0 0

0 3=10 6=10 1=10 0 0
0 0 3=10 6=10 1=10 0
0 0 0 9=21 12=21 0
0 0 0 0 2=3 1=3

0
BBBBBBBB@

1
CCCCCCCCA

f̂ 0þ1
2

f̂ 1þ1
2

f̂ 2þ1
2

f̂ 3þ1
2

f̂ 4þ1
2

f̂ 5þ1
2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

1=6 5=6 0 0 0 0
0 28=48 20=48 0 0 0
0 1=30 19=30 1=3 0 0
0 0 1=30 19=30 1=3 0
0 0 0 2=42 35=42 5=42
0 0 0 0 1=6 5=6

0
BBBBBBBB@

1
CCCCCCCCA

f 0

f 1

f 2

f 3

f 4

f 5

0
BBBBBBBB@

1
CCCCCCCCA

ð18Þ

Note that f̂ iþ1=2 � f̂ i�1=2 ¼ Dxf 0i, we define a matrix C:

C ¼

0 0 0 0 0 0
�1 1

�1 1
�1 1

�1 1
�1 1

2
666666664

3
777777775

ð19Þ

Left-multiplying matrix C to each side of (18), we obtain the linear
equations about f 0i:

0
f 01
f 02
f 03
f 04
f 05

2
666666664

3
777777775
¼ 1

Dx

0 0 0 0 0 0
�1 1

�1 1
�1 1

�1 1
�1 1

2
666666664

3
777777775

f̂ 0þ1
2

f̂ 1þ1
2

f̂ 2þ1
2

f̂ 3þ1
2

f̂ 4þ1
2

f̂ 5þ1
2

2
66666666666664

3
77777777777775
¼ 1

Dx
CA�1B

f 0

f 1

f 2

f 3

f 4

f 5

2
666666664

3
777777775

ð20Þ



Fig. 1. Sketch of six points between two discontinuities.

246 J. Peng, Y. Shen / Computers & Fluids 115 (2015) 243–255
where

CA�1B¼

0 0 0 0 0 0

�49=120 �7=24 149=180 �3=20 1=40 �1=360

59=360 �67=72 54=161 11=20 �11=120 �11=1080

�11=120 11=20 �229=180 29=60 19=40 �19=360

7=120 �7=24 133=180 �31=20 91=120 103=360

�3=40 3=8 �19=20 37=20 �199=40 71=40

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð21Þ

Therefore, the first derivatives of numerical fluxes f i are now repre-
sented by values at each point. To evaluate the accuracy of f 0i, we
employ Taylor expansion to each f 0i obtained by (20) and yield:

f 01 ¼
@f
@x
j1 þ

4
45

f ð3Þ1 Dx2 þ OðDx3Þ ð22aÞ

f 02 ¼
@f
@x
j2 �

13
270

f ð3Þ2 Dx2 þ OðDx3Þ ð22bÞ

f 03 ¼
@f
@x
j3 þ

1
45

f ð3Þ3 Dx2 þ OðDx3Þ ð22cÞ

f 04 ¼
@f
@x
j4 þ

1
90

f ð3Þ4 Dx2 þ OðDx3Þ ð22dÞ

f 05 ¼
@f
@x
j5 �

2
15

f ð3Þ5 Dx2 þ OðDx3Þ ð22eÞ

(22a)–(22e), show that at points 1–5 the accuracy is only second
order. As the relation between neighboring points is determined
by (20), when one of its neighboring points has a low accuracy
order, the accuracy of a certain point is also decreased, even for
smooth region like point 3.

4. Multi-step weighting method for CRWENO

As mentioned above, the accuracy of points near discontinuities
is only second order. To improve that, a multi-step reconstruction
process is proposed. Firstly, two fourth order schemes are con-
structed by using two of the three candidate third order schemes.
For example, a fourth order flux (25) is constructed from (23) and
(24), i.e., (25) = (23) �c0

0þ (24) � c0
1. Note here, without loss of

accuracy and spectral-like resolution, (4b) is replaced with (24)
or (26) during the construction process based on upwinding
consideration.

2
3

f̂ i�1
2
þ 1

3
f̂ iþ1

2
¼ 1

6
f i�1 þ

5
6

f i; c0
0 ¼

3
4

ð23Þ
f̂ iþ1
2
¼ 2

6
f iþ1 þ

5
6

f i �
1
6

f i�1; c0
1 ¼

1
4

ð24Þ

1
2

f̂ i�1
2
þ 1

2
f̂ iþ1

2
¼ 1

12
f iþ1 þ

5
6

f i þ
1

12
f i�1 ð25Þ

Similarly, for the second and third stencils we have:

f̂ iþ1
2
¼ 2

6
f iþ1 þ

5
6

f i �
1
6

f i�1; c1
0 ¼

1
4

ð26Þ

2
3

f̂ iþ1
2
þ 1

3
f̂ iþ3

2
¼ 5

6
f iþ1 þ

1
6

f i; c1
1 ¼

3
4

ð27Þ

3
4

f̂ iþ1
2
þ 1

4
f̂ iþ3

2
¼ 17

24
f iþ1 þ

8
24

f i �
1

24
f i�1 ð28Þ

Then these two fourth order schemes, (25) and (28), are used to
construct the final fifth order scheme with coefficients c0 and c1:

1
2

f̂ i�1
2
þ 1

2
f̂ iþ1

2
¼ 1

12
f iþ1 þ

5
6

f i þ
1

12
f i�1; c0 ¼ 0:6

3
4

f̂ iþ1
2
þ 1

4
f̂ iþ3

2
¼ 17

24
f iþ1 þ

8
24

f i �
1

24
f i�1; c1 ¼ 0:4

3
10

f̂ iþ1
1
þ 6

10
f̂ iþ1

1
þ 1

10
f̂ iþ1

1
¼ 1

30
f i�1 þ

19
30

f i þ
10
30

f iþ1 ð29Þ

That is (29) = (25) � c0 þ (28) � c1. Replacing the optimal weights
with the non-linear weighting functions in (25), (28) and (29), we
have the final fifth order weighted compact scheme

aif̂ i�1
2
þ bif̂ iþ1

2
þ cif̂ iþ3

2
¼ diþ1

2
ð30Þ

where

ai ¼
2
3
x0x0

0 ð31Þ

bi ¼
1
3
ðx0x0

0 þ 3x0x0
1 þ 3x1x1

0 þ 2x1x1
1Þ ð32Þ

ci ¼
1
3
x1x1

1 ð33Þ

diþ1
2
¼ 1

6
ðx0x0

0 �x0x0
1 �x1x1

0Þf i�1 þ
1
6
ð5x0x0

0 þ 5x0x0
1

þ 5x1x1
0 þx1x1

1Þf i þ
1
6
ð2x0x0

1 þ 2x1x1
1

þ 5x1x1
1Þf iþ1 ð34Þ

To ensure the convergence condition:

xk � ck ¼ OðDx3Þ ð35Þ



Fig. 2. Real part of the modified wave number for different schemes.

Fig. 3. Imaginary part of the modified wave number for different schemes.
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the mapping function (9) is employed at each step when computing
the nonlinear weights. The non-linear weights are redefined as:

xl
k ¼

gðwl
kÞP

igðw
l
iÞ
; wl

k ¼
al

kP
ia

l
i

; al
k ¼ cl

k 1þ sl
4

bkþl þ e

� �
;

sl
4 ¼ blþ1 � bl

�� ��; k ¼ 0;1; l ¼ 0;1

xk ¼
gðwmÞP

igðwiÞ
; wm ¼

amP
iai
; am ¼ cm 1þ s5

b2m þ e

� �
;

s5 ¼ b2 � b0j j; m ¼ 0;1

Definitions of bk are the same as (8a)–(8c).
Following the same process in Section 3, the accuracy of the

present scheme can be evaluated. Here we omit the deduction pro-
cess and present the result directly. At each point defined in Fig. 1
there are:

f 01 ¼
@f
@x
j1 þ

1
24

f ð3Þ1 Dx2 þ OðDx3Þ ð36aÞ

f 02 ¼
@f
@x
j2 þ

13
396

f ð4Þ2 Dx3 þ OðDx4Þ ð36bÞ

f 03 ¼
@f
@x
j3 �

1
44

f ð4Þ3 Dx3 þ OðDx4Þ ð36cÞ

f 04 ¼
@f
@x
j4 þ

5
132

f ð4Þ4 Dx3 þ OðDx4Þ ð36dÞ

f 05 ¼
@f
@x
j5 �

1
12

f ð3Þ5 Dx2 þ OðDx3Þ ð36eÞ

(36a)–(36e), show that the present method improves the accuracy
of f 02; f 03 and f 04 from second order to third order. Besides, the mag-
nitudes of the leading error terms are also halved in (36a) and (36e)
compared to (22a) and (22e).

The dispersion and dissipation properties of a certain scheme
can be obtained by applying Fourier analysis [11]. Consider the
Fourier decomposition of a periodic flux function f NðxÞ on a uni-
formly spaced grid:

f NðxÞ ¼
XN�1

k¼0

f̂ k exp
2pikx

L

� �
ð37Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. One obtains the Fourier decomposition of the first
derivative of f NðxÞ by differentiating (37):

f 0NðsÞ ¼
XN�1

k¼0

f̂ 0k exp
2pikx

L

� �
¼
XN�1

k¼0

ixf̂ k expðixsÞ ð38Þ

where x ¼ 2pkDx=L ¼ 2pk=N is the scaled wave number and
s ¼ x=Dx is the scaled coordinate [11]. For the derivative obtained
by a linear scheme, the modified wave number is defined as

x0 ¼ �iðf̂ 0kÞ=f̂ k which can be explicitly obtained by substituting f n

with f̂ expðixnÞ and f 0 with iðx0Þf̂ expðixnÞ in f 0 ¼ 1
Dx

P
nf n.

However, this is not the case for non-linear schemes such as the
WENO scheme and the CRWENO scheme. To analyze the spectral
properties of non-linear schemes, one should extend the standard
Fourier method by considering all Fourier modes rather than only
one mode [35,36]. The modified wave number x0ðxÞ of a nonlinear
scheme is given by:

x0ðxÞ ¼ 1
i

XN�1

n¼0

f 0n expð�ixnÞ
XN�1

n¼0

,
f n expð�ixnÞ ð39Þ

where f 0i is the first derivative obtained by a non-linear scheme.
Figs. 2 and 3 show the real and imaginary parts of the modified

wave numbers of the WENO-Z scheme, the CRWENO scheme and
the present method as well as their linear counterparts, i.e., the
fifth order upwind scheme (UW5) and the fifth order upwind com-
pact scheme (UWC5). It can be observed that due to the non-linear
effects introduced by the weighting functions, the non-linear
schemes are more dissipative than their linear counterparts. This
observation has also been reported in [37]. The spectral resolution
of the CRWENO scheme is effectively improved by the present
method.

5. Numerical experiment

To assess the present multi-step CRWENO scheme, we perform
several numerical tests including scalar, one-dimensional and two-
dimensional problems. Numerical results are compared with the
original CRWENO scheme and the WENO-Z scheme.

For all numerical tests in this section, the third order TVD
Runge–Kutta method [38] is used for time advancing:

uð1Þ ¼ un þ DtLðunÞ ð40Þ
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uð2Þ ¼ 3
4

un þþ1
4

uð1Þ þ 1
4

DtLðuð1ÞÞ ð41Þ

unþ1 ¼ 1
3

un þ 2
3

uð2Þ þ 2
3

DtLðuð2ÞÞ ð42Þ

For one dimensional problems with strong discontinuities, the char-
acteristic-wise reconstruction is chosen as advised in [31] together
with Lax–Friedrich flux splitting [39]. For two dimensional prob-
lems, the Steger–Warming flux splitting method [40] is applied.

5.1. Linear advection equation

Let us consider the linear wave advection problem. The linear
advection equation is given by:

ut þ ux ¼ 0 �1 6 x 6 1
uðx;0Þ ¼ u0ðxÞ periodic boundary

�
ð43Þ

The exact solution of (43) at time t with the initial condition u0ðxÞ is
given by

uðx; tÞ ¼ u0ðx� tÞ ð44Þ

Two cases are studied in this section. The first case is to evaluate
the convergence order of the present scheme for a smooth solution.
The initial condition is given by:

u0ðxÞ ¼ sinpx ð45Þ

A uniformly spaced grid is used as the computational domain. To
rule out the error introduced by time discretization, the time step
Dt is set to Dx5=3.

The L2 norm of the error is obtained by comparison with the
exact solution at t ¼ 2 according to:
Table 1
L2 errors and convergence orders for different schemes for the linear advection
equation with initial condition (45) at t = 2.

N WENO-Z CRWENO Present

L2 Order L2 Order L2 Order

20 2.26E�004 – 8.29E�005 – 8.36E�005 –
40 7.08E�006 5.00 3.31E�006 4.78 3.31E�006 4.78
80 2.22E�007 5.00 1.10E�007 5.01 1.10E�007 5.01
160 6.98E�009 4.92 3.20E�009 5.85 3.20E�009 5.85
320 2.41E�010 4.86 3.29E�011 6.60 3.29E�011 6.60

Fig. 4. Solutions of the linear advection equation for different schemes with initial
condition (46) at t = 6, N = 200.
L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ui � uexact;i
	 
2

r

Table 1 shows the L2 norms as well as convergence orders for
different schemes. All schemes achieve fifth order, but the two
weighted compact schemes are more accurate than the WENO-Z
scheme. Similar accuracy orders are obtained by the CRWENO
scheme and the present scheme indicating that the multi-step
weighting process designed for shock capturing does not introduce
additional error for smooth solution.

The initial condition of the second case is:

u0ðxÞ¼

1
6ðGðx;b;z�dÞþGðx;b;zþdÞþ4Gðx;b;zÞÞ; �0:86 x<�0:6
1; �0:46 x<�0:2
1�j10ðx�0:1Þj; 06 x<0:2
1
6ðFðx;a;a�dÞþFðx;a;aþdÞþ4Fðx;a;aÞÞ; 0:46 x<0:6
0; otherwise

8>>>>>><
>>>>>>:

ð46Þ
Fig. 5. Detailed plot of the square wave.

Fig. 6. The Sod problem at t = 0.14, N = 200.
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where

Gðx;b; zÞ ¼ e�bðx�zÞ2 ; Fðx;a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2; 0Þ

q
a ¼ 0:5; z ¼ �0:7; d ¼ 0:005; a ¼ 10; b ¼ log 2=36d2

The solution of (46) contains a smooth but narrow combination of
Gaussians, a square wave, a sharp triangle wave, and a half ellipse
[1]. As this test case is a combination of both smooth and non-
smooth functions, it has been widely used to test the discontinuity
capturing capability of a scheme [28,41]. Numerical results of dif-
ferent schemes are given in Fig. 4. The present scheme gives an
obvious better result at discontinuous points than the other two
(see Fig. 5).

5.2. 1D Euler equations

The one-dimensional Euler equations are given by

Ut þ FðUÞx ¼ 0 ð47Þ
Fig. 7. The Lax problem at t = 0.13, N = 200.

Fig. 8. The Shu–Osher problem at t = 1.8, N = 200.
where U ¼ ðq;qu; eÞT ; FðUÞ ¼ ðqu;qu2 þ p;uðeþ pÞÞT . Here q is the
density, u is the velocity, e is the total energy, p is the pressure,
and for ideal gas e ¼ p

c�1þ 1
2 qu2; c ¼ 1:4 is the ratio of specific heat.

Three typical examples are considered. The first example is the
Sod problem. The initial condition is:

ðq;u;pÞ ¼
ð1;0;1Þ x 6 0
ð0:125;0;0:1Þ x > 0

�

with zero gradient boundary conditions at x ¼ �0:5.
The second problem is the Lax problem, the initial condition is

given by:

ðq;u;pÞ ¼
ð0:445;0:698;3:528Þ x 6 0
ð0:5;0;0:571Þ x > 0

�

with zero gradient boundary conditions at x ¼ �0:5.
Fig. 9. Detailed plot of the Shu–Osher problem.

Fig. 10. Integrated kinetic energy versus time for the vortex convection problem.



Fig. 11. Pressure distributions at y = 5 of different schemes at t = 2000.
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The third problem is the Shu–Osher problem. It describes the
interaction of a Mach 3 shock with a density wave. The initial con-
dition is given by:
(a) WENO-Z

(c) Present

Fig. 12. Density contours of the isentropic vortex convection problem at
ðq;u;pÞ ¼
27
7 ;

4
ffiffiffiffi
35
p

9 ; 31
3

� �
x < �4

1þ 1
5 sin 5x;0;1

	 

x P �4

8<
:

Zero gradient boundary conditions are applied at x ¼ �5.
Figs. 6–9 illustrate the density distributions of the numerical

results corresponding to the problems described. The reference
result is given by the CRWENO scheme with N = 2000. For the
two shock tube problems, i.e., the Lax problem and the Sod prob-
lem, all schemes give similar results. The present scheme and the
CRWENO scheme are better than the WENO-Z scheme near shocks.
Due to the simple structures of the shocks, the difference between
the present scheme and the CRWENO scheme is negligible,
although the present method is better than the latter. A more com-
plex problem, the Shu–Osher problem, reveals the difference
between tested schemes. The multi-step method gives the best res-
olution of short waves. Near discontinuities the present method
also shows higher accuracy.

5.3. 2D Euler equations

The two dimensional Euler equations for ideal gas are given by:

Ut þ Fx þ Gy ¼ 0 ð48Þ

where U, F, G vectors are written as:
(b) CRWENO

(d) Initial

t = 2000: ranging from 0.9939 to 1 with 20 equally separated levels.



(a) WENO-Z

(b) CRWENO

(c) Present

(d) Reference

Fig. 13. Density contours of the double Mach reflection problem at t = 0.2: ranging from 20.92 to 1.731 with 30 equally separated levels.
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U ¼

q

qu

qv

e

2
666664

3
777775; F ¼

qu

qu2 þ p

quv

euþ pu

2
666664

3
777775; G ¼

qv

quv

qv2 þ p

ev þ pv

2
666664

3
777775 ð49Þ
In this section two problems are tested with WENO-Z, CRWENO
and the present multi-step method. The first problem is to simu-
late an isentropic vortex moving across the computational domain
periodically. This test was given in [42] and used to test the dissi-
pation of a scheme for a smooth solution of the Euler equations.
The second test is the double Mach reflection problem. Except for
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strong shocks, the solution of the double Mach reflection problem
also contains small structures. Thus it is a good case to test the
small scale resolution of a scheme with discontinuities.

5.3.1. Isentropic vortex convection
This problem is used to test the dissipation of a scheme [42]. An

isentropic vortex moves across the computational domain period-
ically. The computational domain is ½0;10� � ½0;10� with the free
stream specified as q1 ¼ 1; u1 ¼ 0:5; v1 ¼ 0; p1 ¼ 1. The initial
flow condition is given by:

q ¼ 1� ðc� 1Þb2

8cp2 e1�r2

" # 1
c�1

; p ¼ qc ð50Þ

du ¼ � b
2p

e
1�r2

2 ðy� ycÞ ð51Þ

dv ¼ b
2p

e
1�r2

2 ðx� xcÞ ð52Þ
(a) WENO-Z

(c) Present

Fig. 14. Density contours of the double Mach reflec
where r2 ¼ ðx� xcÞ2 þ ðy� ycÞ
2 is the distance from the vortex cen-

ter ðxc; ycÞ ¼ ð5;5Þ and the vortex strength b is 0.5. Periodic bound-
ary conditions are applied to all boundaries. Dissipation is
measured by the integrated kinetic energy as time evolves:
Ek ¼

P
i;j0:5qi;jðu2

i;j þ v2
i;jÞ.

Fig. 10 shows the integrated kinetic energy evolution of differ-
ent schemes, the multi-step method and the CRWENO scheme
are significantly less dissipative than the WENO-Z scheme. This
result can also be observed in Fig. 11, the pressure value at the vor-
tex center of the WENO-Z scheme deviates largely from the initial
value. The minimum pressure of the multi-step method and
CRWENO is almost the same. Therefore, with respect to dissipation,
as shown in 1D linear advection case, the multi-step method does
not introduce additional error for two-dimensional smooth
solution.

However, the vortex shape maintaining capability is important
for long time simulation such as direct numerical simulation and
large eddy simulation. From the density contours for different
schemes at t ¼ 2000 shown in Fig. 12, it can be seen that the vortex
(b) CRWENO

(d) Reference

tion problem in the up-rolling region at t = 0.2.
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shape of the WENO-Z scheme is substantially distorted and the
CRWENO scheme gives a slightly distorted distribution. The mul-
ti-step method gives the CRWENO scheme even better shape main-
taining capability. As the CRWENO scheme and the present scheme
give the same dissipation rate, a better vortex shape maintaining
capability indicates that the present multi-step method is more
suitable for long time complex flow simulation.
5.3.2. Double Mach reflection
The double Mach reflection test is a mimic of the planar shock

reflection in the air from wedges. It is a widely used benchmark
to test the ability of shock capturing and the small scale structure
resolution of a certain scheme. In the present simulation, the com-
putational domain is ½0;4� � ½0;1�. The lower boundary is set to be
reflecting wall starting from x ¼ 1

6. At t ¼ 0, a right-moving 60�
(a) WEN

(b) CRW

(c) Pre

(d) Refe

Fig. 15. Density contours of the shock/mixi
inclined Mach 10 shock is positioned at 1
6 ;0
	 


. The upper boundary
is set to describe the exact motion of the Mach 10 shock. The left
boundary at x ¼ 0 is assigned with post-shock values. An outflow
condition with zero gradients is set at x ¼ 4. Readers may refer
to [43] for detailed description of the double Mach reflection prob-
lem. An uniform grid is used with Dx ¼ Dy ¼ 1

240. The reference
result is given by the CRWENO scheme with Dx ¼ Dy ¼ 1

480.
Fig. 13 shows the density contours at t ¼ 0:2 obtained with dif-

ferent schemes. The shock waves are well captured by each
scheme. Zonal magnifications of the up-rolling region of each
result are shown in Fig. 14. Compared with the reference result
given by the CRWENO scheme, the present multi-step scheme
shows better resolution. The WENO-Z scheme is able to capture a
few small structures near the up-rolling region, but does not
resolve these structures along the contact line due to its low
O-Z

ENO

sent

rence

ng layer interaction problem at t = 120.
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accuracy near shock. The CRWENO scheme also shows an unsatis-
factory accuracy near discontinuities as analyzed in Section 3 but
still captures some vortex-like structures along the contact line.
The present method resolves more small structures along the con-
tact line. This implies that the multi-step method is more accurate
and less dissipative near discontinuities.

5.4. Shock wave impingement on a spatially evolving mixing layer

The shock wave impingement problem is designed to measure
the resolution of schemes when shock waves interact with vortices
[44]. A Mach 0:6 mixing layer evolves and impacts on an oblique
shock. The vortices produced by the mixing layer instability pass,
firstly, through the oblique shock and then a second shock
reflected by the slip wall at the lower boundary. The computational
domain is ½0;200� � ½�20;20�. At x ¼ 0, the inlet condition is spec-
ified as:

u ¼ 2:5þ 0:5 tanhð2yÞ

For the upper stream (y > 0), q ¼ 1:6374; p ¼ 0:3327 and for the
lower stream (y < 0), q ¼ 0:3626; p ¼ 0:3327. The post shock con-
dition is set at the upper boundary, and the slip wall condition is
applied at the lower boundary. Fluctuations are added to the verti-
cal velocity component at the inlet:

v 0 ¼
X2

k¼1

ak cosð2pkt=T þ /kÞ expð�y2=bÞ

b ¼ 10; a1 ¼ a2 ¼ 0:05; /1 ¼ 0; /2 ¼ p=2

in which T ¼ k=uc is the period, k ¼ 30 is the wavelength, uc ¼ 2:68
is the convective velocity. The Prandtl number Pr is set to 0.72 and
the Reynolds number Re is chosen to be 500.

The two dimensional Navier–Stokes equations for ideal gas are
given by:

Ut þ Fx þ Gy ¼
1
Re

Fv
x þ

1
Re

Gv
y ð53Þ

where U; F; G; Fv ; Gv vectors are written as:

U ¼

q
qu

qv
e

2
6664

3
7775; F ¼

qu
qu2 þ p

quv
euþ pu

2
6664

3
7775; G ¼

qv
quv

qv2 þ p

ev þ pv

2
6664

3
7775;

Fv ¼

0
sxx

sxy

usxx þ vsxy þ qx

2
6664

3
7775; Gv ¼

0
syx

syy

usyx þ vsyy þ qy

2
6664

3
7775

ð54Þ

in which

sxx ¼ l 4
3
@u
@x
� 2

3
@v
@y

� �
; syy ¼ l 4

3
@v
@y
� 2

3
@u
@x

� �

sxy ¼ syx ¼ l @u
@y
þ @v
@x

� �

qx ¼ l 1
ðc� 1ÞM2Pr

@T
@x

qy ¼ l 1
ðc� 1ÞM2Pr

@T
@y

ð55Þ

The viscous terms are discretized with the fourth order central dif-
ference scheme [45]. The grid number is 321� 81 and a refined grid
of 1284� 324 is used as reference. The reference case is computed
with the CRWENO scheme.

Fig. 15 shows the density contours of the numerical results of
different schemes. The result of the multi-step CRWENO scheme
resembles the reference result most compared to the other two
schemes. The vortices near the oblique shock and the reflecting
shock are better resolved by the present method. Besides, the
shapes of vortices near the outflow boundary are also well main-
tained by the present multi-step method.

6. Conclusion and discussion

In this paper, we employ a multi-step method to improve a
recently proposed weighted compact scheme, i.e., the CRWENO
scheme. Accuracy analysis of points near discontinuities shows
that the accuracy of the CRWENO scheme is second order. By intro-
ducing the multi-step method, the accuracy at such circumstance
is improved to third order. Numerical tests show that the present
multi-step scheme has lower dissipation and higher resolution in
both smooth and discontinuous regions. For long time simulation
such as direct and large eddy simulation of supersonic turbulent
flow, the present method may provide more accurate results.

It is worth noting that, compared to the original scheme, the
multi-step CRWENO scheme calculates three more weights. This
results in a 50 percent increase in the computation time.
However, for an realistic large scale simulation of supersonic
turbulence, global multi-step weighting is not necessary. To
decrease computational expense, one may employ a switch func-
tion such as those used in hybrid schemes which only turns on
the multi-step method at points near discontinuities. Different
from hybrid schemes, as multi-step and one step weighting
schemes are essentially the same, switching between these two
schemes does not lead to lowered accuracy and poor resolution.
This switch function is fairly easy to realize that only a few addi-
tional lines are needed for an existing multi-step scheme code.

Finally, the multi-step strategy is an efficient method to
improve the accuracy of the CRWENO scheme. It can also be
applied to other weighted compact schemes which have the same
deficiency as the CRWENO scheme. Application of the multi-step
CRWENO scheme in supersonic turbulence simulation will be
presented in future works.
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