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Buckling Behaviors of Staggered
Nanostructure of Biological
Materials
The nanostructure of biological materials is built with hard mineral crystals embedded in
soft protein matrix in a staggered manner. The staggered arrangement of the crystals is
assumed to be critically important for the stability of the nanostructure. But the mecha-
nism is not fully understood. In this paper, a mechanical model, considering the effects of
overlapping ratio between the crystals, i.e., the staggering position, is developed for ana-
lyzing the buckling behaviors of the nanostructure. It is found that the buckling strength
increases with the overlapping ratio k in the range of 0–1/2 and reaches a peak value at
k¼ 1/2 that is generally adopted by nature’s design of the biological materials. The effect
of aspect ratio and volume fraction of mineral crystals are further analyzed at various
overlapping ratios, and the results are in general consistent with previous studies for the
case of k¼ 1/2. In addition, the lower and upper limits of the buckling strength are
obtained. Finally, we show that the contact between mineral tips can significantly
enhance the buckling strength of the nanostructure when the aspect ratio of minerals is
small. [DOI: 10.1115/1.4032116]

Keywords: biological materials, buckling, TSC model, nanostructure, hierarchical
structure

1 Introduction

Natural biological materials, such as bone, teeth, and nacre,
have attracted much attention due to their exceptional mechanical
properties which have provided valuable inspirations to the syn-
thesis of advanced man-made materials [1–3]. The combination of
high strength, hardness, and fracture toughness of the materials
enables animals to support their weight, move, and flight, cut
foods, and protect themselves against the attack outside [4–6].
These superior mechanical properties are attributed to a design of
“brick-and-motar” like nanostructure and its extension to larger
scales through the structural hierarchy [2,7–9] (see Fig. 1). This
nanostructure is composed of hard mineral crystal and soft protein
matrix, and the difference in Young’s modulus between them is
up to 3 order of magnitude [2,4]. In particular, the minerals have
large aspect ratio and embedded in the protein matrix in a stag-
gered arrangement [7,10–13] (Fig. 1(c)). The so-called
tension–shear chain (TSC) model [7], which has been well-
accepted for depicting the nanostructure of biological materials
[2,10,14,15], shows that the mineral crystal bears the tensile/com-
pressive load while the protein matrix transfer the load via shear
with the help of large aspect ratio of the mineral. However,
because of the large aspect ratio of mineral, the nanostructure is
susceptible to buckling when the biological materials are under
compression.

Compared with the hardness, strength, and fracture toughness
[2,6–8,11,14], the buckling behaviors of the nanostructures are
much less explored. Ji et al. [16] analyzed the buckling of a single
mineral crystal within the nanostructure. In that preliminary study,
only a single mineral was allowed to buckle while its neighboring
minerals were kept straight in profile. They found a transition of
buckling strength from an aspect-ratio-dependent manner to a sat-
urating behavior with a lower limit that is independent of the
aspect ratio. Furthermore, Su et al. [17] studied the buckling

behavior of multiple minerals in the nanostructure, considering
the coupling of deformation among adjacent minerals. They
showed that there are two typical buckling modes—one is anti-
symmetric mode which occurs at small aspect ratio, and the other
one is symmetric mode which occurs at relatively large aspect

Fig. 1 Typical biological materials and their nanostructures.
The images of (a) bone tissue, (b) nacre, and (c) schematic illus-
tration of the nanostructure consisting of hard mineral crystals
embedded in soft protein matrix in a staggered manner.
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ratio; for very large aspect ratio, the buckling strength of both
symmetric and antisymmetric modes approached to that of
continuous-fiber reinforced composite given by the Rosen model
[18,19]. They also showed that the structural hierarchy enhances
the buckling strength of biological materials. In addition, they dis-
cussed the relationship between local buckling and global buck-
ling which is dependent on the aspect ratio [17].

Despite the advances in understanding the buckling behaviors
of the nanostructure made in previous studies, two problems
remain unsolved: (1) What is the effect of the staggering position
of mineral on the buckling strength? In previous studies, the min-
eral crystals were assumed in a special staggering with a half
overlapping length. (2) How will the contact between mineral tips
influence the buckling behaviors? Previously, the possible contact
between the adjacent tips of mineral crystals in the longitudinal
direction was ignored. However, in practical applications, they
may contact with each other when the nanostructure is subjected
to compressive load. In this study, we will address these two prob-
lems by developing a new theoretical model. The results of this
work should advance our knowledge of the buckling behaviors of
biological materials and provide guidelines for the design of
advanced biomimetic nanocomposites.

2 The Mechanical Model

Figure 2(a) shows the nanostructure of biological materials,
where the mineral crystals with large aspect ratio are embedded in
the protein matrix in a staggered manner. A pressure is applied
from the left of the material as the far field load. A representative

volume element (RVE) was extracted, which has a length of 2L
and a height of 2ðHm þ HpÞ, where L is the length of the mineral
crystal, and Hm and Hp are the thicknesses of mineral crystal and
protein matrix, respectively. Because the RVE is much smaller
than the entire nanostructured material, a periodic boundary con-
dition without shear deformation was applied in our buckling
analysis, by which the four boundaries of the RVE kept straight
before and after the buckling of the minerals (Fig. 2(b)).

The mineral crystals were modeled as slender beams, while the
protein matrix was modeled as two-dimensional elastic medium.
In previous studies [16,17], the tips between the neighboring min-
erals were assumed to be free of contact; therefore, the effect of
possible contact on the buckling behaviors was neglected. Here,
we allowed the tips to contact with each other when the nanostruc-
ture is subjected to compressive load. And the contact at the tip
zone is modeled as pinned joint in the buckling analysis.

To consider the effect of the overlapping length between min-
eral crystals, a normalized overlapping length is defined by the ra-
tio k ¼ Ls=L, called overlapping ratio (staggering position), where
the overlapping length Ls changes from 0 to L, as shown in
Fig. 2(a). k ¼ 0; 1 indicate the extreme conditions that the min-
eral crystals are perfectly aligned, while k ¼ 1=2 indicates the
half overlapping, as shown in Fig. 2(c).

To deal with the staggered alignment of the minerals, the RVE
is artificially divided into four parts along the Z direction, i.e., I,
II, III, and IV. And along the Y direction, there are three layers of
minerals, which are denoted by A0iB

0
i, C0iD

0
i, and G0iH

0
i (i¼ I, II, III,

IV, see Fig. 2(b)), respectively, where G0iH
0
i is the periodic coun-

terpart of A0iB
0
i of the next periodic RVE; therefore, the

Fig. 2 The model of nanostructure of biological materials under compression. (a) Illus-
tration of the nanostructure where the mineral crystals staggered in the protein matrix
with an overlapping length Ls. An RVE is line out by a dashed rectangle, (b) partition of
the RVE into four parts, denoted by I, II, III, and IV, and (c) two special cases of the stag-
gered arrangement: k 5 0; 1 and k 5 1=2.
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deformation and stress resultants of G0iH
0
i are identical to those of

A0iB
0
i. In this regard, we only need to analyze the first two layers,

i.e., A0iB
0
i and C0iD

0
i. Because of the imaginary cut, there are three

joints for each mineral layer, i.e., B0I � A0II, B0II � A0III, and
B0III � A0IV, in the first layer, where B0I � A0II and B0III � A0IV are the
rigid joints, while B0II � A0III is the pinned joint; similarly;
D0I � C0II, D0II � C0III, and D0III � C0IV are in the second layer, where
D0I � C0II and D0III � C0IV are the pinned joints, while D0II � C0III is
the rigid joint. The symbols without (‘), such as Ai, Bi, Ci, and Di

are used to denote the protein matrix. For example, AIBICIDI

denotes the matrix between the mineral parts A0IB
0
I and C0ID

0
I

(Fig. 2(b)).

3 Static Analysis of the Nanostructures

We first did the static analysis of the nanostructure before the
buckling analysis. Z indicates the horizontal direction and Y indi-
cates the vertical direction, as shown in Fig. 2(a). Because the size
of the tip zone is very small, the neighboring minerals in the Z
direction would contact with each other once the pressure load is
applied on the nanostructure (Fig. 2(a)). In this case, the axial
force in mineral crystals is uniform as

t3

o
¼ Pc (1)

Here, the subscript “o” denotes the value before buckling, and the
subscript “3” denotes the Z direction. Similarly, subscripts “1”
and “2” denote X and Y directions, respectively. The shear defor-
mation in protein matrix is zero because the axial force in mineral
crystals is uniform.

We assume that the tips between the minerals will be in contact
under compressive load. In this situation, the compressive prop-
erty of the nanostructure is different from its tensile property.
Because the protein is much softer than mineral crystals, the effec-
tive compressive modulus of the nanostructure is given by Ec ¼
EmVm according to the rule of mixture, where Em and Vm ¼
Hm=ðHm þ HpÞ are the Young’s modulus and the volume fraction
of the mineral crystals, respectively. Let �Ec ¼ Ec=Ep be the nor-
malized compressive modulus of the nanostructure, where Ep is
the Young’s modulus of protein matrix. Then, we have

�Ec ¼ kVm (2)

where k ¼ Em=Ep denotes the ratio of the Young’s moduli of min-
eral crystals and the protein matrix. Under the tensile load, the
tips between the minerals were separated. In this case, the TSC
model gives the normalized tensile modulus as [10]

�Et ¼
kq2V2

m

8k 1þ tpð Þ 1� Vmð Þ þ q2Vm
(3)

where q ¼ L=Hm. For q!1, �Et asymptotically approaches to
�Ec. Figure 3 gives the comparison of normalized tensile and com-
pressive moduli of the nanostructure. Note that the compressive
modulus is proportional to the volume fraction Vm, independent of
the aspect ratio q. And, it is the upper bound of the tensile
modulus.

4 Buckling Analysis of the Nanostructures

For the convenience of analysis, the RVE of the nanostructure
is divided into four parts as depicted in Fig. 2(b). These four parts
share the same global coordinate Y and Z, where the origin of the
coordinate is C0I. For simplification, in the derivation of the gov-
erning equations, the subscripts I; II; III; and IV were omitted.
They are applicable to all the four parts. But the boundary condi-
tions are different for these four parts.

4.1 Displacements, Strain, and Stress. Let the incremental
displacements of mineral crystals in the Y direction due to buck-
ling be

uA0B0
2 ðZÞ ¼ v1ðZÞ þ C1

uC0D0
2 ðZÞ ¼ v2ðZÞ

uG0H0

2 ðZÞ ¼ v1ðZÞ þ C2

8>>>>>><
>>>>>>:

(4)

where C1 and C2 are the constant, representing the incremental
displacements of the top and bottom minerals at A0I and G0I in the
Y direction, respectively, and v1ðZÞ and v2ðZÞ are the function for
the pure bending deformation. Similarly, let the incremental dis-
placements in the Z direction be

Fig. 3 The normalized tensile and compressive modulus of the
nanostructure. The normalized moduli versus aspect ratio for
(a) bone (Vm 5 45%), (b) nacre (Vm 5 95%), and (c) the normal-
ized moduli versus the volume fraction of mineral crystals.
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uA0B0
3 ðZÞ ¼ w1ðZÞ þ D1

uC0D0
3 ðZÞ ¼ w2ðZÞ

uG0H0

3 ðZÞ ¼ w1ðZÞ þ D2

8>>>><
>>>>:

(5)

where D1 and D2 are the constant, representing the incremental
displacements of the top and bottom minerals at A0I and G0I in the
Z direction, respectively, and w1ðZÞ and w2ðZÞ represent the axial
compression/tension deformation.

Now, we derive the displacement of protein matrix. According
to the continuity condition at the mineral–protein interface, the

incremental displacements for the protein in the Y direction at the
interfaces are

uAB
2 ðZÞ ¼ v1ðZÞ þ C1

uCD
2 ðZÞ ¼ v2ðZÞ

uEF
2 ðZÞ ¼ v2ðZÞ

uGH
2 ðZÞ ¼ v1ðZÞ þ C2

8>>>>><
>>>>>:

(6)

In the Z direction, the displacement of the mineral–protein inter-
face is yielded by both the bending and the tensile/compressive of
the minerals, which is given by

uAB
3 Zð Þ ¼ uA0B0

3 Zð Þ þHm

2

d

dZ
uA0B0

2 Zð Þ ¼ w1 Zð Þ þHm

2
v01 Zð Þ þD1

uCD
3 Zð Þ ¼ uC0D0

3 Zð Þ �Hm

2

d

dZ
uC0D0

2 Zð Þ ¼ w2 Zð Þ �Hm

2
v02 Zð Þ

uEF
3 Zð Þ ¼ uC0D0

3 Zð Þ þHm

2

d

dZ
uC0D0

2 Zð Þ ¼ w2 Zð Þ þHm

2
v02 Zð Þ

uGH
3 Zð Þ ¼ uG0H0

3 Zð Þ �Hm

2

d

dZ
uG0H0

2 Zð Þ ¼ w1 Zð Þ �Hm

2
v01 Zð Þ þD2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

Here ðÞ0 ¼ dðÞ=dZ.
Then, the shear stress in protein matrix can be derived by substituting the geometry relation c ¼ ð@u3=@Y þ @u2=@ZÞ into s ¼ Gpc as

s ¼ Gp
@u3

@Y
þ @u2

@Z

� �
(8)

where Gp ¼ Ep=½2ð1þ �pÞ�, and Ep and �p are the Young’s modulus and Poisson’s ratio of protein matrix, respectively. We assume that
the shear stress in protein matrix is constant along the Y direction as the ratio of thickness to the length of protein layer is small. By the
means of average, the shear stress in protein layer can be calculated as

sAD Zð Þ ¼ Gp
1

2

d

dZ
uAB

2 Zð Þ þ d

dZ
uCD

2 Zð Þ
� �

þ 1

Hp
uAB

3 Zð Þ � uCD
3 Zð Þ

� �" #

sEH Zð Þ ¼ Gp
1

2

d

dZ
uEF

2 Zð Þ þ d

dZ
uGH

2 Zð Þ
� �

þ 1

Hp
uEF

3 Zð Þ � uGH
3 Zð Þ

� �" #

8>>>>>><
>>>>>>:

(9)

where AD and EH denote protein matrix ABCD and EFGH (the superscripts I, II, III, and IV are omitted, see Fig. 2(a)), respectively.
According to the equilibrium equation (Fig. 4(a))

@rY

@Y
þ @s
@Z
¼ 0 (10)

the normal stress rY along the Y direction is a linear function of Y, but with a constant to be determined. Hence, the normal stress rY in
protein matrix is obtained as

rAD
Y Zð Þ ¼ GpY1

1

2

d2

dZ2
uAB

2 Zð Þ þ d2

dZ2
uCD

2 Zð Þ
� �

þ 1

Hp

d

dZ
uAB

3 Zð Þ � d

dZ
uCD

3 Zð Þ
� �" #

þ Ep

1� �p
2

uAB
2 Zð Þ � uCD

2 Zð Þ
Hp

rEH
Y Zð Þ ¼ GpY2

1

2

d2

dZ2
uEF

2 Zð Þ þ d2

dZ2
uGH

2 Zð Þ
� �

þ 1

Hp

d

dZ
uEF

3 Zð Þ � d

dZ
uGH

3 Zð Þ
� �" #

þ Ep

1� �p
2

uEF
2 Zð Þ � uGH

2 Zð Þ
Hp

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(11)
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where Y1 and Y2 start from the center of protein matrix ABCD and
EFGH, respectively, as depicted in Fig. 2(b). With Y1 ¼ 6Hp=2
and Y2 ¼ 6Hp=2, the stress at the interface AB, CD, EF, and GH
can be obtained, respectively. And, we have rY ¼ ½Ep=ð1�
�p

2Þ�½uAB
2 ðZÞ � uCD

2 ðZÞ�=Hp at the horizontal center line of protein
matrix ABCD, and similar result is applied to protein EFGH.

4.2 Governing Equations of Minerals. According to the
illustration in Fig. 4(b), the equilibrium equation for the mineral
modeled by a plane beam is given by

d2m1

dZ2
þ dq1

dZ
þ t

o

3

d2u2

dZ2
þ dt

o

3

dZ

du2

dZ
þ p2 ¼ 0 (12)

where m1 is the bending moment; q1 and p2 are the distributed
moment and force, respectively; and t

o

3 is the axial force before
buckling. According to Eq. (1), t

o

3 ¼ Pc is a constant. For the min-
eral crystal A0B0

m1 Zð Þ ¼ �EmH3
m

12
v001 Zð Þ

q1 Zð Þ ¼ Hm

2
sEH Zð Þ þ sAD Zð Þ
� �

p2 Zð Þ ¼ rEH
Y Zð Þ

����
Y2¼�HP=2

� rAD
Y Zð Þ

����
Y1¼HP=2

(13)

Similarly, for the mineral crystal C0D0

m1 Zð Þ ¼ �EmH3
m

12
v002 Zð Þ

q1 Zð Þ ¼ Hm

2
sAD Zð Þ þ sEH Zð Þ
� �

p2 Zð Þ ¼ rAD
Y Zð Þ

����
Y2¼�HP=2

� rEH
Y Zð Þ

����
Y1¼HP=2

(14)

Substituting Eqs. (13) and (14) into Eq. (12), together with
Eqs. (4)–(7), (9), and (11), the governing equation of minerals
A0B0 and C0D0 are obtained, respectively, as

�EmH3
m

12
v 4ð Þ

1 Zð ÞþGp HmþHpð Þ2

2Hp
v001 Zð Þþ v002 Zð Þ
� �

þPcv001 Zð Þ

þ 2Ep

Hp 1��p
2

� � v2 Zð Þ�v1 Zð Þ�C1þC2

2

� 	
¼ 0




�EmH3
m

12
v 4ð Þ

2 Zð ÞþGpHm HmþHpð Þ
2Hp

v001 Zð Þþv002 Zð Þ
� �

þPcv002 Zð Þþ 2Ep

Hp 1��p
2

� �
� v1 Zð Þ� v2 Zð ÞþC1þC2

2

� 	
¼ 0 (15)




Note that the incremental displacements along the Z direction do
not appear in the governing equations because they are of smaller
order of magnitude compared with the displacement in the Y
direction [20].

To simplify the governing equation, we define

f ðnÞ ¼ v1ðZÞ þ v2ðZÞ
gðnÞ ¼ v1ðZÞ � v2ðZÞ þ ðC1 þ C2Þ=2

(
(16)

where n ¼ Z=L denotes the normalized coordinate of Z. Thus,
Eq. (15) becomes

f ð4ÞðnÞ þ a2f 00ðnÞ ¼ 0

gð4ÞðnÞ þ 2e1g00ðnÞ þ e2
2gðnÞ ¼ 0

(
(17)

Here, ðÞð4Þ ¼ d4ðÞ=dn4 and ðÞ00 ¼ d2ðÞ=dn2, and

a2 ¼ 12q2

k

�rc

Vm
� 1

2Vm 1� Vmð Þ 1þ �pð Þ

� �
; e1 ¼

6q2

k

�rc

Vm
;

e2
2 ¼

48q4

k

Vm

1� Vmð Þ 1� �p
2

� � (18)

are dimensionless parameters, and

�rc ¼
�Pc

Ep Hm þ Hpð Þ
(19)

is the normalized critical buckling stress.
Solving the governing equation (17), we have the general solu-

tions as
for

e1 < e2;

f ðnÞ ¼ G5 sinðanÞ þG6 cosðanÞ þG7nþG8

gðnÞ ¼ G1coshðb1nÞcosðb2nÞ þG2sinhðb1nÞcosðb2nÞ

þG3coshðb1nÞsinðb2nÞ þG4sinhðb1nÞsinðb2nÞ

8>>>><
>>>>:

(20a)

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2 � e1Þ=2

p
and b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2 þ e1Þ=2

p
.

and for

e1 > e2;

f ðnÞ ¼ G5 sinðanÞ þ G6 cosðanÞ þ G7nþ G8

gðnÞ ¼ G1 cosðb1nÞ þ G2 sinðb1nÞ þ G3 cosðb2nÞ

þG4 sinðb2nÞ

8>>>>><
>>>>>:

(20b)

Fig. 4 Free-body diagrams of elements of (a) protein matrix
and (b) mineral crystal
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where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

1 � e2
2

pq
and b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

1 � e2
2

pq
. Substi-

tution of Eqs. (20a) and (20b) into Eq. (16) gives the incremental
displacements as

v1 nð Þ ¼ f nð Þ þ g nð Þ
2

� C1 þ C2

4

v2 nð Þ ¼ f nð Þ � g nð Þ
2

þ C1 þ C2

4

8>><
>>: (21)

Substituting Eq. (21) into Eq. (4), we obtained the displacements
of mineral crystals. The constants in the solution can be deter-
mined by the continuity and boundary conditions. As there are
four parts in the RVE, we have 8� 4¼ 32 constants according to
Eq. (20). In addition to constants C1 and C2 in Eq. (21), we have
34 constants that to be determined.

4.3 Continuity Conditions and Boundary Conditions. The
continuity conditions should be applied at the interfaces of two
neighboring parts. We define I–II as the interface between parts I
and II, and similarly II–III and III–IV the interfaces of parts II and
III and parts III and IV, respectively. For example, there are two
joints at the I–II interface, B0IA

0
II and D0IC

0
II (Fig. 2(b)). B0IA

0
II is

rigid joint, i.e., the displacement u2, angle h, moment m1, and
shear force Q all should be continuous; But D0IC

0
II is pinned joint,

therefore the continuity of rotation angle does not hold, instead
the condition of zero moment should be applied. Therefore, the
continuity conditions at the I–II interface are written as

u
B0I
2 ¼ u

A0II
2 ; hB0I ¼ hA0II ; m

B0I
1 ¼ m

A0II
1 ; QB0I ¼ QA0II ; u

D0I
2 ¼ u

C0II
2 ;

m
D0I
1 ¼ 0; m

C0II
1 ¼ 0; QD0I ¼ QC0II (22a)

Similarly, the continuity conditions for the II–III and III–IV inter-
faces are

u
B0II
2 ¼ u

A0III
2 ; m

B0II
1 ¼ 0; m

A0III
1 ¼ 0; QB0II ¼ QA0III ; u

D0II
2 ¼ u

C0III
2 ;

hD0
II ¼ hC0

III ; m
D0II
1 ¼ m

C0III
1 ; QD0II ¼ QC0III (22b)

u
B0III
2 ¼ u

A0IV
2 ; hB0III ¼ hA0IV ; m

B0III
1 ¼ m

A0IV
1 ; QB0III ¼ QA0IV ;

u
D0III
2 ¼ u

C0III
2 ; m

D0III
1 ¼ 0; m

C0III
1 ¼ 0; QD0III ¼ QC0III (22c)

Then, we have 8� 3¼ 24 continuity conditions at the interfaces.
Here, h ¼ du2=dZ, and the expression of shear forces Q is given
in the Appendix.

Regarding the boundary conditions, the constraint of rigid-body
motion and the periodic conditions should be applied. To con-
strain the rigid-body motion of the RVE in the Y direction, we
fixed the displacement of C0I, i.e., u

C0I
2 ¼ 0, and let v1ðZÞ ¼ 0 at A0I.

These constraint conditions are expressed as

u
C0I
2 ¼ u

C0ID1

2 ð0Þ ¼ 0 ; uAI

2 ¼ uAIB1

2 ð0Þ ¼ C1 (23a)

On the other hand, the periodic condition requires the continu-
ity of displacement, angle, and moment at the periodic boundary
as

uA0I
2 ¼ uB0IV

2 ; mA0I
1 ¼ 0; mA0I

1 ¼ mB0IV
1 ; u

C0I
2 ¼ uD0IV

2 ;

hC0I ¼ hD0IV ; m
C0I
1 ¼ mD0IV

1

(23b)

In addition, the entire nanostructure is force free in the Y direc-
tion; therefore, the integral of stress rY on any horizontal section
of the RVE should be zero. For simplification, we apply this con-
dition to the upper and bottom boundary of protein matrix ABCD
and EFGH as

ð
X

rAIBIV

Y ðZÞdZ ¼
ð

X

rCIDIV

Y ðZÞdZ ¼
ð

X

rEIFIV

Y ðZÞdZ

¼
ð

X

rGIHIV

Y ðZÞdZ ¼ 0 (24)

which yields two conditions as

C1 ¼ C2;

ðk

0

g
I
ðnÞdnþ

ð1

k
g

II
ðnÞdnþ

ð1þk

1

gIIIðnÞdn

þ
ð2

1þk
gIVðnÞdn ¼ 0 (25)

Here, g
i
ðnÞ (i ¼ I; II; III; IV) is the solution of Eq. (17)2.

Taken together, we now have 8� 4þ 2¼ 34 conditions/equa-
tions, of which the number is exactly equal to that of the constants
to be determined.

4.4 Solution of Buckling Strength. With Eqs. (22), (23), and
(25), we obtained a system of homogeneous linear equations

MU ¼ 0 (26)

from which the buckling strength of the nanostructure, �rc, can be
determined. Here, U is a vector consisting of all the unknown con-
stants, including constants C1 and C2 in Eq. (16) and constants Gi

(i¼ 1–8) in Eq. (20) of four parts (I, II, III, and IV); and M is the
corresponding coefficient matrix of dimension of 34� 34. The
condition of nontrivial solution of U requires the determinant of
M to be zero, i.e.,

detðMÞ ¼ 0 (27)

Solving Eq. (27) gives the solution of the normalized critical
buckling stress �rc. Shooting method is used to solve the equation.

5 Results and Discussion

The aim of this study is to examine the effect of staggering of
minerals and the contact between mineral tips on the buckling
strength of nanostructure. Figure 5 shows the normalized buckling
strength, i.e., normalized critical buckling stress, as a function of
overlapping ratio (staggering position) for volume fraction Vm ¼
45% and aspect ratio q ¼ 10. As we can see, the buckling strength
increases with the overlapping ratio k in the range of k 2 ½0; 1=2�,
while it decreases in the range of k 2 ½1=2; 1�, i.e., the plot is sym-
metric with respect to k ¼ ð1=2Þ. To understand the dependence
of the buckling strength on k, we examined the changing of the

Fig. 5 The effect of overlapping ratio k on the normalized
buckling strength of the nanostructure �rc in the case of
Vm 5 45% and q 5 10
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buckling mode with k. For k ¼ 0, the mineral performed a rigid-
body rotation without bending as depicted in Fig. 6, and the pro-
tein matrix had a shear-dominated deformation. The minerals are
able to rotate easily via the pinned joints because of no overlap-
ping between neighboring minerals. The buckling strength at this
special alignment defines the lower limit of the strength of all
buckling modes at different overlapping ratios (see Figs. 5 and 7),
which is given by [17]

�rL
c ¼

1

2 1� Vmð Þ 1þ �pð Þ
(28)

Note that it is independent of the aspect ratio. With the increase of
k, the rotation of minerals was more and more constrained by their
neighboring minerals. Thus, the bending of minerals and tension
of protein along the Y direction played more important roles.
When the overlapping ratio was increased to k ¼ 1=2, the buck-
ling strength reached its maximum value (Fig. 5), indicating that
the staggered arrangement is of critical importance for enhancing
the buckling strength of the nanostructure. In fact, k ¼ 1=2 is usu-
ally adopted by nature in the design of nanostructures of biologi-
cal materials.

We also found that the aspect ratio takes critical role in the
buckling strength of the nanostructure. Figure 7 illustrates the
effect of aspect ratio on buckling strength at different overlapping
ratios k for two typical volume fraction of mineral, i.e., Vm ¼
45% for bone and Vm ¼ 95% for nacre. For small aspect ratio, the
buckling strength was small because the displacement of mineral
mainly comes from rotation without bending, and the resistance to
the rotation mainly originates from the shear deformation of pro-
tein matrix, as shown in Fig. 6. With the increase of the aspect ra-
tio, the buckling displacement involves more bending of the
mineral as well as tension of protein matrix. But when the aspect
ratio becomes larger than a critical value, the buckling strength
reaches a peak value, and further increase of the aspect ratio indu-
ces the decreases of buckling strength due to the reduction of both
bending of mineral and tension deformation in protein.

It is interesting to compare the buckling behaviors of the stag-
gered nanostructure with that of the continuous-fiber reinforced
composite. Imagining each two neighboring mineral crystals of
the staggered nanostructure in the Z direction were welded to-
gether at the tip zone, the “imperfect” structure will then become
ideal continuous structure. Its buckling strength is given by the
Rosen model [19]

�rU
c ¼

1

2 1� Vmð Þ 1þ �pð Þ
þ p2kVm

3q2
(29)

which sets the upper limit of buckling strength of staggered nano-
structure of biological materials, as depicted in Fig. 7. When the
aspect ratio became very large, the upper limit reduced down to
the lower limit. Therefore, all the curves with different overlap-
ping ratios k collapsed onto the upper/lower limits at extremely
large aspect ratio.

The volume fraction of mineral also had significant effect on
the buckling strength, which depends on the aspect ratio and over-
lapping ratio, as depicted in Fig. 8. The buckling strength
increased with the volume fraction of mineral for different aspect
ratios and overlapping ratios. When the aspect ratio was small
(q ¼ 5), the effect of volume fraction was significant, in particular
at large overlapping ratio. When the aspect ratio became larger
(q ¼ 10; 20), the effect of volume fraction was less significant as
the rate of increase of the strength with the volume fraction
became smaller. In addition, the buckling strength increased
slowly when the volume fraction was small, but it increased faster
abruptly when the volume fraction was large, in particular when
Vm > 90%. This might be the reason that hard biological materials
often have very large volume fraction of mineral, such as sea
shells.

Of note, in our previous work [17] the possible contact between
the tips of adjacent mineral crystals was ignored. And, the buck-
ling behaviors of the nanostructure were analyzed based on an
RVE of a half length (i.e., A0IB

0
IIG
0
IH
0
II) of the present model

(A0IB
0
IVG0IH

0
IV), as shown in Fig. 2(b). In addition, the mineral

crystals were assumed in a staggering with a half overlapping
length (k ¼ 1=2). In order to examine the effect of contact, here
we make a comparison between the predictions of these two mod-
els. As in Ref. [17], we also adopt A0IB

0
IIG
0
IH
0
II as the RVE with

Fig. 7 The effect of overlapping ratio k and aspect ratio q on
the buckling strength �rc for (a) bone (Vm 5 45%) and (b) nacre
(Vm 5 95%)

Fig. 6 The predicted buckling modes of the nanostructure
changing with the aspect ratio and overlapping ratio
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k ¼ 1=2. The difference is that the tips of adjacent mineral are
connected via pinned joints in this study, while they were free in
Ref. [17]. As we can see from Figs. 9 and 10, for the symmetric
buckling, the predictions of the buckling strength and modes by
the two models were similar. However, for the antisymmetric
buckling, the predictions of the two models were different, in par-
ticular at small aspect ratio. The strength of the tip-pinned model
of the present study was significantly larger than that of the tip-
free model in the previous study. And their difference in buckling
strength decreased with the increase of aspect ratio. This result
can be understood from their difference in the buckling modes

(Fig. 10). The contact (modeled by pinned joint) restrained the
rigid-body rotation of mineral, which shows that the contact
between mineral tips may have significant effect on the buckling
strength of nanostructure at small aspect ratio. Of note is that the

Fig. 8 The effect of volume fraction of mineral crystals on the
buckling strength for (a) q 5 5, (b) q 5 10, and (c) q 5 20

Fig. 9 The buckling strength predicted by the present study
with tip-pinned model in comparison with that of previous
study with tip-free model at various aspect ratios and volume
fraction: (a) Vm 5 45% for bone and (b) Vm 5 95% for nacre

Fig. 10 The buckling modes predicted by the present study
with tip-pinned model and in comparison with that of previous
study with tip-free model at various aspect ratios
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actual interaction between the mineral tips should be between two
extremities—a tip-pinned like in this study and tip-free like in pre-
vious works. Therefore, the actual buckling strength of biological
materials should also be between the strength of the two
extremities.

6 Conclusions

In this paper, a mechanical model, considering the overlapping
ratio between mineral crystals and their contact at the tips, is pro-
posed for studying the buckling behaviors of staggered nanostruc-
ture of biological materials. The effects of overlapping ratio,
aspect ratio, and volume fraction of mineral crystals on the buck-
ling mode and strength were analyzed systematically. Our main
findings are summarized as follows:

(1) The overlapping ratio takes crucial roles in the buckling
strength of the nanostructure of biological materials. The
buckling strength increases with the overlap ratio in the
range of k 2 ½0; 1=2�, and it reaches a peak value at
k ¼ 1=2. The mechanism is that the staggered arrangement
with large overlapping ratio is able to enhance the buckling
strength by restraining the rotation and bending of mineral
crystals.

(2) The effect of overlapping ratio on the buckling strength
depends on the aspect ratio and volume fraction of miner-
als. This effect is more significant at the small aspect ratio
and large volume fraction.

(3) The contact between mineral tips may have significant
effect on the buckling strength and buckling modes at small
aspect ratio of minerals.
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Appendix: Derivation of the Shear Force on the Cross

Section of Mineral

According to the illustration in Fig. 4(b), the equilibrium equa-
tion of bending of mineral crystal is derived as

dm1

dZ
� t2 þ q1 þ t

o

3

du2 Zð Þ
dZ

¼ 0 (A1)

where t2 is the shear force of the mineral. Substituting Eqs. (13)
and (14) into Eq. (A1), with considering t

o

3 ¼ Pc is a constant and
Eqs. (4)–(7), (9), and (11) in the text, yields the shear force of the
mineral crystals A0B0 and C0D0, respectively,

t2
A0B0 ¼ �EmH3

m

12
v0001 Zð Þ þ GpHm Hm þ Hpð Þ

2Hp
v01 Zð Þ þ v02 Zð Þ
� �

þ Pcv01 Zð Þ

t2
C0D0 ¼ �EmH3

m

12
v0002 Zð Þ þ GpHm Hm þ Hpð Þ

2Hp
v01 Zð Þ þ v02 Zð Þ
� �

þ Pcv02 Zð Þ (A2)

To consider the shear stress in protein matrix in the continuity
conditions, such as at the cross section AC, BD, CG, and FH of
matrix, the shear stress in matrix is “attached” to the shear force
of the mineral crystals as

QA0 ¼ tA
0

2 þ
1

2
QAICI þ QEIGI

� �
¼ EmH3

m

12L3

� �v0001 nð Þ þ 1

2
h1f1
0 nð Þ þ 1

2
h2g01 nð Þ


 	����
n¼0

QB0 ¼ tB
0

2 þ
1

2
QBIDI þ QFIHI

� �
¼ EmH3

m

12L3

� �v0001 nð Þ þ 1

2
h1f1
0 nð Þ þ 1

2
h2g01 nð Þ


 	����
n¼k

QC0 ¼ tC
0

2 þ
1

2
QAICI þ QEIGI

� �
¼ EmH3

m

12L3

� �v0002 nð Þ þ 1

2
h1f1
0 nð Þ � 1

2
h2g01 nð Þ


 	����
n¼0

QD0 ¼ tD
0

2 þ
1

2
QBIDI þ QFIHI

� �
¼ EmH3

m

12L3

� �v0002 nð Þ þ 1

2
h1f1
0 nð Þ � 1

2
h2g01 nð Þ


 	����
n¼k

(A3)

where h1 ¼ ð12q2=kÞf1=½2Vmð1� VmÞð1þ vpÞ� � �rc=Vmg;
h2 ¼ �12q2�rc=ðkVmÞ; and QAICI , QBIDI , QEIGI , and QFIHI are the
shear force of matrix, i.e., the integral of the shear stress on the
boundary AICI, BIDI, EIGI, and FIHI, respectively.
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