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A stochastic lattice gas automata model for formation of river networks is proposed. The model is based on
two-dimensional lattice gas automata with three fundamental principles at each node. The water source is
regarded as a fixed point where a drop of water drips every time step. This system can be treated as a memory
network: the probability of water moving along a direction relies on the history of the channel segment along
which water drops have moved. Last, we find that the width of the river channel and the number of channels
with this width meet a scaling law when the system reaches a critical status.
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I. INTRODUCTION

Since 1986, lattice gas automata have generated wide in-
terest in modeling many different physical processes de-
scribed generally by partial differential equations. They are
also a powerful tool for modeling new physical phenomena
which are not yet easily described by macroscopic equations
�1,2�. A lattice gas system consisting of “particles” moving
on a lattice satisfies certain symmetry requirements. Updat-
ing of the system is realized by designing microscopic rules
for the moving and scattering of particles. Three important
advantages of lattice gas automata are introduced: �i� All
particle interactions are local. This method provides a way to
utilize concurrent architectures. �ii� Because lattice gas au-
tomata operate with only integers and Boolean algebra, they
require less computer storage so that the spatial and time
resolution can be much higher than with other methods. �iii�
This method may provide new insight into understanding the
relationship between the microscopic mechanisms and the
macroscopic behaviors for some complex physical systems.
The lattice gas theory has been successful in modeling fluids
and other systems.

In this paper, the lattice gas automata theory will be used
to model the formation of river networks. As is known to all,
river networks are among nature’s most common fractal pat-
terns �3�. Other examples of fractal structures are actual trees
in gardens, plants, and cardiovascular systems in the human
body, etc. Fractal structures generally satisfy some power
laws or scaling laws as stated in Ref. �3�. Phenomenological
scaling laws provide guidelines for the research of fractals of
river networks. Any proposed model for river networks
ought to be tested against these laws �4,5�.

The fractal properties of river networks are demonstrated
usually by some models with water erosion. In such models,
drainage basins of rivers evolve into fractal forms under the
effect of erosional processes �6�. By modeling the process of
water erosion, stationary river patterns can be obtained after
evolution from randomly perturbed surfaces �7,8�. Even
though the erosion rules are local, global optimization river

networks can be formed and the landscape will settle into the
steady state �9�. Due to the important role of the erosion
process, many models for the formation of river networks
and evolution of the fluvial landscape include water erosion,
both continuum models with a dynamical equation �10–13�,
and lattice models with randomness �14,15�, although the
erosion process plays a role only at the initial stage in the
quasirandom spanning tree model �14�.

Other factors like vegetation, soil cover, rainfall, etc., may
have an influence on the morphologies of river networks. So
models considering precipitation and avalanching are pro-
posed �12,16,17� for formation of river networks. For the
evolution of the fluvial landscape, quenched randomly
pinned regions play a key role in the robust emergence of
aggregation patterns with a scaling behavior in agreement
with that of real river basins �15,18�. Moreover, the mor-
phologies on various landscapes are studied by a slope-slope
correlation function in Ref. �19�.

Additionally, the dynamics of river system is sometimes
considered as a good example of a self-organizing complex
system �20�. Especially, Scheidegger proposed a lattice
model of rivers which is defined on a slope where water on a
site flows randomly to either the left or right down site. The
model shows critical behavior automatically like the self-
organized criticality �SOC� model. When a dynamic renor-
malization group is used in studying the transport in driven
diffusive systems, the self-organized criticality result can be
obtained, which is in agreement with the scaling exponents
measured in natural river networks �21�.

Furthermore, optimal channel networks �OCNs� are used
to investigate the topological properties of the network itself.
They are fractal structures obtained by minimizing an energy
functional associated with spanning trees. Such structures are
the optimal configurations formed by the erosional process
taking place on a landscape. By OCNs, fractal river networks
are like the river in nature and even the multifractal proper-
ties of river networks can be obtained �22�. The OCN and
SOC appear similar to each other; the relations between
OCNs and SOC are discussed by Rinaldo et al. in Ref. �23�
as the former under generic conditions and the latter on fine-
tuning. Minimal energy dissipation models �24,25� are also
proposed to study the geometry of river basins.*Corresponding author: yangw@email.jlu.edu.cn
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From the studies stated above, we have a general idea of
the river network formation, evolution, and its morphologies
of landscape or geometry. The fractal structures of river net-
works are often reproduced by some erosion rules, both con-
tinuum and lattice models. In such models, a few assump-
tions are presented to establish a lattice model for large-scale
features �10� or abstract the scaling properties through simple
model �5�.

In this paper, however, we present a lattice gas automata
model for the formation of river networks. Instead of OCNs,
our model, which is based on a few principles, is to trace the
moving procedure of a drop of water along the river chan-
nels, but not consider the dissipation of energy. The model
has a water source as a fixed point where a drop of water
drips every time step. Namely, precipitation is only consid-
ered at the source; and vaporization is subtle while drops are
in the channels. A process similar to erosion is used to obtain
the fractal structure of river networks. Thus the principles we
hold in the lattice model can be stated as follows: �i� Each
drop of water at the node flows along the links that connect
the center site to its neighbors in different probabilities. �ii�
The probability of the drop of water flowing along a direc-
tion is proportional to the number of drops which have
flowed along the link. �iii� The width of the river channel is
proportional to the number of drops which have flowed
through the segment. The above principles contain a positive
feedback interaction between the probability and width of
the channel. That is to say, the river channel becomes wider
and wider as the drop flows. Two open problems with the
lattice gas automata model are considered in this paper. The
first problem concerns how to simulate the river networks
formation. The second problem is that what scaling law
could be obtained.

In Sec. II, a stochastic lattice gas automata model for the
formation of river networks is proposed. In Sec. III, some
river network patterns and the scaling laws are obtained. In
Sec. IV, some conclusions are discussed.

II. STOCHASTIC LATTICE GAS AUTOMATA FOR THE
FORMATION OF RIVER NETWORKS

A. Lattice gas automata model

Let us consider a slant �-� plane in three-dimensional
space �see Fig. 1�a��. A square region on this plane is se-
lected to study the formation of river networks. A square
lattice with unit spacing is used, on which each node has
eight nearest neighbors connected by eight links. The water
source is selected as a fixed point where a drop of water drips
every time step. Here, a drop can be regarded as a particle.
So a drop flowing is namely a particle moving. In the lattice,
particles can only reside on the nodes or move to their near-
est neighbors along these links in unit time steps. But the
particle can only move along a direction down or horizontal
due to gravitation. Moreover, a set of Boolean variables
S�x , t� describing the particle occupation at node x and time

FIG. 2. The pattern of the width of the single river channel. The
drop number of the water source is 100. The lattice size is 256

�256. The water source is at point S= �64,256�. P̃=1, P0=0.002.

(b)(a)

FIG. 1. A slant �-� plane and �b� square 9-bit lattice.
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t with velocity e� is defined, where �=0,1 , . . . ,8, �=0 de-
notes the rest particle �see Fig. 1�b��.

B. Evolution rules of the lattice gas automata

The rules are namely based on the three fundamental prin-
ciples stated in Sec. I. Now, we consider the channel segment
from x to x+e�. Three basic principles are stated as follows.

�i� A particle at node x moves along the links that connect
itself to its neighbors in different probabilities.

�ii� The probability of the particle moving along the �
direction is proportional to the number of particles which
have moved along the link.

�iii� The width of the river channel is proportional to the
number of particles which have moved through the segment.

According to these basic principles, a simple evolution
rule of the lattice gas automata consists of two parts.

�i� The particle moves along the � direction with prob-
ability P�: namely,

S�x + e�,t + 1� = �1, if S�x,t� = 1, R � P�,

0, if S�x,t� = 1, R � P�,
� �1�

where �=1, . . . ,8, and R is a stochastic number in the region
�0,1�.

�ii� The particle can be vaporized in probability P0:
namely,

FIG. 3. The pattern of the width of the single river channel. The
drop number of the water source is 200. The lattice size is 256

�256. The water source is at point S= �128,256�. P̃=1,
P0=0.002.

FIG. 4. The pattern of the width of the river channel with
branches. The drop number of the water source is 100. The lattice
size is 256�256. The water source is at point S= �192,256�.
P̃=0.95, P0=0.002.

FIG. 5. The pattern of the width of the river channel with
branches. The drop number of the water source is 200. The lattice
size is 256�256. The water source is at point S= �128,256�.
P̃=0.95, P0=0.002.

FIG. 6. The pattern of the width of the river channel with
branches. The drop number of the water source is 100. The lattice
size is 256�256. The water source is at point S= �192,256�.
P̃=0.90, P0=0.002.
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S�x,t + 1� = �0, if S�x,t� = 1, R � P0,

1, if S�x,t� = 1, R � P0.
� �2�

A key problem is how to determine the probability P�.
First, the particles can only move along the directions �
=1,5 ,6 ,7 ,8 due to gravitation in the slant plane. Moreover,
we assume that P� relates to a variable N�x ,T� defined as the
sum of particles moving from x to its all neighbors from time
t=0 to the present time t=T. It expressed as

N�x,T� = �
�=1,5,6,7,8

�
	=0

	=T

S�x + e�,	� . �3�

The state variable N�x ,T�=0 means that there is no par-
ticle moving from x to its neighbors from t=0 to t=T. It
shows that the region around the drop of water at x is dry, so
the drop can flow along any direction e� while �
=1,5 ,6 ,7 ,8 due to gravitation. Except for the vaporized
drops, the probability of drops flowing to their neighbors is
equal. Therefore, P�=

1−P0

5 is selected if S�x , t�=1, and say,
1− P0 is divided equally. In general, the probability P0 is far
less than P�.

The state variable N�x ,T��0 means that there are some
particles having moved from x to their neighbors from t=0
to t=T. That is to say, at least a river channel exists when a
drop reaches the site x. Therefore, the drops can flow along
the channel easily.

In addition, in order to determine P� when at least more
than one channel exists, the variable N� is defined as the sum
of particles from node x to x+e� from time t=0 to the
present time t=T:

N��x,T� = �
	=0

	=T

S�x + e�,	� . �4�

Due to gravitation, N��x ,T�=0 when �=2,3 ,4. Thus,
N�x ,T�=��=1

	=8 N��x ,T�. N��0 means that the link x to x
+e� has been developed to a channel segment. According to
principle �ii�, the probability is directly proportional to the
number of particles which have ever moved along the link;
i.e., the more N�, the larger P�.

In view of what was stated above, P� can be selected in
the form

P� =�
1 − P0

5
, N�x,t� = 0,S�x,t� = 1, � = 1,5,6,7,8,

0, � = 2,3,4,

�1 − P0�	1 − P̃

5
+

N�

N
P̃
 , N�x,t� 
 1,S�x,t� = 1, � = 1,5,6,7,8,� �5�

where P̃ is the probability of a particle moving along the channels which have been formed. If P̃�1, the particle does not
move along the formed channels. This case can cause the river to branch off.

FIG. 7. The pattern of the width of the river channel with
branches. The drop number of the water source is 200. The lattice
size is 256�256. The water source is at point S= �128,256�.
P̃=0.90, P0=0.002.

FIG. 8. The pattern of the width of the river channel with
branches. The drop number of the water source is 100. The lattice
size is 256�256. The water source is at point S= �128,256�.
P̃=0.80, P0=0.002.
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III. RIVER NETWORK PATTERNS AND SCALING LAWS

A. Simulation of a single river channel

If we assume a probability P̃=1, then a single river chan-
nel will form. According to principle �iii�, the width of the
river channel is proportional to the number of drops which
have flowed through the segment. Figures 2 and 3 show the
patterns of the width of the river channel in different P� and
with a different number of drops input as water source.

In the numerical simulation, the lattice size is selected as
256�256 and the probability of vaporization is selected as
P0=0.002. As to the probability P�, it is determined by Eq.
�5�. Namely, when N�x , t�=0, P��t�=

1−P0

5 , �=1,5 ,6 ,7 ,8,
and P��t�=0, �=2,3 ,4. When N�x , t��0, it means that
there exists a channel segment from site x to x+e�, �
� �1,5 ,6 ,7 ,8, so the particle surely moves along the chan-
nel except its vaporization. The two figures show the results
of the water source with 100 or 200 drops separately.

B. Simulation of the river channel with branches

If the probability P̃�1, a river channel with branches can
be obtained. In Figs. 4–9, we plot the patterns of the width of

the river channel in different P̃ and with different number of
drops at water source.

In the numerical simulation, the lattice size is selected as
256�256 and the probability of vaporization is selected as

P0=0.002. The probability P� is determined by Eq. �5�. P̃
can be 0.95, 0.90, or 0.80. The water source has 100 or 200
drops.

C. Scaling laws

1. Hack’s law

This river network property of drainage basin shape con-
tains a relationship between A, the drainage basin area, and

L0, its main stream length. Hack performed a detailed inves-
tigation and found the relation to be L0�A0.6. We also plot
the relation between the drainage basin area A and the main
stream length L0 in a log-log scale for our model �see Fig.
10�. The line shows the relation as L0�A0.62. This result is in
agreement with the predicted one.

2. Drainage basin distribution

Let us denote P�
A� as the probability that a certain ran-
domly chosen site has a drainage basin area larger than or
equal to A. We also plot the cumulative distributions of the
drainage basin area in a log-log scale for our model in Fig.
11. The points are on a straight line in which is marked by
the solid line in Fig. 11 the range from A=10 to A=103. This
result shows that the cumulative distribution of the basin size
follows a scaling law P�
A��A−0.432. When A�103, the
finite-size effect becomes obvious.

3. Horton’s law

It is known that a real river network satisfies Horton’s law
�27�. If we denote Horton’s stream order as , then Horton’s
law can be expressed as

FIG. 9. The pattern of the width of the river channel with
branches. The drop number of the water source is 200. The lattice
size is 256�256. The water source is at point S= �128,256�.
P̃=0.80, P0=0.002.

FIG. 10. The relation between the drainage basin area A and
main stream length L0 in a log-log scale for this model. The line
shows the relation L0�A0.62.

FIG. 11. Cumulative distribution of the drainage basin area
P�
A� in a log-log scale. The line shows a scale law as
P�
A��A−0.432.
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N

N+1
= R; �6�

here, N is the number of stream branches. Using Horton’s
stream order, we obtain Fig. 12. From the result, we estimate
the ratio as R=4, which is in the range of 2�R�6.

4. Relations between the width of branch w and its number m

Let us define w and m as the width of the river channel
and the number of channels with width w, respectively. The
following scaling form is expected:

w = Cmk, �7�

where C is an undetermined parameter. We express Eq. �7� in
logarithm form thus:

log10 w = D + k log10 m , �8�

where D=log10 C.
Equation �8� is called the scaling law of the river channel

width. It means that the width w and the number of links, m,
meet the log-log scaling law. In order to verify the form, we
simulate the river channel with branches with different prob-
abilities and water sources. Figure 13 shows the relation be-
tween the width of branch w and its number m.

This result is similar to Hack’s law. Because the lattice
length is identical in unit length, the width w is equal to the
area with unit length of a drainage basin; the number m
means the length of the river basin. In fact, the scaling law,
Eq. �8�, is similar to Hack’s law �26� in the condition of the

lattice size 256�256. By some numerical simulations, we
obtained that the slope of the line is in the range of k
� �−0.6,−0.4�.

IV. CONCLUSION

In this paper, a stochastic lattice gas automata model for
formation of river networks is proposed. The model is based
on two-dimensional lattice gas automata with three funda-
mental principles at each node. The water source is regarded
as a fixed point where a drop of water drips every time step.

Two kinds of river channels are obtained by using differ-

ent probability P̃: when P̃=1, a single river channel appears;

when P̃�1, a river channel with branches appears. We also
investigated Hack’s law, Horton’s law, and the drainage basin
area distribution using our model. The results show that the
scaling law is correct. On the other hand, we obtained the
relation between width of branch w and its number m.

The idea and method of this paper can be spread into a
complex river network formation system. More factors may
be handled if we consider a true river network system. This
is what we will be working on in the future.
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