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Abstract—Rupture in heterogeneous brittle media, including earthquakes, can be regarded as

complicated phenomena in driven nonlinear threshold systems. It displays catastrophe transition and

sample-specificity, which results in difficulty of rupture prediction. Our numerical simulations indicate that

critical sensitivity might be a common precursor of catastrophe transition and thus give a clue to

catastrophe prediction. In this paper we present an analytical examination of critical sensitivity in driven

nonlinear threshold systems, based on mean field approximation and damage relaxation time model. The

result suggests that critical sensitivity is in reality a common feature prior to catastrophe transition in

driven nonlinear threshold systems, with disordered mesoscopic heterogeneity. This result seems to be

supported by rock experiments.

Key words: Critical sensitivity, catastrophe transition, sample-specificity, driven nonlinear threshold
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1. Introduction

Damage and rupture in disordered heterogeneous brittle media, such as rocks and

the earth’s crust, present complexity (MEAKIN, 1991; CURRAN, 1997; CURTIN, 1997;

SAHIMI and ABABI, 1993; BEN-ZION and SAMMIS 2003; JAUME, and SYKES 1999;

RUNDLE et al., 2000; TIAMPO et al., 2000; BAI et al., 1994; XIA et al., 1996, 1997,

2000), especially it displays catastrophe transition and sample-specificity. Firstly, the

rupture appears as a transition from globally stable accumulation of mesoscopic

damage to catastrophic rupture (BAI et al., 1994; XIA et al., 2000; WEI et al., 2000).

Secondly, the behavior of catastrophe transition in macroscopically identical systems

exhibits macroscopic uncertainty or sample-specificity (XIA et al., 1996, 1997, 2000;

WEI et al., 2000). Consequently, it is insufficient to represent catastrophe of a system
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by merely its macroscopically average properties. The behavior of catastrophe may

sensitively depend on the details of disordered mesoscopic heterogeneity which is

usually difficult, even impossible, to be dealt with. Such complexity results in

difficulty of rupture prediction (WEI et al., 2000, WYSS et al., 1997; GARCIMARTIN

et al., 1997).

To search the universal features of catastrophe transition is of genuine

importance to rupture prediction. Our numerical simulation suggested that critical

sensitivity might be a possible common feature prior to catastrophe in heterogeneous

brittle media (XIA et al.2002). Critical sensitivity means that a system may become

sensitive significantly as approaching its catastrophe transition point. The underlying

mechanism behind critical sensitivity is the coupling effect between disordered

heterogeneity on multiple scales and dynamical nonlinearity due to damage-induced

stress redistribution (STEIN, 1999; XIA et al., 2000, 2002; WEI, et al. 2000). Critical

sensitivity may provide a clue to the prediction of catastrophe transition, such as

material failure and great earthquakes, provided the sensitivity of the system is

measurable or can be monitored.

Rupture in disordered heterogeneous brittle media can be considered as

catastrophe transition in driven disordered, nonlinear threshold systems. In this

paper we present an analytical approach to reveal the mechanism of critical

sensitivity, based on mean field approximation and damage relaxation time model,

and compare the results with experimental data on rock rupture. It is found that the

critical sensitivity is a common feature of catastrophe in driven nonlinear threshold

systems, which seems to be supported by the rock rupture experiments. Hence, the

critical sensitivity may provide a clue to catastrophe prediction.

2. Physical Model of Heterogeneous Brittle Media

We consider a macroscopic system comprised of numerous interacting, nonlinear

mesoscopic units. The scale of the mesoscopic units corresponds to the intrinsic

characteristic scale of heterogeneous structure, and the span between macroscopic

and mesoscopic scales is about 103–106 in typical cases of rupture. The mesoscopic

units are identical statistically. The mesoscopic heterogeneity of material property is

attributed to the quenched disorder of broken threshold of units, i.e., a predefined

threshold rc is assigned to each unit. rc follows a statistical distribution function

h(rc), which is normalized as

Z 1
0

hðrcÞdrc ¼ 1 ð1Þ

The system is subjected to nominal driving force r0, which is adopted as

macroscopic, external parameter. A unit breaks as the driving force r on it becomes

higher than its threshold. When a unit breaks, it will be excluded from the
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distribution function. Therefore, we introduce a time-dependent distribution

function of intact elements f(rc, t) with initial condition

f ðrc; tÞ ¼ hðrcÞ: ð2Þ

In such a system, stress redistribution induced by damage evolution plays an essential

role in nonlinear dynamics. In most cases, the stress redistribution leads to stress

fluctuations in stress pattern, and the coupling effect between inhomogeneous stress

and the heterogeneity of the threshold of units leads to considerably more complex

behavior of catastrophe. In order to take an analytical approach, we adopt a simple

model based on a globally mean-field approximation. According to the mean-field

approximation, the nominal driving force r0 is loaded uniformly on all intact units,

i.e., the real driving force is determined by

r ¼ r0

1� p
ð3Þ

This is a widely used formula in damage mechanics, where p is damage fraction

calculated from

p ¼ 1�
Z 1
0

f ðrc; tÞdrc: ð4Þ

The evolution of distribution function f ðrc; tÞ is suggested to follow an equation

based on relaxation time model:

@f ðrc; tÞ
@t

¼ � f ðrc; tÞ
s

; ð5Þ

where s is characteristic time of damage relaxation. Generally speaking, s decreases

with increasing r
rc
. For simplicity, we assume

s ¼
1; as r < rc

sD
r
rc

� ��q
; as rM � r � rc ,

0; as r> rM

8<
: ð6Þ

Such a model implies that the damage relaxation can be characterized by three time

scales: for r < rc the damage appears as a very slow relaxation process, and we

simply assume s!1; for very high driving force, the damage becomes a very fast

relaxation process, and the relaxation time is nearly zero; this corresponds to the

catastrophic rupture, in addition, it also means a cutoff of distribution function hðrcÞ
at rc ¼ rM ; and for the intermediate case, the damage relaxation can be described by

a finite relaxation time which depends on r
rc

and q is a positive parameter. The

rupture in real heterogeneous brittle media usually presents catastrophe transition,

i.e., the transition of evolution mode from globally stable accumulation of damage to

catastrophic rupture. Thus, macroscopically the evolution is characterized by two
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time scales: a long time scale for damage accumulation and a very short time scale for

catastrophe. Such a behavior can be modeled by the above-mentioned damage

relaxation model with three characteristic time scales. The concern in this paper is

with the common behaviors prior to r ¼ rM rather than the value of rM .

In order to reveal the main mechanism of critical sensitivity, we adopt a simplified

and ideal model which only takes the coupling between dynamical nonlinearity and

mesoscopic heterogeneity into account, and a series of complicated effects are

neglected. Subsequently, the model cannot describe a real system quantitatively.

3. Critical Sensitivity in the Case of Quasistatic Loading

For the case of quasistatic and monotonic loading; the damage evolution will

reach equilibrium at each nominal driving force.r0 We denote the solution of

equation (5) by F ðrc; r0Þ which is expressed by (see Fig. 1)

F ðrc;r0Þ ¼
0; for rc <

r0

1�P ,
hðrcÞ; for rc � r0

1�P .

�
ð7Þ

where P ¼ P ðr0Þ is equilibrium damage fraction at r0 which is the solution of the

following equation, which is derived from the definition (4) in the case of quasistatic

and monotonic loading:

P ðr0Þ ¼
Z r0

1�P ðr0Þ

0

hðr0Þdrc ð8Þ

The response of the system to increasing driving force can be defined in terms of

various variables, for instance, damage fraction or cumulative energy release. In this

paper, it is defined by

Rðr0Þ ¼
dEðr0Þ

dr0
ð9Þ

where Eðr0Þ is the cumulative energy release.

Figure 1

Critical sensitivity in driven nonlinear threshold systems in the case of quasistatic loading based on mean-

field approximation and damage relaxation model. hðrcÞ is Weibull distribution function with modulus

m ¼ 2 and 5, respectively. (a) The equilibrium distribution function F ðrc; r0Þ at r0 ¼ rof � 0, m = 2 .

(b) The equilibrium distribution function F ðrc;r0Þ at r0 ¼ rof � 0, m ¼ 5 . (c) The cumulative energy

release (the lower curves) and the sensitivity (the upper curves). r0 is the nominal driving force and the

cumulative energy release E is normalized by Ecum ¼
R rof�0
0 Rðr0Þdr0: The cumulative energy release (the

lower curves) displays a catastrophe at r0 ¼ rof . The sensitivity S (the upper curves) is defined by equation

(12) and normalized by Sðr0 ¼ 0Þ ¼ mþ 1. S increases significantly prior to catastrophe, suggesting critical

sensitivity.

c
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The catastrophe transition can be determined by the condition

dPðr0Þ
dr0

¼ 1 ð10Þ

The response R displays catastrophe transition at r0 ¼ rof We will denote the

damage fraction at catastrophe transition point by Pc

For r0 < rof the equilibrium state of the system evolves continuously with

increasing r0 and P ðr0Þ < Pc This is the stage of stable accumulation of damage.

However, at r0 ¼ rof the equilibrium state jumps to global failure state (P = 1)

displaying catastrophe transition, i.e., the system falls into a situation of self-

sustained catastrophic failure.

In order to measure the sensitivity of the response to nominal driving force, we

define the sensitivity as

Sðr0Þ ¼
r0

Rðr0Þ
dRðr0Þ

dr0
: ð11Þ

A highly sensitive state is characterized by S � 1. Since there may be various

definitions of the response, there also will be various definitions of the sensitivity. In

particular, heterogeneous brittle media present sample specificity; the sensitivity

cannot be represented by macroscopically average properties, e.g., free energy,

however the definition (11) of sensitivity is available for real systems.

When the initial distribution function is assumed to be a Weibull distribution

function

hðrcÞ ¼ mrm�1
c expð�rm

c Þ: ð12Þ

the cumulative energy releaseEðr0Þ and sensitivity Sðr0Þfor the globalmean fieldmodel

are presented in Figure 1 (for aWeibull distribution function with modulus m ¼ 2 and

m ¼ 5). Weibull distribution is a widely used function to characterize the diversity of

material properties. The cumulative energy release shows that the evolution displays a

catastrophe transition at r0 ¼ rof ¼ ðmeÞ
1
m and Pc ¼ 1� e�1=mðrof ¼ 0:4289 and

Pc ¼ 0:3935 for m ¼ 2, and rof ¼ 0:5934, Pc ¼ 0:1813 for m ¼ 5). In the case of

r0 � 0 ,wederive S � m+1, corresponding to an insensitive state.However,we can see

that S !1 asr0 ! rof which implies that the systembecomes sensitive significantly as

it approaches its catastrophe transitionpoint. Such a feature is called critical sensitivity,

which is an important precursor of catastrophe.

4. The Effects of Loading Rate on Catastrophe and Critical Sensitivity

The assumption of quasistatic loading is valid only for the case that the

characteristic time of loading is much longer than that of damage relaxation.

Otherwise, the effects of time-dependent damage relaxation should be taken into

account.

1936 Xiaohui Zhang et al. Pure appl. geophys.,



For the case with time-dependent nominal driving force r0ðtÞ the distribution

function f ðrc; tÞ can be solved from equations (5) and (6). The energy release rate is

given by

RðtÞ ¼ N
2k

r2
0ðtÞ

ð1� pðtÞÞ2
dpðtÞ

dt
; ð13Þ

where N is the total of mesoscopic units and k is the stiffness of units, which is

assumed to be identical for all units. We will consider the continuous limitation that

lim
N!1

N
k ¼ const: The sensitivity of response of the system to nominal driving force

can be measured by

SðtÞ ¼ r0ðtÞ
RðtÞ

dRðtÞ
dðtÞ

dr0ðtÞ
dt

ð14Þ

Now we consider the case that the nominal stress increases with time linearly:

r0ðtÞ ¼
arof

sD
t; ð15Þ

where rof is the catastrophe transition point in the case of quasi static loading, a is a

constant. The quasi-static loading corresponds to the limitation a! 0.

Figure 2 illustrated the cumulative energy release and the sensitivity for the

models with rM ¼ 4 and q ¼ 0, 1 and 2, respectively. The loading rate is

characterized by a ¼ 0:1 and the initial threshold distribution function is adopted

as Weibull distribution function with modulus m ¼ 3. The cumulative energy release

presents a continuous increase followed by a finite jump DE. This corresponds to a

transition from continuous accumulation of damage to catastrophic rupture. The

jump of cumulative energy release is expressed by

DE ¼ N
2k

r2
M ð1� DM Þ; ð16Þ

where DM is damage fraction at r ¼ rM : From Figure 2 we can see that prior to

catastrophic rupture, sensitivity increases significantly. Therefore, the critical

sensitivity is also a precursory feature of the catastrophic rupture when the loading

rate is considered. In Figure 2 the downward arrow indicates the catastrophe

transition point in the case of quasistatic loading. It is found that both the

catastrophic rupture and the critical sensitivity are delayed by the loading rate effect,

comparable with the case of quasistatic loading. This is because the criticality of the

system is determined by the coupling between the external condition and the state of

the system. The appearance of catastrophe and critical sensitivity is related to the

evolution of the system.

It is noted that there are differences in curves of sensitivity for the models with

different q values. The higher the q value is, the faster the relaxation process becomes.
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The quasistatic loading corresponds to the limitation q!1. The characteristics of

the sensitivity curve for q = 2, the case of faster relaxation, are similar to that for

quasistatic loading, i.e., it shows monotonic increase. However, the sensitivity curve

for q = 0, the case of slower relaxation, presents different characteristics, i.e., it

shows a peak prior to catastrophic rupture. The characteristics of the sensitivity

curve are determined by the coupling and competition between the effects of loading,

damage relaxation and dynamical nonlinearity (redistribution of driving force).

From equations (13)–(15), the sensitivity S can be expressed as

S ¼ 2þ 2

1� p
dp
dt
þ dp

dt

� ��1d2p
dt2

 !
t: ð17Þ

The factor t in the right hand of the equation derives from the linear loading, the

time-dependent behavior of the damage p(t) reflects the evolution of distribution

function f ðrc; tÞ Figure 3 depicts the evolution of f ðrc; tÞ prior to the catastrophic

rupture for various damage relaxation models, i.e., for the models with q = 0 and,

q = 2 respectively. We can see that the damage relaxation process for the model with

q = 2 is faster than that for the model wit q = 0.

5. Effects of Stress Fluctuations on Catastrophe and Critical Sensitivity

In mean field approximation, stress fluctuations are neglected. However, the

stress fluctuations play an essential role in catastrophe (WEI, et al 2000). As we take

the stress fluctuations into account, the problem becomes far more complicated.

Numerical results revealed that the evolution also presents catastrophe transition

although the catastrophe displays sample-specificity. Regardless, it is also found that

the critical sensitivity is in reality the common precursory feature of catastrophe in

the case with stress fluctuations, although the sensitivity manifests strong fluctua-

tions, see reference XIA et al (2002).

6. Critical Sensitivity in Rock Rupture Experiments

Now we give results of rock rupture experiments YIN et al (2002) on samples of

1050*400*100 mm3 (for marble and gneiss) and 1050*400*150 mm3 (for sand-

Figure 2

Cumulative energy release and sensitivity in the case of time-dependent nominal driving force r0ðtÞ ¼ a rof
s0

t
with a ¼ 0:1:hðrcÞ is Weibull distribution function with modulus m = 3. (a) rM = 4, q = 2; (b) rM = 4,

q = 1; (c) rM =4, q = 0. The upward arrows indicate the catastrophic rupture and the downward arrows

indicate the catastrophe transition point in the case of quasistatic loading.

b
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stone). The samples were compressed until rupture. The behavior shows catastro-

phe transition from the accumulation of mesoscopic damage to macroscopic

rupture. Mesoscopic damage is characterized by energy release recorded

by acoustic emission (AE). Typically, the total of recorded AE events is about

4*105in the experiments. The sensitivity of energy release to external load can be

defined by

S ¼ F
R

DR
DF

; ð18Þ

where F is the external load, R is the energy release rate, and DR is the increment

of energy release rate corresponding to the increment of external load DF . The

experimental results are shown in Figure 4. It is note worthy to compare the

experimental results, Figure 4, with the theoretical results, Figure’s 1–3. Theoret-

ical results of sensitivity are expressed by a deterministic and smooth curve. This is

related to the continuous limitation, mean-field approximation and relaxation

time model. The experimental and numerical results of sensitivity display

fluctuations (strong fluctuations imply high sensitivity) and sample specificity

(the time series of sensitivity are different from each other for samples identical

macroscopically). Such behavior is related to the fact that the mesoscopic damage

events are discrete and stochastic in a real system or numerical models with stress

fluctuations. Nonetheless, the rock rupture experiments seem to support the critical

sensitivity: the sensitivity increases significantly prior to the catastrophic rupture

point.

7. Summary

Rupture in heterogeneous brittle media is a complicated phenomenon, and

rupture prediction, e.g. earthquake forecast, is a difficult problem of vital societal

concern. Critical sensitivity as a universality of catastrophe transition in driven

nonlinear threshold systems may help us to capture the essence of catastrophe

transition. In some cases, the sensitivity might be measurable. Monitoring the

sensitivity of the system may yield helpful clues to rupture prediction.

Figure 3

The evolution of distribution function f ðrc; tÞ prior to the catastrophic rupture. hðrcÞ is Weibull

distribution function with modulus m = 2. The system is subjected to nominal driving force r0ðtÞ ¼ a rof

s0
t

with a ¼ 0:1 (a) The sensitivity S for relaxation model with rM = 4 and q = 0 and 2, respectively; (b) The

evolution of distribution function f ðrc; tÞ for damage relaxation model with q = 0; (c) The evolution of

distribution function f ðrc; tÞ for damage relaxation model with q = 2.

b
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