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AbstractÐTwo-dimensional and unsteady problems of drop and bubble Marangoni migration are calcu-
lated for cases of larger Reynolds numbers in the microgravity environment. A global treatment method
is introduced to solve numerically the complete problem by using the ®nite di�erential method, and the
thermocapillary force acting on the interface is considered as a body force acting in the computational
mesh elements which are passed by the interface. The program of numerical simulation is checked with
the symmetric model of bubble migration in Ref. [1]. The asymmetric model of bubble migration is cal-
culated, and the results are di�erent from that of the symmetric model. The asymmetric model of drop
migration is also calculated. The trajectory of drop in larger Reynolds number ¯uid is oscillated period-
ically due to the vortex separation in the wake. # 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

The Marangoni migration of drop and bubble,

coupled with the e�ect of gravity, has been studied

extensively since the pioneer work of Young,

Goldstein and Block, and named as the YGB

model [1]. The Maragoni migration becomes more

important in the microgravity science, because inter-

face phenomena often dominate the microgravity

process and need to be studied in order to under-

stand the mechanism and its many applications.

The YGB model analytically deals with the linear

case of small Reynolds number (ReW 1) and small

Marangoni numbers (MaW1) by using the pertur-

bation method. The analytical solutions for

bubble [2] and drop [3] were obtained to include the

in¯uence of inertia term (Re>1) but omitting the

terms of heat convection (MaW 1), or to include

the in¯uence of heat convection (Maw1) but omit-

ting the inertia term (ReW 1) [4±6]. However, the

general problem of arbitrary Reynolds numbers and

Marangoni numbers should be solved by the nu-

merical simulation, for example the bubble mi-

gration in ref. [7].

Some experiments of drop migration were per-

formed in the microgravity. The experimental results

agree with the YGB model if the Reynolds number

is small [8], but the migration in microgravity en-

vironment is slower than the one of YGB model for

the case of larger Reynolds numbers [9]. The ground
experiments for larger Reynolds numbers gave the

similar conclusion [10]. To explain the experiments
of larger Reynolds numbers, the numerical simu-
lation will be bene®cial to study the process of mi-

gration, and is studied in the present paper.
The mathematical model and the calculated

method are given in the next section, and then the
calculated method and its correction are discussed in

Section 3. The asymmetric models of Marangoni mi-
gration for larger Reynolds numbers will be ana-
lyzed, respectively, for bubble, in Section 4 and for

drop, in Section 5. The last section is the conclusion.

2. MODEL OF MARANGONI MIGRATION

The problem of drop migration in the micrograv-
ity environment is usually described by the incom-
pressible ¯uid dynamic equations with discontinuous
conservation conditions at the interface. In the pre-

sent paper, two-dimensional and unsteady problems
are analyzed by the numerical simulation method. A
Cartesian coordinate system with the y axis opposite

the direction of applied temperature gradient, and
origin at the center of the static drop or bubble, is
adopted as shown in Fig. 1. The temperature at the

lower boundary is T0. The temperature gradient, A,
is negative and the rate of change of the surface ten-
sion with temperature, sT, is also negative. The drop

moves from the cold regions toward the hotter
regions. The coordinate system is ®xed in the labora-
tory but does not move together with the drop or
bubble. In this case, the basic equations may be
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written as follows

ux � vy � 0; �1�

ut � uux � vuy � ÿrx=r� �2�ux�x � ���uy � vx��y � fx;

�2�

vt � uvx � vvy �ÿ pyr� 2��VY �Y
� ���UY � VX �X � FY ; �3�

Tt � uTx � vTy ��Txk�x � �Tyk�y � ��2u2x
� 2v2y � �uy � vx�2�=cp; �4�

where u, v, t, p, r, cp, k, n, are, respectively, the vel-

ocity components in the x- and y-direction, tempera-

ture, pressure, density, speci®c heat capacity,

thermal conductivity, and kinetic viscosity, fx, fy are

respectively components of the body force.

Subscripts t, x and y denote respectively the partial

di�erential to t, x and y. In the present paper, the

thermocapillary force acting on the interface is con-

sidered as a body force acting in computational

mesh elements which are passed by the interface. In

this case, there are no special boundary conditions at

the interface. The associated boundary conditions of

the problem are given as follows:

T � T0 � A�yÿ y0�; �5�

u � 0; vx � 0; �6�
at the left (x = x0) and right (x = x1) boundaries;

and

v � 0; uy � 0; �7�

T � T0; �y � y0� �8�

T � T0 � A�y1 ÿ y0�; �y � y1� �9�

Fig. 1. Cartesian coordinate system of the model.

Fig. 2. The bubble velocity vector ®elds under the symmetric assumption.
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at the upper (y = y0) and (y = y1) lower boundaries,

where A and T0 are, respectively, constants of

applied temperature gradient and temperature at the

lower boundary. x0, x1 and, y0, y1 are, respectively

boundary coordinates value of calculating domain as

shown in Fig. 1.

The initial conditions are given as:

u � 0; v � 0; T � T0 � A�yÿ y0�: at t � 0:

�10�
Then, the problem is described by eqns (1)±(4),

boundary conditions (5)±(9), and initial conditions

Fig. 3. (a). Tangential velocity distribution on the bubble surface. (b). Temperature distribution on the
bubble surface. (± ± ± ±) for this present, (ÐÐ) for Ref. [1].

Fig. 4. The bubble velocity vector ®elds without the symmetric assumption; (a) t = 2 s. The center of
bubble is (0.012, ÿ0.602); (b) t = 6 s. The center of bubble is (ÿ0.449, ÿ1.818); (c) t = 8.6 s. The center

of bubble is (0.043, ÿ2.651).
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(10), and was solved by the following numerical

method.

3. COMPUTATIONAL METHOD

The basic eqns (1)±(4) were solved in a 2D rec-
tangular domain (x0RxRx1, y0RyRy1) by a ®nite
di�erence method of staggered grid [11]. The geo-
metric constants x0, x1, y0, y1 are adopted respect-

ively as ÿ14, 14, ÿ28, 10, and the diameter of
bubble or drop is two. The width of computational
grid of the drop is adopted as 1/32 diameter.

Following the iterative method suggested in
ref. [11], the equations were solved with the pressure
unchanged, and then both the pressure and the vel-

ocities were modi®ed, by the pressure and velocity
correction method, to obtain new values of these
quantities for the next step. In the interfacial

regions, the physical properties, such as constants
r, cp, k, and n, should be discontinuous across the
interface in physics. During the present calculation,
a smooth distribution with sharp variation is intro-

duced for approximation of the discontinuous dis-

tribution, such as g = g0+(g1 ÿg0)SI(x,y), where

g0, g1 are, respectively, the outer and inner value of

the function g (g = r, cp, k, n), and

Sl�x; y� �
0 outside the drop
V1=V0 near the interface
1 inside the drop

8<:
where V1 and V0 are respectively the volume of the

drop and outer ¯uid in the grid. This approach suc-

cessfully overcomes the di�culties of discontinuities

of physical properties across the interface [12]. In

this paper, the time step is adopted by condition

Dt < (Dy/40)/vmax, where Dy and vmax are, respect-

ively, the width in the y-direction of a calculating

grid, and the maximum of velocity components.

The Reynolds number is de®ned as Re =ÿ sTAR2/

mn, and the Prandtl number Pr = n/k. All the par-

ameters are given for bubble or drop.

Supposing that (xi(l), yi(l)) are the points in inter-

face (l= 1,2, . . .), and Ti(l), g0 are, respectively,

Fig. 5. The drop velocity vector ®elds; (a) t = 4.5 s, the center of drop is (ÿ0.036, ÿ1.124), (b) t= 15 s,
the center of drop is (1.243, ÿ4.909).
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temperatures and surface tension at these points.

L(l) are segments from (xi(l),yi(l)) to

(xi(l+ 1),yi(l+ 1)) and (xm(l), ym(l)) are middle

points of segments L(l), R(l) are radial curvatures

of points (xm(l),ym(l)). Then the body force of nor-

mal component (fx
n(l), fy

n(l)) and tangential com-

ponent (fx
t(l), fy

t(l)) due to the surface tension at

points (xm(l),ym(l)) are calculated as follows:

f nx �l� �g0�yi�l � 1� ÿ yi�l��=R�l�;
f ny �l� �g0�ÿxi�l � 1� � xi�l��=R�l�;

f tx �l� � ÿ sT �Ti�l � 1� ÿ Ti�l���xi�l � 1� ÿ xi�l��;
f ty �l� � ÿ sT �Ti�l � 1� ÿ Ti�l���yi�l � 1� ÿ yi�l��:

The body force in Cartesian coordinate system is

then given as:

fx�l� �f nx �l� � f tx �l�;
fy�l� �f ny �l� � f ty �l�:

All the body force fx(l), fy(l) are given in their adja-

cent mesh points according to their weights.

The computational method is checked and com-

pare with the bubble migration of the symmetric

model given in ref. [7], and the assumption of non-

deformation drop is also used. Figure 2 are the vel-

ocity vector ®elds at di�erent times under the sym-

metric assumption.

Figure 3 show the comparison of velocity and

temperature at the bubble surface given by ref. [7]

and this paper for the symmetric model. The basic

trends of temperatrue and tangential velocity distri-

bution on the bubble surface are similar, although

the Reynolds and Prandtl numbers are di�erent,
and the coordinate system of the spherical model in

ref. [7] and the cylindrical model in the present
paper are di�erent.

4. BUBBLE MARANGONI MIGRATION

The bubble Marangoni migration of the asym-

metric model was considered for Re = 5 and
Pr = 0.04. The bubble migrates from the initial
position toward the hot side of the enclosure.

Fig. 4 are the ¯ow ®elds for the asymmetric
model during the migration, and the trajectory of
the bubble center can be seen in Fig. 6(a), where
the bubble staggers all the time.

There are some di�erences between the symmetric
and asymmetric migrations of the bubble. Inside
the bubble, the two vortex cells in Fig.2. are sym-

metric about the vertical line of the domain, but
these in Fig.4, are symmetric about a line along the
moving direction due to the asymmetric wake.

5. ASYMMETRIC DROP MIGRATION

The drop Marangoni migration is investigated in
this section. Calculations were performed for
Re= 2.6 and Pr = 105. The velocity ®elds of the

asymmetric model during the migration are shown
in Fig. 5. The drop also moves from the colder
regions toward the hotter regions. The drop stag-

gers along the vertical line due to the asymmetric
distribution of the pressure in wake. Its trajectory,
as shown in Fig.6.(b), is similar to the asymmetric
model of bubble and the two vortex cells inside the

Fig. 6. The trajectory of (a) bubble, (b) drop without the symmetric assumption.
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drop are not symmetric about the vertical line of
the domain but about a line along the moving

direction.

6. CONCLUSION

A new method of numerical simulation was
applied to calculate the problem of Marangoni mi-

gration, the basic equations are satis®ed in the
whole calculation region and the surface force is
replaced by a body force acting in the small mesh

region. In this case, the interface does not need to
be considered as the discontinuity surface to separ-
ate two di�erent kinds of liquid. In fact, usual
method of numerical simulation treats the interface

as a discontinuous surface, however, the discontinu-
ous conditions at the interface should also be satis-
®ed in the small region of calculated mesh, and the

solution is often obtained by many iterations. The
results of the present paper show that this new
method is successful in solving the problem with

discontinuous interfaces such as the drop and
bubble migration.
In the present paper, the drop and bubble

Marangoni migration of larger Reynolds number
¯uid were studied for the asymmetric model, and
the asymmetric features are much more complex
than that of the linear model. Non-linear features

obviously apear in the wake with vortex separation,
and then the trajectory of the drop or bubble mi-
gration is oscillatory around the vertical line of the

domain (Fig.6.). Because, in our simulation, the site
of the interface is only a mark, maybe it is the
reason that the central line is not, but parallel to

the symmetric axis; this e�ect will be studied later.
For simpli®cation, there are some assumptions in

the present paper, such as the 2D model and non-
deformation of the interface. Three-dimensional

and the deformation interface model in di�erent
parameter ranges should be studied in the future.
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