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Abstract--The effectiveness of  the J-Q two parameter solution is clearly displayed in the cases of  
single-edge shallow cracked panel, double-edge cracked panel and center cracked panel from small scale 
yielding to large scale yielding. It is also suitable for the bend cracked panel specimen from small scale 
yielding to medium scale yielding. However, for bend cracked panel from medium scale yielding to large 
scale yielding, the J-Q two parameter solution will deviate gradually from finite element solution. 
Especially in large scale yielding, the deviation is remarkable. In this paper, we carry out the finite element 
calculations for two representative cases of  the bend cracked panel and center cracked panel specimens 
from small scale yielding to large scale yielding. By considering a modified term on the basis of two 
parameter solution, and properly selecting the second term and modified term by matching with finite 
element solutions, we obtain a modified two parameter solution, which is very well in conformity with 
the finite element solutions in a wide range. 

The upper bound and lower bound fracture toughness curves predicted by the modified two 
parameter solution are given. These two curves have covered most experimental data and fully captured 
the trend of most experimental data. 

1. INTRODUCTION 

1T IS well known that the HRR singularity field [1, 2] can characterize the high triaxiality elastic 
plastic field near the crack tip. The intensity coefficient of the HRR singularity, J-integral, can be 
taken as a single parameter dominating crack initiation. However, this high triaxiality field is only 
one of many possible states. Even though crack tip field could be a high triaxiality state during 
the initial loading stage, it will be changed gradually into low triaxiality state as load increases from 
small scale yielding to large scale yielding, and the HRR solution will deviate from the finite element 
solution [3]. The cases of single-edge shallow crack [4], center cracked panel and double-edge 
cracked panel etc. [5] are examples of the low triaxiality states. In these cases, the single parameter 
characterization of elastic-plastic field near the crack tip will bring a large error. In view of these 
reasons, two parameter approaches were developed. Li and Wang [6] first derived the second order 
asymptotic field under plane strain and Mode I conditions, in which the first term was the HRR 
singular field, the coefficient of the second term was determined by matching the asymptotic 
solution with finite element full field solution. The second order asymptotic solution obtained in 
such a way was a great improvement on the HRR solution. Sharma and Aravas [7] also completed 
the second order analysis taking account of possible elasticity effects. Recently, Yang et al. [8] 
carried out a higher order asymptotic analysis for Mode I and Mode II cracks, they utilized the 
higher-order term to establish the size and shape of the zone dominated by the HRR field. Xia 
et al. [9] derived the fifth order asymptotic field under plane strain and Mode I conditions, they 
gave out the further information about the elastic-plastic field near the crack tip. O'Dowd and 
Shih [3, 10] developed a two term solution in which the first term was the HRR singularity field, 
and the second term, including function form and its coefficient, was determined by matching this 
two term solution with the finite element full field solution. They developed a J-Q two parameter 
criterion dominating crack initiation. Betegon and Hancock[l l]  and Ai-Ani and Hancock [4] 
presented J -T  two parameter characterization by carrying out finite element calculations for weakly 
hardening materials. Here, T was uniform tension stress paralleling to crack faces and associated 
with the second term of Williams' expansion. 

The J-Q two parameter solutions can characterize the elastic-plastic field near crack tip in a 
wide range. High order asymptotic solution near crack tip [9] also verified the effectiveness of J-Q 
two parameter criterion. The J-Q two parameter characterization of the elastic-plastic fields near 
the crack tip is suitable for the cases of the single-edge shallow crack, center cracked panel and 
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double-edge cracked panel etc. from small scale yielding to large scale yielding. For the bend 
cracked panel from small scale yielding to medium scale yielding, it is also suitable. However, the 
fine research [3] showed that for bend cracked panel from medium scale yielding to large scale 
yielding, the J-Q two parameter solution will deviate from finite element solution. In this paper, 
our attention is focused on studying the effectiveness of J-Q two parameter characterization from 
small scale yielding to large scale yielding. We carry out the finite element calculations for two 
representative cases which are the bend cracked panel (BCP) and center cracked panel (CCP). We 
construct a three term solution based on the two parameter solution. The second term and the third 
term (or modified term) are determined by matching with finite element solutions. For various 
cases, three term solutions obtained are very good simulation to finite element solutions. 
Furthermore, we present a modified two parameter criterion. 

2. FUNDAMENTAL RELATIONS 

A widely used uniaxial stress-strain relation is the Ramberg-Osgood form 

- ~ - ~  ( 1 )  
(i0 170 

where % is an effective yield stress, Co = ao/E is the associated elastic strain with E as Young's 
modulus, ~ and n are parameters chosen to fit experimental data. n is the strain hardening exponent. 

The increment relation of multiaxial stress and strain by J2 flow theory of plasticity is 

E {6im6j" v c5 92~ttG2SijS,,,)>dE,, . (2) dG,j -- 1 + v + ~ 6ij m, -- (6# + ) e 

in which, Sij is the deviatoric stress, a,, = x/~ijS~j/2 is the effective stress, v is Poisson's ratio, # 
is shear modulus and H is tangential modulus of plasticity, which by (1) is 

dffe Go (ffe~ '-n 
H = d(---- ~ = n~E0 \ ~ /  (3) 

while parameter f~ is as the following 

f~ = fl0 on the loading surface and Sij d% > 0 
otherwise. (4) 

Generalizing (1) to multiaxial states by J2 deformational plasticity theory, one obtains the 
stress-strain relation 

l + v 1 -  2v 3 / a e \ "  I s~j 

GO 

In the basis of the small strain J2 deformational theory, the asymptotic solution ahead of a 
stationary crack could be developed. The first order asymptotic solution was given by Hutchin- 
son [1], Rice and Rosengren [2] which was called for short the HRR singularity field: 

Gij_(  J ~ ','~"+') 
ao - \ ~ C o a o I . r  / e,j, (0) (6) 

in which r and 0 are polar coordinates. The high order asymptotic solutions were given respectively 
by Li and Wang [6] for second order and Xia et al. [9] for fifth order. The form of high order 
asymptotic solution was as the following 

a i J = ( J ~ ' ]  ' /~"+' '  Q(r-f----Y6i,2(O)+ higher order terms. (7) 
ao \ot%aoI.r/ ~ijj(O) + \ j /%.]  

O'Dowd and Shih [3, 10] developed a two term solution, in which the first term was the 
HRR solution, and the form of the second term was similar with the second term of high order 
asymptotic solution, but Q, q and angular distribution function ~ij(O) were determined by matching 
two term solution with finite element solution. O'Dowd and Shih further obtained a J-Q two 
parameter solution 
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~r2q= ( j ~l/~n+ l) 
cro \ Eo~olnr / Oijl (0) + Qdijl (0). (8) 

They proved by finite element calculations that daj~ ( 0 ) ~  6~j within 101~ r~/4. Based on (8), they 
developed a J-Q two parameter criterion dominating crack initiation. 

3. FINITE ELEMENT ANALYSES 

In this paper, we develop a two-dimensional elastic-plastic finite element program. This 
program, based on the -/2 flow theory of plasticity and adopting the eight-nodal isoparametric 
element and the tangential stiffness method, was shown its reliability by the calculations of typical 
examples. Firstly, we calculated the elastic-plastic solution near crack tip under small scale yielding 
and Mode I condition. The deviations of J-integral values obtained by integrations along the 
different contours are within 1%. This shows the conservation of J-integral. The difference of both 
J-integral values calculated by the contour integration and directly by the external K field is also 
within 1%. Secondly, we calculated the elastic-plastic fields near the crack tip for single-edge 
cracked panel under tension. The result was in good agreement with that presented by Shih and 
German [12] for the same problem. 

We carry out the finite element calculations for BCP specimens with n = 5 and n = 10 and 
for CCP specimens with n = 3 and n = 10 from small scale yielding to large scale yielding. During 
the calculations, the ratio of the crack length (a) to the specimen width (W) is taken as 0.5 for 
various cases, and the other material parameters are taken as E/ao = 500, v = 0.3, ~ = 1. The 
adopted finite element mesh is shown in Fig. 1. 

4. RESULTS AND ANALYSES 

The stress distributions near crack tip for bend cracked panel (BCP) with n = 5 and n = 10 
in different loading stages from medium scale yielding to large scale yielding are shown in Fig. 2. 
From Fig. 2, HRR singularity solution [see eq. (6)] has remarkably deviated from the finite element 
solution, and the J-Q two parameter solution [see eq. (8)] is in conformity with finite element 
solution in a certain range. However, as load increases, or as r/(J/tro) increases, the J-Q two 
parameter solutions within annulus range (1 ~< r%/J <~ 6) will deviate gradually from finite element 
solution. Especially in the large scale yielding, the deviation of J-Q two parameter solution from 
finite element solution is quite large. The J-Q two parameter solution overestimates the elas- 
tic-plastic stress field within the annulus range from medium scale yielding to large scale yielding. 

Figure 3 plots the stress distributions near the crack tip for center cracked panel (CCP) with 
n = 3 and n = 10 in three loading stages from medium scale yielding to large scale yielding. From 
Fig. 3, HRR solution has a larger deviation from finite element solution than that of BCP specimen, 
but the difference of two parameter solution to finite element solution is quite small. When n = 10, 
two parameter solution is very well in conformity with finite element solution. When n = 3, this 
difference will grow slowly with the increases of load or r/(J/ao). When n = 3, the J-Q two 
parameter solution underestimates the elastic-plastic field within the annulus range from medium 
scale yielding to large scale yielding. 

In order to characterize the elastic-plastic field within the annulus range from small scale 
yielding to large scale yielding, we try to construct a three term solution (modified two parameter 
solution) based on the two term solution. From the theory of ordinary differential equation (ODE), 
the eigenfunction for the second order linear ODE with variable coefficients, generally speaking, 
is either an analytical function, or the product of singular functions and analytical functions. In 
view of the above reasons, we consider a three term solution based on the two parameter solution 

a~j(r,O) ( J ) '/'+~ 
a--~o = -~%aoI.r ~,j, (0) + a6,j, (0) + k:(rtro/J - 1)d,s~(0 ) (9) 

in which the first term of right hand side is the HRR singularity solution, Q, #~j~ (0), k 2, and 0o: (0) 
in the second and third term are determined by matching with finite element solution. Here, we 
adopt the weighted residual method in each 0 angular direction for determining Q, k2 as well as 
the angular distribution functions (weighted function is taken as 1). 
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In Figs 2 and 3, the J - Q - k z  three parameter solutions are also given. From these figures, three 
term solutions agree very well with finite element solutions within annulus range. The effectiveness 
of  two parameter solution can also be judged from Fig. 4. Figure 4 plots the angular distribution 
functions 6i: (0) and #i: (0). Alternatively, the magnitude of  k2 d0~ (0)(rao/J - 1) modified term (the 
third term) can be seen clearly from Fig. 4. For BCP specimens, the magnitude of  the third term 
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Fig. 5. The relations of external load to three parameters for BCP specimen (n = 5). 

is comparable to the second term. Especially in large scale yielding, the third term is equivalently 
important to the second term. For  CCP specimens, the third term is small relative to the second 
term. When n = 3, the third term increases with load increase. From Fig. 4, I#,01 '~ lJ . I  or I~001 
within I 0 1 ~< rc/2 for various cases. The variations of three parameters and external load from small 
scale yielding to large scale yielding for BCP specimen n = 5 are plotted in Fig. 5. From J-P curve 
in Fig. 5, in large scale yielding state, a small increment of external load P/(Wao) corresponds to 
a great increment of  deformation, i.e. a great increment of  J-integral. 

5. FRACTURE T O U G H N E S S  L O C U S  

Kirk et al. [ 13] have measured cleavage fracture toughness for A515 steels at room temperature 
over a broad range of  crack tip constraints. They tested edge-cracked bend bars with thicknesses 
B = 10, 25.4 and 50.8 mm and various ratios of  crack length to width. The measured toughness 
data are plotted against Q in Fig. 6. 

Constraint effects on fracture toughness can be predicted by using three term solution in 
conjunction with a fracture criterion based on the attainment of a critical stress, a00 = o,., at a 
characteristic microstructural distance, r = r~ [14]. Suppose that rc is within the J-Q annulus 
(1 ~ rcao/J c <. 5). Now impose the RKR fracture criterion on (9) to get 

ao \~eoaoI, r , /  c/z21(0) + Q + kz(r, ao /J , -  1). (10) 

Therefore, we can solve for J, as a function of Q and kz for selected values of tr, and r,. With J* ,  
Q* and k~' denoting the corresponding quantities with the remote loading away from the crack 
tip by K field (T  = 0), one finds from (10) that 

J,. { ~ r , / a o - Q - k 2 ( r ,  Oo/Jc-1)}  "+' 
j-~ = °,/°o . (11) 
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Fig. 6. The comparison of three term solution with experimental results. 
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Using (11), lower bound toughness curve (dashed line) and upper bound toughness curve (solid 
line) of  J,. - Q are plotted in Fig. 6 for a,. = 3.5a0, J* = 40 kPa.m and n = 5, corresponding to the 
maximum value (0) and minimum value ( -0 .372)  of  k2, respectively (strain hardening exponent 
n of  A515 steel is about 5). From Fig. 6, it can be seen that the upper bound and lower bound 
of predicted toughness curves have covered most experimental data. 

6. CONCLUDING REMARKS 

The J-Q two parameter solution can characterize the elastic-plastic field within the annulus 
range near the crack tip from small scale yielding to large scale yielding for single-edge shallow 
cracked panel, double-edge cracked panel and center cracked panel. For bend cracked panel from 
small scale yielding to medium scale yielding, it is still valid. However, from medium scale yielding 
to large scale yielding, J-Q two parameter solutions gradually deviate from the finite element 
solution as external load increases. This deviation is remarkable for bend cracked panel specimens. 
By considering a three term solution, and determining the second term and the third term by 
matching with finite element solution, one obtains a solution which is very well in conformity with 
the finite element solution over a whole range. 

In O'Dowd and Shih's two parameter solution, the second term characterizes a triaxiality 
stress field within the [0[~< ~/4. This triaxiality stress field is unchanged with distance from crack 
tip. The significance of the second term and third term in three term solution presented by our study 
is also a characterization of the triaxiality stress field within the [0] ~< g/4, but this triaxiality stress 
field is linearly varying with the distance from crack tip. The third term characterizes the change 
of triaxiality stress with distance from crack tip. 

The third term in three term solution is taken as a modified term of two parameter solution. 
We present a modified two parameter criterion. The fracture toughness curves predicted by 
modified two parameter solution have fully captured the trend of most experimental data. 
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