
Proceedings of the Royal Society of Edinburgh, 124A, 645-672,1994

Very weak solutions of boundary value problems for the
Laplace operator and the Lame system on polyhedral
domains in

Ding Hua
Institute of Mechanics, CAS, 100080 Beijing, China

(MS received 10 July 1991. Revised MS received 25 January 1993)

a la memoire de Pierre Grisvard

The notion of very weak solutions is introduced in this paper in order to solve the boundary
value problems for the Laplace operator and for the Lame system with nonsmooth data in
polyhedral domains. A continuity theorem is given for variational solutions of the above
problems. This result may be used to solve problems with concentrated loads.

1. Introduction

The problems to be considered in this paper consist of typical elliptic operators—
the Laplace operator A and the Lame system L on nonsmooth domains and with
nonsmooth data, or more precisely, on polyhedral domains and with concentrated
loads (the Dirac's measure) even on the boundary, i.e.

(Au=f inQ,

du
— = h onF,, (PI)
on

M = g on r D ;

Lu = f inQ,

u = g on rD,
(P2)

where Q is a polyhedral domain in IR3 with straight faces I}, j e 91 = { 1 , . . . , J},
rD = 5Q\uje9iJVr/ and TN = dQ\^>je<nDTJ with 9tDuyiN = 9t and 9tDn9^ = 0 , and
/, h,f, h may contain the Dirac's measure.

Problems of this kind are often found in physical modelling (even in analysis),
where natural domains are often nonsmooth or may be considered as "small pertur-
bations" of some nonregular domains, and sometimes with concentrated loads: forces,
thermo-sources, etc. In practice, a concentrated load is generally the idealisation of
a load acting on a small area, where one need not determine its distribution, except
its total value. In analysis, the concern is with fundamental solutions.

In the literature, many works on boundary value problems are concerned with
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smooth domains. The classical results can be found, for example, in the paper of
Agmon, Douglis and Nirenberg [1] where smooth problems (with both domain and
data being smooth) are considered. In [14] Lions and Magenes give some general
results on solutions corresponding to smooth and nonsmooth data on smooth
domains. In later works, many references may be found on problems with nonsmooth
domains, such as the work of Maz'ja and Plamenevskii [16], Grisvard [7] and
Dauge [3]. The emphasis of this work is on the regularity or the singularity of the
solutions corresponding to relatively smooth data. In [21] Wildenhain treats elliptic
boundary value problems in the space of distributions. But some problems remain
to be solved.

Problems concerned with concentrated loads (even on the boundary) will be solved
in this paper, by the method of transposition, for a bounded polyhedron in R3.
Similar problems are solved by Lions and Magenes [14] for smooth domains.
Instead of using the usual Sobolev spaces as in [14] (which are not suitable for our
present case), we use the domain of the operator corresponding to variational
solutions. There are two major difficulties in solving our problems: one is the
continuity up to the boundary of functions in the domain of the operator correspond-
ing to variational solutions; another is the problem of traces for nonregular functions.
There are some works on the continuity of variational solutions corresponding to
relatively smooth data on a three-dimensional nonsmooth domain. Stampacchia
gave a continuity result of such solutions for a Dirichlet problem in an HJ-domain
[20]. Using the potential theory, the present author obtained a continuity result for
both Dirichlet and Neumann problems in a Lipschitz domain [6]. (Note that a
polyhedron domain is not always Lipschitzian.) In this paper, we give the continuity
results for Dirichlet, Neumann and mixed boundary conditions on a polyhedron
domain. The full description of the traces of nonregular functions can be found in
[4] or [5].

This paper is organised in two sections, one for the Laplace operator and the
other for the Lame system. In each section we first introduce the notion of very
weak solutions, then discuss the continuity of variational solutions, the solutions for
concentrated loads and the decomposition of very weak solutions.

2. The case of the Laplace operator

Let Q, rD and TN be as denned in the Introduction. By the variational method (see
[18]), we have the following classical result: if F(v) = jQfv dx + j r hv da is a continu-
ous linear functional on Hj)(Q) = {ve i?1(Q)|t)|r2} = 0}, then (PI) will possess a unique
solution in the following sense: there exists a unique u e if 1(£1) such that

u = g on rD, and

, (2.1)
VuVvdx = F(v), for all v e Hj>(fi).

But this does not cover the case with concentrated loads where we no longer have
a solution with finite energy. So we need to introduce the notion of very weak
solutions. The idea is to increase the regularity of test functions.
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The very weak solution
We denote by £ 0 (m t n e se* of variational solutions of the Laplace operator corre-
sponding to a square integrable right-hand side with homogeneous boundary
conditions, i.e.

£0(O) = {v e HUO)\ Av e L2(Q), NV\TN = 0} (2.2)

with norm ||v\\Eo = (\\v\\Hi + || AvWf?)*, where Nv is denned by (see [4]):

DEFINITION 2.1. For v e £(fi) = {ve HHQ) \ Av e L2(Q)} we define Nv e (H^G))' (the
dual space of H^Q)) by

Avudx +
Jn Jn

<Nv,u\HiyXBi(Q)= Avudx+ VuVvdx V u e t f ^
Jn Jn

iV is a generalisation of the normal derivative and we have formally

LEMMA 2.2. Let v e £0(fi); then {Nv, w> = 0,for all w e Hl,(fi).

REMARK 2.3. For a Lipschitz domain Q, there exists a continuous extension operator
from #*(£}) into Hl(R3). Hence for v e E(Q), Nv can be regarded as an element of
i / " 1 ^ 3 ) , and the support set of Nv, supp Aft;, is contained in dQ.

REMARK 2.4. Up to now we have not yet given the proper definition of the restriction
of Nv to TN for v e E(il). The simplest way is to define NV\TN as a linear continuous
function on Hi(Q), and in what follows we shall take this as the definition of the
restriction. Then Lemma 2.2 is a simple consequence of the definition, and it will be
used to see the coherence of the very weak solution, which is defined below together
with the variational solution.

Using the space £0(^)> w e c a n define the very weak solution by transposition.

DEFINITION 2.5. Let J^ be in {E0(Q,))', the dual space of E0(Q). We say that u is the
very weak solution of the Laplace operator corresponding to ^ if and only if

ueL2(Q),

(2.3)
x = P(v), VveE0(Q).

The following theorem is well known, and it ensures that Definition 2.5 is
meaningful.

THEOREM 2.6. The Laplace operator A is an isomorphism from E0(Q) onto L2(Q).

THEOREM 2.7. For every 3F e (E0(Q.))', there exists a unique u e L2(Q) as the solution
of (23).

Proof. As A is an isomorphism from £0(^) onto L2(Q), for every h e L2(Q) there
exists a r e E0(Q) such that Av = h. Denote by A"1 the inverse of A in L2(Q) to E0(Q);
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then (2.3) is equivalent to

ueL2(O),

Because J5" e (£0(Q))', J5"0 A 1(h) is a continuous linear functional on L2(Q). So, by
a Riesz representation, we have the existence and uniqueness of the very weak
solution u. •

REMARK 2.8. It should be pointed out that if u is the solution of

(ueL2(Q),

I AM = 0 in Q,

du
u|rj = Tn = 0 for j e $tN,

it does not follow that \uAvdx = Q, for any veE0(Q). For instance, let Cl = D1 =
{(p, <p)\p<l,0<<p< 2n}, rD = dDy; then u = n{p~± - p*) sin {(p/2) e L2(D1), Au = 0
and w | r = 0, 7 e 91. But it is known that J uAt; dx = k(v) for any D e £0(^), where k is
the coefficient of the singular part of v, i.e. v = vo + k(v)pi sin (<p/2) with u0 e H2(Q).

Using Lemma 2.2, one may prove the following proposition:

PROPOSITION 2.9. Let &{v)= -F(v) + G(v) with Fe(Hi,(n)) ' and G(v) = (Nv,u0},
where uo6H'(fl) . Assume that u is the very weak solution corresponding to
2F e (£0(Q))'. Then u is a variational solution, i.e.

\u6H^Q) such that u-uoeH^Q) and,

„ , , . . ~ , , ~ (2-4)

Proof. Let u be the unique variational solution of (2.4). As £ 0 ( ^ ) c Ho(Si), so for
v e £0(^), (2.4) will still hold. Then by the definition of N we have

uAv dx = —F(v) + (Nv, «>. (*)

Jn

Since u — u0 e Hj)(Q), from Lemma 2.2, we have

<J\fr,u> = <M>,uo> Vi;e£0(Q),

so we conclude that

= ^{v) VveE0(Q).
n

Due to the uniqueness of the very weak solution, we have the proposition. •
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REMARK 2.10. In the theory of mechanics, equation (*) is a kind of reciprocal
principle, i.e. the work done by the forces of state u on the displacement of state v
is equal to the work done by the forces of state v on the displacement of state u.

The continuity of variational solutions
THEOREM 2.11. Let E0(Q) be defined by (2.2) and Cb(Q) be the set of functions which
are continuous up to the boundary (where, in general, C6(Q) is not always equal to
C(Q.) except when Cl is a Lipschitz domain); then we have

By partition of unity, the problem could be localised as

u e Hi(Clc) (u = 0 for r > R),

Au=/eL2(Qc) (f=0 for r>R),

u = 0 forcoe7D, (2.5)

du
. — = 0 for (o e yN,
\8n

+ boundary condition on {r = R} or at infinity,

where Qc is the cone generated by a vertex, and G = QcnS2 is a curvilinear polygon
on the unit sphere, with dG = yN<uyD and yNnyD = 0. In spherical coordinates we
have Qc = {(r, w) | r > 0, co = (5, <p) e G] and

with

sinS5i>V Sii; sin2,9 <ty2'

To prove the theorem, it is sufficient to verify that the solutions of (2.5) are
continuous. The proof is rather constructive. We first transform the Poisson's equa-
tion in (2.5) by variable transformations, then construct a solution of the transformed
equation. Such a solution reduces the problem to a homogeneous equation, which
could then be estimated by the eigen-expansion of the Laplace-Beltrami operator
A'. The details are given in what follows.

The solution of the transformed equation. Let r = e', v(t, a>) = r~xu(r, co)|r=et and
0 < a S h the Poisson's equation of (2.5) becomes

^1 — ' 2

dt2 dt

where

h = e(2-*»f, (2.6')

\ d f du\ 1 d2u
A' = —— — sin 5 —



650 Ding Hua

and we have

[ + °° f \h\2dcodt= \ + °° [ r1"2"!
J-oo JG JO JG

- f f r^\f(
Jo JG

(2-7)

In order to estimate equation (2.6), we need the following lemma [2]:

LEMMA 2.12. The operator —A' is a positive, selfadjoint, and anti-compact operator
with domain D^. Moreover, 0 e <r(—A') (the spectrum) if and only ifyD is empty, where
(with the definition of Nq> similar to Nv in Definition 2.1)

j, w = 0}. (2.8)

From this lemma, we have the following theorem:

THEOREM 2.13. Let h e L2(R x G) and 0 < a ^ \ with a + a2 $ <r(—A'); then there exists
a unique w e H2(R, L2(G))r\L2(R, DA) such that

d2w dw
- T + ( l + 2 a ) — + (A'+ a + a2)w = fc. (2.9)
or at

Proof. Put

+ 0O

W(T, (O) = e iuw(t, co) dt,

the Fourier transform of w with respect to t. Then equation (2.9) becomes

{ - T 2 + (1 + 2a)h + A' + a + a2)w = h.

By Lemma 2.12, it is seen that a(— A') contains only non-negative, isolated eigen-
values (see e.g. [10]), so there exists a /? £ cr(— A') such that 0 < p ^ | . Fixing

a = ±(Vl + 4 /? - l ) , (2.9')

then 0 < a ^ 5 and a + a2 = jS, hence - T 2 + (1 + 2a)it + a + a2 e p(- A') for all T € R,
where p(— A') is the resolvant of —A'. In addition, we have

Put

W

r + ao

- ein\_- A' + T2 - (1 + 2<x)iT - (a + <x2)Ylh dx,
J -co

w = - [A' + T2 - (1 + 2a)it - ( a + a2)]"1/!;
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then we could verify that

{::, (2.10)

Using Plancherel's equality, we conclude that

w E H2(R, L2(G))nL2(R, DA).

It is obvious that such a w verifies equation (2.9). The uniqueness follows directly
from (2.10). •

LEMMA 2.14. Let DA< be defined by (2.8); then

D A d H 1 + E ( G )

for a certain e>0. Furthermore, ifue Z)A< then

Proof. Because the property is local, we can estimate in a neighbourhood of a vertex
A of G. As the operator A' is intrinsic, one could choose A = {3 = 0}. Taking
p = sin 9, at the neighbourhood of A we have

~dP
2 +

 Pdp + d<p2~p dP
2~ PTP-

According to [7, Theorem 5.2.7, p. 271], we see that if u e DA- then

u = uR + cS with uReH2(G) and S = p"<&((p), <x>0.

Hence there exists e > 0 such that SeH 1 + ' (G) ; it follows that ueH1+e(G). Since
d(uR)/dn e Hi(yD)c-yL1(yD), and O 6 C°°, then

du fR

— = || d(uR)/dn ||L.(yc) + C f-ldp S + oo,
0 Ll(yD) JO

because a > 0. •

COROLLARY 2.15. Let w be the solution of {2.9) in Theorem 2.13; then w e Cb(R x G).

Proof. Let w be the solution of (2.9). Using (2.10) and the inequality of convexity
(ref. [15]), we have

for s + 2 ( f - l ) = 0. That is,

(for a reference for operators (—A')' see [19]). Choosing \ < t < f, we have

From Lemma 2.14,

(2.11)
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for a certain e > 0. In particular, we have

D{.^^H\G). (2.12)

From (2.11) and (2.12) we conclude (as t>\) that

so that (since t < §, or s > j)

w e Cb(R x G). a

The proof of Theorem 2.11. Setting QR = Qcn{r <R}, we have the following
lemma:

LEMMA 2.16. Let 0<R<R and u be the variational solution of (2.5); then u can be
decomposed as

u = Uj 4- u2,

with Ui ei?1(Qj;)nCi,(QK), and u2 = £ Ckr*k<S>k(aj) for r<R, where Q>k{co) are the
eigenfunctions of the Laplace-Beltrami operator A' and otk ^ 0.

Proof. Let w e Cb(R x G) be the solution of (2.9) with h defined by (2.6') and a.
defined by (2.9'). Setting

as a is positive, we could verify that

and

(Aut=f inQ K ,

ut = 0 for 0 < r < R, a> e yD,
(2.5a)

-r— = 0 for 0 < r < R, coeyN.
V on

Let u be the variational solution of (2.5) and

u2 = u-ul.

Then u2 e ^(QR) and

'' i2 = 0 in QR,

I u2 = 0 for 0 < r < R, coeyD,
(2.5b)

ou2
— = 0 for 0 < r < R, a>eyN,

+ boundary condition on {r = R}.

Since —A' is a positive, selfadjoint and anti-compact operator, its spectrum a{—A')
contains only non-negative isolated eigenvalues, and the corresponding eigen-
functions form a base in L2{G), [2 ] . Let <T(—A') = {Xk} (0 ^ At ^ X2 ̂  . . . g 4 ^ . . . ,
Afc-> oo, as k-* oo) be its spectrum, and <bk((o) the eigenfunction corresponding to Xk,
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and put

"2 = £ vk(r)d>k(co).

From (2.5b), u2 must satisfy

It is easy to solve this equation:

t>*(r) = Ct-i*~+Ct
+r*+,

with

+ - 1 ± Vl + 4 4
«*" = .

As M2 e i / 1 ^ ) , we must have Ck = 0 for 4 ^ 0 (for r^eH' f f l , ) , we have
4 > -i). so

with at
+ ^ 0. D

Proof of Theorem 2.11. From the above lemma we have u = ul + u2 and ux e
Now we prove that we also have u2 e 0,(0/0.

As M2 e ifx(fin), the theory of traces [7] gives

£(Q+Ra*+)2< +oo.

Then for all R < R and all integer n,

holds. Using the property

A'(Dk = 4O, and ^

and the previous inequalities, we can prove that for all s > 0 there exists a K
such that

k>k

which is continuous for s large enough. Since afc
+ ^ 0 and <E»Jtei)A'c*Ci(G) (when

afc
+ = 0, we have Xk = 0 so that <!>* = constant) for all k, we could conclude that

so

u e Cb(Qt).

By partition of unity, we obtain Theorem 2.11. •
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Solution for concentrated loads
Existence. Suppose that we have concentrated loads Pt on points

j = 1,2,..., nt, and concentrated loads <pa on rectifiable curves yx<=:QurN,
a = 1, 2 , . . . , na; then / and h will take the following form

where 5Ai and 8y^ are the Dirac's measures with supports on At and on ya, respectively.
Here the dimension of ya is 1. With the help of Remark 2.10, we can now construct
the very weak solution of (PI) with these concentrated loads. The effects of these
loads on the field v can be put formally in the following expression:

" I fvdx- | gudo'^^PMAJ + Y, I <P«»ds,
Jii JrN i x Jy,

so the very weak form for (PI) with such loads should be

I «A» dx = - £ PtviAt) - £ I <p.v ds + (Nv, u0), V v e E0(Q), (2.13)

where u0 e H1(Q) and uo|rj) is the imposed displacement on FD. In order to use
Theorem 2.7 to establish the existence and uniqueness of the solution for the above
problem, it is necessary and sufficient to show that

x Jy.
<Nv, u0> (2.14)

Jy.

is a continuous linear functional on E0(Q). This is ensured by Theorem 2.11. Thus
we have:

COROLLARY 2.17. Let & be defined by (2.14) and (pteLl{yx); then #"e(E0(fl))'.
As a consequence we have:

COROLLARY 2.18. (PI) possesses a unique (very weak) solution u e L2(Q), corresponding
to F defined by (2.14), in the sense of (2.13).

For numerical calculation, the more singular the solution is, the less the accuracy.
So, in general, using the usual numerical methods to solve the problems with
concentrated loads will cause significant error. But, if we know exactly the singular
part of the solution, we can transform the problem to a regular one; then we can
obtain better accuracy for the numerical calculation. This is the purpose of what
follows.

The decomposition of the solution. We shall treat the pointwise concentrated
loads and curve supported loads separately. We shall assume that ya are segments
in Q\rD. First, let us assume that one of the vertices of Q is at the origin 0 = (0,0,0).
We define

where r is the spherical coordinate in the radial direction of the spherical coordinate
system (r = (x2 + y2 + z2)*, (x, y, z) is the Cartesian coordinate system), and a is the
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measure of the cubic angle of this vertex, i.e. (for a certain Ro)
2 ) , R<R0,

where B(R) is the ball centred at the origin with radius R and G is the intersection
of the unit sphere and the polyhedral cone generated by this vertex of Q.

It is easy to see that S1 is regular outside a neighbourhood of the origin 0, and
that the following lemma holds:

LEMMA 2.19. Let P be any plane passing through the origin and n be its normal vector;
then

dS1

^ = 0 , onP\{0}.

We also have

ASi = 0, inR3\{0}.

HYPOTHESIS He. Let Cl be a bounded polyhedral domain in R3, and e be a point or a
segment in R3; we say that e satisfies Hypothesis He in Q if: (i) enTD is empty and,
(ii) for any v e Cb(Q), xee, we have

lim v(Zi) = lim v{yt),
i~*oo i—K3O

where zt, yt e ft such that lini;.,.*, z( = l im^^y t = x.

REMARK 2.20. If e is on one face of a crack of ft, then e does not satisfy Hypothesis He.
Hypothesis He is introduced to ensure the validity of the decomposition of solutions
corresponding to concentrated loads in what follows. If Hypothesis He is violated,
we should modify the definitions of S1 and S2 (see later), and in general we could
no longer have their explicit forms.

LEMMA 2.21. Let Sl be defined as above and the origin 0 satisfy Hypothesis Ho; then
for any v e £0(ft) we nave

1 8S1

v -r- ds->v(0) as E -* 0,
G, dTl

J , Sv
S1 — ds->0 as £->0,

where Ge = dB(e)nQ.

Proof. As a convention, we use C to denote any constant that does not depend on e.
Since v e £(ft), using the decomposition of the functions of £ 0 ( f t ) m t n e subsection

'The continuity of variational solutions', above, we can obtain that

» = r - w ( l o g r » + X Ck-r"<'<S>k((o)+ £ Ck • r**t(a>),
k = l k>K

where 0 < a <; \, xk ^ 0, <bk e £>A, and w 6 HS(R, D^Ay) for s + 2(t - 1) = 0, and

wK(t,co) = r~i X C
k>K
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Because for ak = 0 we have dr"k/dr = 0, then

If ^
I JG. dn

<C-s 1
It

-wf- + wK+

£ |Ct<D

where 5 = min {a, afc; at ^ 0, k = 1 , . . . , K}. As w e H3l2+h{R, D^
small enough there exists a certain A > 0 such that

t-m), then for h

So

sup |w|, sup
t t

Similarly, we can obtain

Hence

sup |wK | , sup |wf |, $* 6 LX(G).

r du
lim S1 —rfs = 0.
E-.o JGe dn

Because for v e E0{il) we have v e Cb(Cl) (Theorem 2.11), Hypothesis Ho ensures that

f a e l f a c l f 1
dSl dS1 1

v — ds= - v-—ds=\ V{E, m)
JGB

 dn
 JG.

 dr
 JG O-I

ff
 J G

u(e, a;)>dto-»'z;(0) as e->0. •

Now let (p, q>, z) be the cylindrical coordinate system in IR3 and let a, b ^ 0 and
y = {(0,0, z) | a < z < b} be a segment on an edge of Q which joins a vertex of Q, at
the origin 0. Taking a function ^ e L1^), we define

where ^ is the measure of the angle of this edge. It is easy to see that S2 is regular
outside a neighbourhood of y, and the following lemma holds:

LEMMA 2.22. Let S2 be defined as above; then

AS2 = 0 inU3\y.

For any plane P passing through y, we have

dS2

— = 0 on P\y.
on



BVPsfor the Laplace operator and Lame system 657

LEMMA 2.23. Let D = {(p,q>,z)\z <kp,(p2 + z2)* <R}, with k,R being two positive
constants, and let P be a plane passing through the origin such that ynP is empty.
Then

dS2

' dn

with \j/ eLP(y) such that p = 1 for a >0, and p>2 for a = 0, and PR =
Pn{(p,(P,z)\(p2 + z2)i<R}.

Proof. A simple calculation shows that

If a > 0 then the distance from y to D is no less than ka/(l + k2)*, so that

(1 + fc2)* Cb

| V S21 ^ C •— |iA(3)|d3 inD.
k' a Ja

As D is bounded, we have

Iffl =

Since

0 then

z<kp,

(1/P+l

ivs2:

we can

l = c-̂

= C- | I

obtain,

i:
for

\ i/p /

l"A(3)lprf3J (

z>0,

Ja (p2 + (z
z > 0

5

in D.

i / «

So

| V S 2 | g C - | | ^ | | ^ ( 7 ) T
1 / « - 2 = C - | | ^ | | t f ( , ) - r - 1 - 1 " inD.

If p > 2 we have — 1 — I/p > —3/2, which means (as D is bounded) that

Similarly, we can verify that S2 is square integrable in D. Therefore

with \j/ e LP(y) such that p = 1 for a > 0, and p > 2 for a = 0.
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As y is a segment with ynP = 0, then there exists a positive number k such that
for any (p, <p,z)eP we have z < kp. So

dS2

—-^IVS^C-r-1-1", fora = 0,
on

5S2

— <|VS2|^C, fora>0,
on

Jo

if (— 1 — I/p) • | + 2 > 0, i.e. p > 2. Then from the Sobolev embedding theorem we
conclude that

dS2

~eL4'HPR)^(HHPR)y. D

LEMMA 2.24. Let T£ = {p = e,0<z<b}nil\B(2E), Ss = dB(2s)nQ\{p^e}, and
Hypothesis Hy be satisfied. Then, for any v e EO(C1), we have

[ 8S\ fv — ds +
Jse dn J S e

S2 — ds^-0 ase->0,
on

f dS2 Cb

v ds -» \ii(z) • vo(z) dz as z -> 0,
Jr. dn Jo

dv
S2 — ds-+0 ase->0,

r on

where S2 is as defined previously with i// e LP{y) under the conditions:
(i) p = 1 for a > 0, and <j> < 2n or y a Q;

(ii) p > 1 /or a > 0 and <j> = 2n with y a dQ;
(iii) p>2for a = 0.

Proof. (1) Similarly to the proof of Lemma 2.23, we can obtain the following
estimates (with k = 3*):

)-r-v onS£,

| | ^ | | / ^ ( y ) - / - - 1 - 1 / * o n S t

if a = 0, and

if a > 0. Because when a = 0 we have assumed that p > 2, then in all cases we have,
for r = 2s (and with y being bounded),
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dv
dn

ds -L V dn +

I |»|e* +

dv
dn

dv

~dn~
— E3'2dc0.

dn

Using the decomposition of v e E0(£l) as in the proof of Lemma 2.21, we have

f dS2 .dv

v \-S2— ds^C«e*-»0 as£-»0.
Jse

 dn on
(2) Let

= to
3 £ (a, b),

3 6 R\(a, by,

then

ds2 , cp, z)

=h r r f*
2'f JO Jg J - c

g J — oo h2)3'2
• dh dz d<p,

where

g(<p) = max {z, 3*e} if (e, <p, z) e dil.

It is easy to see that g(<p) ~ O(e). Now we shall show that we can replace
in the last formula by \j/(z) in the limit case. In fact, as v e Cb(Q),

— eh)

w=

= sup|r|

v dhdz

IT; dh dz.
g J — CO

Combining the integrability of (1 + h2) 3/2 over (-co, + oo) and the average conver-
gence of L1 [18] we can conclude that

ase->0.
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Therefore, we have (since J ^ ( 1 + h2)'312 dh = 2)

f 8S2 1 r*Pp^(^z)
hm i; —— as = hm-—- — — , ,x,,, an az a©- o j r < 5n , ^ > 2 ^ Jo J, J_M (1+n2)3 ' 2 ^

1
= lim -

o Jg

(1 + n2)3

\j/(z)v(s, q>, z) dz i

i//(z)vo(z) dz = i//(z)vo(z) dz.
Jo Ja

Note that the last limit is ensured by the continuity of v and Hypothesis Hy.
(3) Now let us prove the third part of the lemma. First we argue the case where

a > 0. We always assume that s is small enough.

e I | S2 — dzdq>n
JO Jgn
Jo Ja

b ,dv
e I | S2 — dzd<p

dP

r4> ran

Jo Jg

dv

dp
dz dip

I J*/2 Jo I Jo/2 °P

Mir(S2fdz

dz dq>

dz dtp. (2.15)

Using the properties of convolution we have, for l^p^2,j=l/p+ l/h — 1,

(S2)2 dz
a/2

loge| p = 2.

As a > 0, therefore
fa/2

(S2)2dz ^

<
=

ra/2

Jg
ra/2

I

dz

(a/2)
dz

So for a > 0 we have (1 ̂  p < 2)

;.£3/2-l/p

C-e

— dz dtpr* i r
Jo 1 J

/•a/2

Jg

b

>/2

dv
—
op

dv
—
dp

2

2

dz

dz
i

i
dcp.
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Because dv/dp = sin 5 • dv/dr + cos 5 • (dv/dS)/r, we can make estimates for the inte-
grals in each term. We first do so for sin 5 • dv/dr.

rail

Jg

dv
sin ,9 —

8r
dz dip Jo

I Jo J9

dv
sin 5 —

ddr
dz df

sin
sin S dS d<p

Here we have used the variable transformation: z = e • ctg S. Using the decomposition
of v e £0(^) a s m t n e proof of Lemma 2.21, we can obtain

Call

Jg

dv
sin 9 —

dr
dz dq>

<c- Jo Lg
 sin 9 r* 1(aw wK

K

k=l

sin 5 dS d<p

where we have used the relation r = e/sin 5, and |(sin <9)"| ̂  1 for /i ^ 0. With regard
to the fact that for a.k = 0 we have r^O^ = constant, 5 is denned by

8 = min {a, afc; afc # 0 , 1 :§ k ^ K}, (̂  > 0).

Since

sup \w\, sup |w,|, sup IwK|, sup |wf I, |<Dfc| e L2(G),
t t t t

we can conclude that

ran

L
dv

sinS —
dr

2

dz

Similarly, we have

c<t> I Cb
dv

sin i> —
dr

dz
dv

sin.9 —
dr

dz
JO I Ja/2

i.e. for any p such that 1 ̂  p < 2

2 • n 5 U ,
S sin 9 — ds

dr

^C-e* -»0 ase->0.

Using the variable transformation z = (r2 — e2)*, we have

'all
cos

dv
—-
rd&

dz d<p
~C'

JO Jra/2

dv

rdS
dr d<p.
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Let v = r"w with 0 < a ^ \, and 91>0 fixed and small enough. We have

IT
Jo Jra/2

d(r*w)
dr dtp S

JO Jr^

s cTf
Jo Jta/2s cTf
Jo Jta/2

dw

dtd<p

dtdq>,

where sin 5, = e-exp(— t). Since weL2(IR, DA') (see Theorem 2.13), using the
decomposition of functions in DA' [7] a simple calculation shows that

39
) , (sin

d2w
€ L2(R, L2(G)),

where O(5i) is a neighbourhood of {# = i9j} in G, and /i is a positive number such
that if <f> <2n or y c:Q then / i < § and if <f> = 2n and y c 3 Q then n can be any number
greater than \. So

= #!} n = 3t} n G)).

Also, (as min{|cos 5,|, |cos 3|} >0)

n'» f P ' 32w

(sin (sin 5),2/j + l

R JG

i.e.

a/2
cos

\j rv

sin ay ^

dz

dcodt

dtp

Taking into consideration that (rg)
2x x ^ C • e2oc 1, we obtain

cos 5

Using the conditions on p, p and a, we conclude that, as e -»0,

1 ^ C•

holds. We can estimate the integral for v — rwK and • rx"<^k(Qi) in a similar
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way. Taking into account the fact that <bk = constant for <xk = 0, we conclude that

dv
S2-cos9'-— ds

rdS
^C-(e*-

where 5 = min {a, ctk; ak # 0,1 ^ fc ̂  K} and <5 > 0.
For the case where a = 0, the estimate is almost the same as the estimate of the

second part of (2.15). The only difference is about the estimate of S2, i.e.

r.
f

o Jg
< e (S2)2dz

Jo Jg

r
JO

r
J*

dv

dp

2

dz

dz

d<p.

d<p

The estimate of the integral

P
J .

dv

~dp

2

dz— dz dip

is exactly the same as the estimate of the integral

Therefore

fa/2

J .
dv
—
dp

2

dz— dz dq> for a > 0.

dv
S2 sin S — ds

dr

dv
S2-cos9-—- ds

rdS

This completes the proof. •

PROPOSITION 2.25. Let S1 and S2 be defined as previously, with y = {(0,0, z) | a < z < b},
and let the conditions in Lemma 2.24 be satisfied. We assume that 0 = (0,0,0) and f=
(0, 0,/) , 0 :g a < b ̂  / , are the two ends of an edge ofCl, and the origin 0 (respectively
y) satisfies Hypothesis Ho (respectively Hy). Then there exists a function uY eH'(Q)
(respectively u2 e ff1^)) such that for any v e Eo(^)

(S1-u1)Avdx=-v(0)

(respectively

(S2 - u2)Av dx =- \/f-v ds).
Jy

Proof. We prove the proposition for S2, while the proof for S1 is analogous and easier.
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Let TN/l! = rN\u,-6gi Fj where 9fe = {i\ecTi}. Because S2 is regular outside a
neighbourhood of y and y cQnFN, Hypothesis Hy and Lemma 2.23 allow us to
conclude that

' dn

Then from the variational formulation we can see that there exists a unique u e,
such that u\r = S2 and

f f 3S2

VuVvdx= —vds for any v e

So we have Au = 0, U\TD = S2\TD and du/dn\r^y = 8(S2)/8n\rNXy, 8u/dn\rj = 0, ; e 5Rr

Denote by B(p, e) the ball centred at the point p with radius e, and by Z(E, e) the
cylinder with radius e whose axis passes through segment E. We assume that {At}
and {Ej} are the set of the vertices and the set of edges of Q such that /<, # 0, At^f
for any i and Es n 0/ is empty for any ; (0/ is the segment with ends 0 and / ) . Then
we define

T£ = 8Z(y, e)nfi\(JB(0, 2e)uB(/, 2s)),

SE = (BB(0, 2e) u dB(f, 2s)) n O\Z(y, E),

{]_ B(At, 2e)

S'. = | y dB(Alt 2e\ ncAI.{J Z(EP

j , e)J u ((J B(A;, 2e)J uZ(y, e)uB(0, 2e)

Let w = S2 — u. Considering that S2 is regular everywhere except in the neighbour-
hood of y, we can prove (in the same way as in the proof of Lemma 2.24) that for
every v e E0(Cl)

holds. As v(dS2/dn) is integrable on r^ , , we have

f dS2 f dS2

lim ^— t; ds = ^— v ds for any u e £0(^)-
£^o r o on r an
lim

Because

lim I VuVvdx = 0,

for u e H1^) and v £ £ 0 ( ^ ) c H1(Q), we obtain

*° Jn\ne

r r r as2 i
lim< VuWvdx- — vds}=0.
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As uefl ' ( f l ) , we know that J r u S u r u s I"!2**5 is bounded by ||M|||i<n). Using the
Cauchy-Schwartz inequality and' the estimates for v in E0(Cl) in the proof of
Lemma 2.24, we have

f dv
lim — u ds = 0.
«-*° Jr'us'ur^s "n

Let us approximate the integral j n wAv dx by

wAv dx = S2Ai> dx — uAv dx
Jn, Jn, Jn,

f /a» dS2\ f f di;
= — S2-v—— )ds+ VuVvdx- —uds.

Jan, \d" dn J J^ Jdile dn

By virtue of the boundary conditions satisfied by S2, u and v, we obtain

J wAv dx = I I — S2 — v — I ds + I I — S2 — v — I ds
o L, 5 \on dn J L< „- Vcn o n /

f f 3S2 f d»
+ VuVudx— ——vds— -—uds.

Jn Jr nan ^w Jr'us'urus ^w

Let e tend to zero. From Lemma 2.24, it is seen that

J wAv dx = lim wAv dx =*. — \ \j/ • v ds for every v e E0(il).
n E-*° Jn , Jy

Using this proposition, we can easily obtain the following corollary:

COROLLARY 2.26. Let u be the very weak solution corresponding to

r
L a J^«» s +

with Fe(H])(Q)y and uoe/ / 1(Q). Moreover, A{ is a point in QuTN and satisfies
Hypothesis HA., yx is a segment in Q u F w and satisfies Hypothesis H7a, q>a e LP(yx) with
p such that

(1) p = 1 if the ends of yx do not join the vertices of Q, and <f>a<2n or y c Q;
(2) p > 1 if the ends ofyx do not joint the vertices oftl, and ^ = 2n with y cz dQ
(3) p > 2 if the ends ofyx join the vertices o/Q,

where <j>x is the measure of the angle of the edge on which yx is lying (for yx in Q we
have fyx — 2n, for yx in a face ofil we have (j>x = n). Let a{ be the measure of the cubic
angle ofCl at point At; then we have

I 1 r m (Y)
i ' vldsa, (2.16)

where uR e H^fl), and \X - Y\ = ((x, - ytf + (x2 - y2)
2 + (x3 -
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3. The case of the Lame system

Now we turn our attention to the Lame system, i.e. (P2) mentioned in the
Introduction. In this case the very weak formulation is analogous to that of the
Laplace operator. But for the continuity of variational solutions we have no complete
result. We are only able to prove the continuity of the solutions near the edges of
a polyhedral domain. We shall present the results in the same order as in the
previous section.

The very weak solution

Let us use the notation in Section 2 and introduce:

V0(Q) ={veH1 (£l)31 Lv e L2(Qf, Tv\rN = 0},

where L is the Lame operator, i.e.

LV = OiJJ(v) (3.1)

with

< T , » = 2A«y(») + A V t t ( » ) , (3-2)

eu(v) = &Ui.j + Uj,t) (3.3)

and Tv is defined as follows:

DEFINITION 3.1. For v e F(Q) = {v e HX(Q)31 Lv e L2(fi)3} we define Tv e (H^fi)3) if

<Jv,u)= [ [Lr-« + (7,»£ij.(«)]dx V « e # W - (3-4)
Jn

We have formally (see [4 ] or [5])

<r»,H> = "
an

where n = (nu n2, n3) is the unit outward normal vector of dQ. TV\FN is defined as
the restriction of Tv on (HKClf)'.

From the variational resolution, we have [7, 8 ] :

THEOREM 3.2. The Lame operator L is an isomorphism from V0((l) onto L2(£l)3, if

rD#0.
REMARK 3.3. For rD = 0, we may replace V0(Q) by the quotient space of V0(Q):
V0(Cl)/ud, where ud represents the rigid displacement:

with BeR3 and Me R3 xR3,MT= -M, and replace L2(fi)3 by a subspace of L2(il)3

of which the functions take the zero mean value and the zero 1-order moment.

By the transposition method, we can introduce the very weak solution:
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DEFINITION 3.4. Let 3F e (V0(Cl))', we say u is the very weak solution for the Lame
system corresponding to 3F if and only if

u e L2(Q)3

(3.5)I"such that u-Lvdx = &{v) V v e V0(Q.).

Similar to the first subsection of Section 2, we can show:

THEOREM 3.5. For every F e(V0(Q))' (P2) posssesses a unique (very weak) solution u
in the sense of (3.5).

We also have a similar statement to Proposition 2.9.

The continuity of variational solutions
THEOREM 3.6. Let il be a bounded polyhedral domain, and if = {SJ be the set of its
vertices. If us V0(Q), then for all e > 0 we have

ueCb(n-\JB(Si,e)J,

where B(St, e) is the ball centred at point Sf with radius E.

The proof follows.
Partial regularity. Let Gj be a (two-dimensional) bounded polygon, and yN,

y^cSGj with yjvnyD = 0 , jN'oyD = dG1. We impose Q1 = G1xR, TN = yN x R ,
TD = yDx R; then u e V0(Q1) implies that u e Hi(fli)3 and Lu 6 L 2 ^ ) 3 . According
to Theorem 3.2 this is equivalent to saying that there exists / e L2(Q1)

3 and that u is
the unique solution of the following variational problem (TD ^ 0, for TD = 0 see
Remark 3.3):

3'j ffy(«)ey(») dx = I / -

Then we have (see [4,9,17] etc.)

LEMMA 3.7. Let fe L2(£lt)
3 and u be the variational solution defined by (3.6); then

where zeR, with (m,z)eQ1,meG1.

Proof. It can be proved by using the invariant property of the domain Cli and of
the Lebesgue's measure with respect to the transition in the z direction.
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Let us take e e l and define

w(m, z + E) — w(m, z)
w£=

for (m, z)eil1 = G1x R. Then from the invariant properties we have

Vij(Ue)Eij(v) dx = fc-vdx.

So

If we have

we could conclude that

3)' ^ C||/| |L2(ni )3, (3.7)

In fact from (3.7) one can deduce that

Therefore, {uc\e e R} is bounded in H^QJ 3 . Hence it is weakly compact, i.e. there
exists a sequence {sk}, ek-*0 such that

weakly

But we have

so that

in the sense of distribution

8u

"dz'

(one can obtain an even better result: du/dz e #B(^I)3 ) - For (3.7), we take
] 3 , then

_£ = - - — dz = - —
8 Jz-e ^ Jo ^Z

(m, z - te) dt.

Using the above relation, we have

>dxI [ fc-vdx = - f /•«_
1 dv

f— (m, z — te) dt dm

Jz
(m, z — te) dt
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dv

dz

This implies (3.7). D
Continuity. THEOREM 3.8. Let i2x be defined as previously, andf€L2(Q.{f. If u is

the variational solution defined by (3.6) then

Proof. We put

Using Lemma 3.7, we arrive at

d2v

»={:}•

on FD,

and

d2uz

dz2

uz =

where A, L are the Laplace operator and the Lame operator in two-dimensional
space, respectively. Also a is the two-dimensional stress tensor, n is the outward
normal vector of yN in R2. We have

n.}, a =1,2.

Using the results about traces (see e.g. [4, Appendix III]) one obtains: there exists
a n ' e //2(fi, )3 such that

a1 = 0 on TD,

dn
= hu on rN.
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If we put

then

1 1

dz2 + \

H2 = 0

q(v2)n =

dul

L

0

0

Ding

U2 = U

°] 2
A)U

Hua

-u\

onrD,
on TN,

on r,v.

We define

D =

ueL2(Gi),a(v)n = 0 and ^ = 0 on yN\

(q(v)n and duz/dn are defined in a weak sense similar to the definition of Tv); then

a oN

Ay

is a positive selfadjoint invertible (rD # 0 ) operator with domain D. Similarly to the
proofs of Theorem 2.13 and Corollary 2.15, we could obtain

u2 e H2(R, L2(n!)3)nL2(re, Bf^C,,^?.

So, from the Sobolev embedding theorem, we have

u = u2 + uleCb(Q1)\

Theorem 3.6. can finally be obtained from the properties of traces and partition
of unity.

REMARK 3.9. From the recent result of Kozlov and Maz'ya [12], one can conclude
that the functions of V0(Sl) are continuous up to the boundary if the domain il
contains only isolated singular points, e.g. if Cl is a cone with regular intersection
with the unit sphere. For such domains Grisvard (personal communication) proved
that the functions of F0(Q) (rN = dSl, or rD = dCl) belong to H3l2+e{Qf for a certain
£ > 0. From Sobolev's embedding theorem we have the continuity.

Solution for concentrated loads
Similarly to what is done in the third subsection of Section 2, we shall shall give
some results for concentrated loads, i.e. under certain restrictions, / and A may
contain Dirac's measures.

Let P{eR3 and XjeQuF, , . We also assume that ^eL ' fy , ) 3 , with yx being a
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rectifiable curve in QuFj , . The following constraint would be imposed:

Then, from Theorem 3.6, we have the following lemma:

LEMMA 3.10. With the above assumption, the functional

(v) = - E f v.-vds-ZPj-v(AjF(v) = - E f v.-vds-ZPj-v(Aj) (3.8)

is in (VO(C1))'.

Take

<F{v) = F{v) + <Jv,uoy (3.9)

with n0 e Hl(Qf. Due to Theorem 3.5 we have

COROLLARY 3.11. Let J5" e(F0(fi))' be defined by (3.9). Then there exists a unique
ueL2(Q)3 solution o/(P2), in the sense of (3.5), under the concentrated loads Pt and
<px in fiuFtf and the imposed displacement uo\rD on FD.

REMARK 3.12. In Section 2, we discussed the decomposition of solutions correspond-
ing to concentrated loads. The key point, that allows us to use the fundamental
solution to construct the singular solutions on segments and to decompose the
solutions, is the fact that the normal derivative of the fundamental solution on any
plane passing through the singular point of the fundamental solution is zero except
at the singular point. Unfortunately this is not the case when we deal with the Lame
system, and in general we do not have ah explicit solution for a polyhedral cone or
edge (even locally). So far as the author's knowledge goes, the explicit solutions
corresponding to a point load exist only for the whole space and the particular case
of a half space. Here is the solution in the whole space [12]: let F=(f1,f2,f3) act
at point Y = (yu y2, y3); then the solution of the Lame system is

riY v\ 1 + V (3 ~4v)F+ »(»•*)

where n = (X— Y)/\X— Y\ and the relations between the Lame coefficients n, X and
E, v are n = E/(l + v)/2, X = vE/( 1 + v)/( 1 - 2v). So, similarly to what is done in
Section 2, the solution u of the Lame system in Q, corresponding to concentrated
loads Fat a point A eQ, Hon a segment y c f i can be decomposed as

u = uR + GF(X - A) + [ GH(X -Y)-H(Y) dsY,
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