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Summary--A slip-line field solution with lines of stress discontinuity is proposed which is 
shown to be admissible for obtuse-angled wedges with interfacial friction. The dead metal cap 
solution which is used conventionally when 0 - A t> *r/4 has a lower load than the correspond- 
ing non-dead metal cap solution. This result is referred to as Haddow's paradox. Using the 
new solution it is shown that, at the point of transition, corresponding to 0 - A  = 7r/4, the load 
coincides with that of the non-dead metal case. Thus Haddow's paradox is inoperative. 

0 wedge semi-angle 
A, ~, ~ angles in slip-line fields (Fig. 1 and 2) 

8w tip semi-angle in Fig. l(a) 
8 tip semi-angle in Fig. 2 

normal stress 
~- shear stress 
k yield stress in shear 
c depth of indentation 
h wedge contact length 
L load per unit length of wedge 

~rij components of the stress tensor 
n~ normal to discontinuity surface 

angle 

NOTATION 

INTRODUCTION 
Two slip-line field solutions have been proposed for the plane-strain indentation of a 
semi-infinite block of rigid perfectly plastic material by partially and completely rough 
wedges. Fig. l(a) shows the solution which is admissible for smaller wedge angles. This 
solution, due to Grunzweig and co-workers [ 1 ], is a generalization of the frictionless case 
(A = ~'/4) proposed by Hill, Lee and Tupper [2]. 

Hill[3] suggested that for obtuse-angled wedges (0 > ~-/4) with sufficiently high 
interfacial friction, a dead metal cap solution is applicable, this solution is shown in 
Fig. l(b). Johnson et al. [4] showed that the dead metal cap solution was possible when 
the tip of the wedge in the non-dead metal cap solution becomes overstressed. These 
researchers also showed that the loads required for the solution in Fig. l(b) were 
slightly less than those obtained for the non-dead metal cap solution with sticking 
friction (A = 0). Also it was observed that the critical coefficients of friction for the 
dead metal case were slightly less than the maximum admissible values for the 
non-dead metal case. 

Haddow[5] completed more extensive calculations for these two solutions and 
confirmed the findings of Johnson et  al. Haddow referred to these results as a wedge 
indentation paradox. The discontinuous jump in load between the two solutions at the 
transition point is now called Haddow's paradox in the literature [6,7]. 

Using the concept of the coincidence of lines of velocity and stress 
discontinuity[8], a new solution is proposed which is admissible for indentation by 
obtuse-angled wedges. There is no discontinuous jump in load at the transition from 
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FIG. l(a) Slip-line field solution admissible when 0 - A ~< ~r/4, (b) Dead metal cap solution used 
when 0 - A/> ~r/4. 

t h e  n o n - d e a d  m e t a l  c a p  s o l u t i o n  to  t h e  p r o p o s e d  s o l u t i o n .  T h e r e f o r e ,  H a d d o w ' s  

p a r a d o x  d o e s  n o t  e x i s t  w h e n  t h e  n e w  s o l u t i o n  is  u s e d .  

NEW SOLUTION FOR OBTUSE-ANGLED WEDGE INDENTATION 

The slip-line field shown in Fig. l(a) is statically admissible as long as angle DBQ is not less than 912. In 
terms of 0 and )t this condition is 

0 - ~. ~< ~ ' / 4  (1) 

when angle DBQ is less than ~r/2 the rigid material in the wedge bounded by slip-lines BD and BQ is 
overstressed.  In these cases the dead metal cap solution has been used. 

The proposed solution is shown in Fig. 2. When angle DBQ is less than ~-/2 the segments BD and BQ 
are no longer characteristics (weak discontinuities) but become stress discontinuities (strong dis- 
continuities). Also the angle ADB is greater than ~-/2 because AD is still a ,8-line and BD is a stress 
discontinuity. It is clear that when angle DBQ equals ~-/2 both solutions coincide. 

ADMISSIBILITY OF PROPOSED SOLUTION 
The condition for the transition from the non-dead metal cap solution to the new solution must be 

deduced using Hill's generalized overstressing criterion[9] since BD and BQ are stress discontinuities. 
Referring to Fig. 2, Hill's criterion requires 

cos 2~'-  cos 26/> 0 when DBQ ~< 7r/2. (2) 

Therefore the minimum angle 8 satisfying Hill's criterion is 

a = ~. (3) 

Following Hill's analysis, the shear stresses on BD and BQ in the wedge bounded by BD and BQ are r~ 
and "r 2 where r~ = - r 2 and 

~'1.2 = -+ k sin 2~" (4) 

where s r lies between zero and ~-/4. 
Because the stress state in triangle ABD is uniform and below BD the material is rigid, BD is straight. 

From Hencky's  equations, in triangle ABD 

o- = k[l + 20 + sin 2{zr - (6 + O - h)}] (5) 

and 

r = k cos 2(6 + 0 - A). (6) 
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FIG. 2. Proposed solution with lines of stress discontinuity BD and B Q  admissible when  
0 - ~ ~ ~r/4 except  when  ~ = 0. 

For a stress discontinuity the following condit ion must  be satisfied, 

[,7on j] = 0 (7 )  

where cri / is the stress tensor  and n i is the normal  to the discontinuity surface. Comparing equations (4) and 
(5) and introducing (3), it is found that  angle 8 is given by, 

3~r ( 0 - A )  (8) 
8 8 2 

For the non-dead metal cap case shown in Fig. l(a) the tip semi-angle 8,  is given by, 

8w = 2 - (0 - ;t). (9) 

Fig. 3 shows tip semi-angle vs ( 0 -  ;t). At  the point  of t ransi t ion 8 and &, coincide and for larger values of 
( 0 - , D ,  8 >  8w. 

For point  C in Fig. 2 to be at the same height as the original undeformed surface requires 

h c o s  0 - c = ~ /2h  sin (0 + 8) sin (0 - A - 0 + w/4) (10) 
sin (0 + 8 - A) 

If  equat ion (9) is subst i tuted into equat ion (10), then this is coincident with the equation for the solution 
shown in Fig. l(a). 

A fur ther  geometrical  condit ion may be derived from the requirement  for geometrical  similarity. This 
similarity condit ion is derived with the help of the unit  diagram shown in Fig. 2. 

The foci are a circular arc HN and point  K. OH is parallel to EC and ON is parallel to the tangent  to 
the arc D E  at D. Also OK is parallel to B D  because only a tangential  velocity discontinuity is permissible. 
Points  H, K and arc HN are the foci for elements  in AEC, ABD and fan ADE, respectively.  Geometrical  
similarity requires that  points K and H lie on AB and the extension of AC, respectively. Point  K obviously 
lies on AB. For  point H to lie on AC extended requires,  

h cos (;~ + 4, - """ c sin 0 sin • (0 - ,~ - 4/+ w/4), 
~r/4) -- V 2  sin (,~ + e) + c cos (11) 
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FIG. 3. Relationships between the tip semi-angle 8 and ( 0 -  ,~) for the non-dead metal solution 
(Sw) and the proposed solution (8). 
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where ¢ = 0 + 8 - a. If e = ~r/2 is substituted into this equation, then it coincides with the condition for the 
Coulomb friction solution shown in Fig. l(a). 

The final check for this new solution is that the plastic work rate across the stress discontinuities is not 
negative. It is clear that deforming material below BD undergoes positive plastic work on crossing BD. AD 
is only a velocity discontinuity and is a characteristic. Green[10] has discussed these discontinuities and 
concluded "a velocity discontinuity is only possible (for a positive plastic work rate), if the a-  (and B-) 
direction at 0 (on the discontinuity) coincide, the slip-lines are continuous and there is no stress 
discontinuity." Obviously, AD satisfies all these conditions. 

The solution described here can be used for any wedge within and beyond the critical condition 
0 - it = ~r/4 except in cases where it = 0. In this latter case D coincides with B and this would change the 
properties of the characteristic DE. 

It may be shown that the load per unit length of the wedge is given by, 

L = 2h----~k {(1 + 2~b) sin 0 + cos (0 - 2A)}. (12) 
C 

COMPARISON OF LOADS FOR THE THREE SOLUTIONS 
Table 1 shows the load variations with increasing wedge semi-angle 0 at a fixed frictional condition 

(it = 20 °) for the three types of solution. The first line are the loads required for the Coulomb friction 
solution. Although this solution is physically meaningless beyond 0 = 65 ° because of violation of Hill's 
overstressing criterion, the data are quoted for comparison. The second line in Table 1 shows the loads for 
the proposed solution. It is clear that the transition 0 -  A = ~r/4, here corresponding to 0 = 65 °, the loads for 
both solutions coincide. Also for comparison the load values for the dead metal case are given in the table. 

Table 2 shows the variation in the loads for the Coulomb friction case and the new solution with A for a 
fixed wedge semi-angle, 0 = 75 °. 

It is worth noting here the comments of Johnson et al. [4] concerning the Coulomb friction and the dead 
metal solutions: "since the deformed surface is not the same in the two solutions, it is not possible to state 
that the lower load is a better upper bound." The reason for this is that the uniqueness theorems cannot be 
applied because the form of part of the boundary is part of the solutions. The same observation is true 
when comparing the dead metal cap solution with the new solution. 

CONCLUSIONS 

A slip-line field solution has been proposed for obtuse-angled wedge indentation. 
This solution includes lines of stress discontinuity and has been proposed to replace 
the often used dead metal cap solution. The new solution has been shown to be 
statically and kinematically admissible for case in which 0 - ;t > ~r/4. Using the new 
solution it has been shown that Haddow's paradox does not exist. 
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