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ABSTRACT

In this paper, we have derived an approximate ‘‘Bolug Flow’’ solution between two
adjacent red blood cells (RBC) in a capillary, using the Galerkin method and numecrieal
smoothing technique, and then examined in detail the effects of the ratio A of the diameter of
the RBC to that of the capillary and those of the leakback @ in the thin lubrication layer on the
Bolus Flow. Because of the simplicity of the method employed here, only a small amount of
numerical calculation is involved. Furthermore, we have rectified somewhat unreasonable
formulation of the boundary conditions presented previously so as to mateh the Bolus Flow
with the flow in the lubrication layer, The results are reasonably in agreement with other
theories, providing correet boundary conditions for the determination of the deformation of
RBC.

I. INTRODUCTION

.A capillary is the very place where the process of metabolism between blood and
tissue takes place. The investigation of the blood flow in it is of physiological and
pathological significance. A lot of difficulties may oceur in quantitative observations
owing to its tiny construction. On the other hand, model experiments without proper
simulation of the real flow in the capillary could only provide a qualitative sketch of
it. For this reason, various kinds of idealized mathematical models have been suggested
abroad during the recent decade.

The diameter of a capillary is usually slightly larger or even smaller than that of
the RBC, which has to squeeze into the capillary one by one in a single line. With
large deformation, the RBC nearly fills up the whole vessel lumen. Microcinemato-
graph and large-scale modeling have shown that no matter how close to that of the
vessel the diameter of the RBC is, there is always a rather thin lubrication layer of
the plasma, and that the plasma between two adjacent RBC’s is making circulation with
respect to the coordinate system fixed on the RBC, known as ‘‘Bolus Flow?’.

The exposition of the relations between pressure drop and flux is an essential topie
in microcirculation mechanies. Some authors regarded RBC as rigid or undeformable
particles. With their real shape unknown, one fails to yield an exact relation between
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them. In 1968, Lighthill™ assumed that the RBC was an elastic pellet and he took into
account the interaction between the deformation of the pellet and the plasma flow in
the lubrication layer, and thus the shape of the RBC as well as the pressure drop could
be determined. In reality, the elastic model of the cell membrane is much more com-
plicated than that postulated in reference [1]. Moreover, if we only deal with the
Inbrication layer, errors may also stem from the neglect of the Bolus Flow on both sides
of the RBC. Consequently, the results that merely qualitatively conform to those in model
cxperiments are unable to explain convincingly the reason Wh’y the parachute shape
on the backside of the RBC is observed in vivo experiments and large-scale modeling.
Therefore, it seems necessary to examine the Bolus Flow closely.

By expanding a series of eigenfunctions, Lew and Fung™ worked out a semi-
analytic Bolus Flow solution for the first time in 1969. They reduced the RBC to a
eylindrical disk with the same diameter as that of the vessel. Then the method was ex-
tended to the cases with the diameter smaller than that of the vessel by adopting in-
finitely thin disk model with RBC equidistantly distributing along the symmetrical
axis™. In 1970, Bugliarello and Hsiao™ obtained a numerical Bolus Flow solution for
the cases with the diameter larger or smaller than that of the vessel. In those papers,
the physical picture of the Bolus Flow is depicted, physiological meaning of it is
described, and several conclusions of great interest are drawn.

The common disadvantage of the above mathematical models consists in the fact
that the Bolus Flow solution does not match with the velocity profile in the thin lubri-
cation layer. As is known, the thickness of the layer varies and the velocity of the RBC
with, respect to the vascular wall is higher than the average velocity of the plasma
and the RBC, making the leakback in the vessel inevitable. Both of them will exert a
certain influence on the Bolus Flow between the RBC’s. The problem was not formu-
lated in a reasonable way, either by neglecting the thickness of the lubrication layer
and the leakback, or by not matching the Bolus Flow with the velocity profile of the
layer. In 1972, Fitz-Gerald™ tried to treat them properly and produced a series of
solutions for the stream function. However, the expressions for the pressure and
velocity turned out to be divergent.

In this paper, we have succeeded in application of the Galerkin method to obtain a
semi-analytic Bolus Flow approximation which strictly satisfies the match condition.
And, the effects of the lubrication layer thickness and the leakback on the Belus Flow

are then discussed.

II. THE FORMULATION OF THE PROBLEM

Supposing that the capillary is a straight eircular tube with radiusrg, in which
there are axisymmetrically suspending ecylindrical disk-shaped RBC with radius Arg
at an interval 2L, and that the plasma (regarded as the Newtonian fluid) with viscosity
p* fills up the space between them, we put the origin of the coordinate system (fixed
on the RBC moving at a speed U*, ie. the speed with respect to the wall) at the
midpoint between two RBC’s on the axis, r¥, z* being radial and axial coordinates

respectively. (Fig. 1)
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Next, we try to derive dimensionless coordinates and physical variables concerned
as follows:
L=L*/r§, r=r*/rf, s =2*/r§, 2= 2 /L =a*/L*, axial velocity v = u*/U*,
radial velocity v = v*/U*, pressure p = p*r§/u*U*, shear stress = ¢*rf/u*U*, stream
funection @ = @*/U*rf?. Clearly, r = 0,1 indicate the symmetrie axis and the wall
of the vessel, respectively; £ = +1, 0<{r <C1 the surfaces of the RBC; z = =1,
A << r <1 the exit and entrance, where 1 is the ratio of the diameter of RBC to that
of the vessel.

To derive the boundary conditions at the exit and entranece of the lubrication layer
with axial pressure gradient and axial velocity omitted, we obtain the momentum equa-
tion and the boundary conditions for the plasma flow in the lubrication layer:

dp_ 14 (do)

dx r dr \ ur
ulr=l =0, ulr=1 = _1’
1
Lurdr =—9 (1)

where @ = Q*/U*rf, 22Q*rf denotes the peripheric leakback around the vessel in the
lubrication layer. Integrating Eq. (1), we obtain the velocity profile in this layer

u=gr*+ghnr—g —1, (2)

where
0 —2 1— a2
1 d e i
n=12_ B a=daa-m -+
z (1—AZ)<1+H+ — ) n
Ini

If the stream function is defined as:

w106 104 (3)

r Or r Oz

it is easy to yield

=0, + Gr* + —;— grilnr + —i— o', (4)
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where
| 2 2 y 1
Gy = Z (g2? + ga)A , Go=— —4‘ (291 + g, + 2).

With the axisymmetrical axis being zero stream line, the stream funection on the sur-
face of the RBC is -

—Q, r=1,
¢ = F(r) = G0+G2r‘+%gzrzlnr+—i-glrz,‘ 1<r<1, (5)
07 O<T<l

It follows that the boundary conditions imposed on References [2—4] are all inconsis-
tent with (5), and thus are somewhat unreasonable. It is the expression (5) that
seems to be the only correct formulation for the boundary conditions in reality.

Now let us turn to the approximate equation for the stream function. Owing to
the fact that the capillary has a diameter as slight as 3—15 p, the speed of blood flow
is as low as 0.1--2 mm /see, it is found that the Reynolds number of the flow is as low
as 107%—107%, so we may use the Stokes equation to describe the plasma flow in the Bolus
Flow region by neglecting inertial force:

B'¢ =0, (6)
where E is the differential operator:
2 2 \2 2
E=<_<3___1_£+2_> =<i__1__3,_+ii_’>’.
ar? r r 07 or? r dr  L?o%

According to the axisymmetry of the flow, the adherence of the plasma on the wall and
Eq. (5), we have the following boundary conditions:

r =0, -6‘<'l%>=07 =0,

or \r oz
r=1 9% _—1 ¢-—y, (M
or

=1, &=F(r) %g%=o.

Thus we finally lead to Eq. (6) with the boundary conditions (7) for the plasma flow
in the Bolus Flow region.

IIT. Tine GALERKIN METHOD AND NUMERICAL SMOOTHING

The Galerkin method is one of the approximate methods in common use in applied
mathematiecs and mechanics. The main points for treating the above problem are as
follows. We first assume

b=+ > Ay, €))
j=1

j=

and then choose appropriate 9 and ¢;(j =1, 2, 3, ..., n), so that ¥, may satisfy the
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> =0, ¢i=0,
1),
(7)

boundary conditions (7), and %; the homogeneous boundary conditions (7’)

1640
r=o, 2 (Low

or \r or

r=1, 6¢1=0, by =0, (j=172’
or
g =0, L9%
r O%
Then according to the Galerkin’s

(9

As a result, ¢ itself strictly satisfies (7) as well.
i=1,2,

general procedure, the requirements of integral
” G;EPdrdz = 0, (3
is needed. We thus lead to a linear algebra equation system of zm-order for the coef-
(10)

.

ficients A;:
Z KifAi = — Ko, (7’ =1,2,.--, ’”‘)7

i=1
11 1(1 )
Ky = L 50 O Bipidrdz, K,y = So So b Efpdrdz.

where
As soon as 4; are found out in this way, 3 thus obtained is an approximate solution for

the problem.
In this paper, we assume that n = 12. As to the concrete forms of 3; they may be
Hence, 3 can be written as
(11)

chosen as polynomials with even powers being no more than 10 which are symmetrie

with respect to both axial and radial axes.
) (IJ = Qbo -+ (1 —_ 52)27'2<1 —_ rZ)Z[(Al -+ A;r’ 4 Aaf‘)
+ (As + Asr? + AP + (47 + Agr? + AT

+ (Aw + Apr? + Apr*)z’]
We notice the conclusion in the References [2] and [4] that the velocity profile of
(12)

plasma is similar to that of Poisenille flow in the region over 1.3 r, far from the
(13)

surface of the RBC. We may, therefore, suppose 1, as
bo = p(r)y(z) + F(r)[1 —y(2)],
(14)

bp(r) = % [(1 — 4Q)r* — (1 — 2Q)r*]

where
is the stream function of Poiseuille flow with flux . The other notations would mean :
1.0, T < I,
Q-8 n<zi<l,

L<13,
§=.’E‘_I0.
1_20

y(z) = {

0,
%={L—L§ L>13,
L
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It is easy to verify that ¢ and ¥,(j =1, 2, 3, ..., n) in the presentations (12) and (11)
satisfy the boundary conditions (7) and (7°) respectively. What we have done enables
us not only to get an analytic form for K., K, in (10), but also to reach a higher
accuracy with as few terms as possible.

Clearly, the approximation of a function does not mean the approximation of its
derivatives. Most likely, the approximate function will oscillate nearby the original
one. It follows that the differential procedure for predicting velocity, pressure, stress
and other physical variables might always bring about the deterioration of the results
even though the expression (11) itself is a fairly precise approximation. Hence we
would differentiate it with piece-wise numerical smoothing technique to diminish errors
instead of directly using analytic formulas available.

In this paper, we apply fitting programme of cubic curves to the smoothed and
differentiated functions, Provided that the interval between points is 2 for the fune-
tion itself and its derivative after smoothing, we have

f== %16 (69y—; + 4y_, — 6y, + 4y, — Y2

1
fo = .3:5 (21/—2 + 2Ty— + 12y, — 8y, + 2?/2):

1
fo= e (—3y—, + 12y, + 1Ty, + 12 — 3y2),

= 19,1_5 (2y_, — 8y— + 12yo + 2Ty; + 2u,),

fa= ?16 (—y—; + 4y, — 6y + 4y, + 69y,), (15)

’

= L (—125y_; + 136y, + 48yp — 88y, + 29y2),

84k
fl—l = i ("‘19!/—2 — ¥4 + 12y, + 13y, — 5yz);
42h
.1
fo= 1ok (y—2 — 8y—1 + 8y1 — v,
.1
f1= 9% (59— — 13y—1 — 12yy + 41 + 1992),
£l = §e%h (—29y_; + 88y_, — 48y, — 136y, + 125y,). (16)

The procedures are needed once either in r or in Z directions. We may leave out them
for boundary points because of the satisfaction of the boundary eonditions. We had
better, whenever possible, utilize the expressions of f, and f% in (15) and (16) for
internal points, except for those in the vicinity of the boundary. If A < 1, we see that
the second derivative of F(r) is discontinuous at r = A. A greater error might arise
unless the procedures are carried out on both sides of r = A, respectively.

The stresses 7s, Ts at the vessel and the surface of the RBC and the pressure
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gradient (dps/dr) are all connected with the first and the second derivatives of the
veloeity at the boundary, that is

rn = (%‘L an
_1/6v
YT (65 >§=:{:l’ (18)
apr, _ 1 Q@)
dr I? <65’ =31 (19

In order to fiud out the above-stated physical variables by numerical derivation, we
take five neighbouring points with interval & (ys, ¥, ¥, ¥s, ¥:) and put the endpoint at
r =1or z = 1 with the value at y, fixed. We may also smooth and differentiate a func-
tion through the least square cubic polynomial in the same manner and produce

fo=— % (4.13244766222, — 2.89855072252, + 0.4714170689z;,
0 (20)
1§ = 77 (—2.898550772242, + 21521739114, — 0.3623188403z;,

(where z; = y;+2y, + 3y; + 4y, — 10y, 2, = y1+4y2+9y3+16y4—30y\0, 23 = Y1+ 8y, +
27y;+64y,—100y,.) Remark that Eq. (6) holds in the meaning of weighted average of
(9); the peaks of the weighted functions are probably nearby r =1 or # = 1. Accord-
ingly we may expect to obtain better approximations of stress and pressure gradient
by differential procedure after smoothing.

Integrating the pressure over the surface and considering the balance between the
wall stress and the pressure drop, we immediately derive the pressure distribution on
the surface of the RBC and average pressure (P} at the section 2 — Const.

AP, =P, — (P = | (&%), an (21)
(P) — (P)|se0 = 2L j:rgdf. (22)

In addition, another important physical variable — apparent viscosity g.p, i.e. the ratio
of the average axial pressure drop of the Bolus Flow to the corresponding one of
Poiseuille flow without RBC (hence @ =0) is

— <P>li=0_ <P>Ii=l
pp 8L ) (23)

Ha

which is a measurement of plasma drag in the capillary.

IV. REesuLTs AND DISCUSSION

The basic parameters for determining the Bolus Flow are the ratio L of the distance
between two adjacent RBC’s to their diameter; the ratio A of the RBC diameter to that
of the vessel and the leakback parameter Q.

The magnitude of L depends on the diameter of a capillary and haematocrit of the
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RBC’s (ie. the volumetric percentage of the RBC’s in capillary). If the RBC’s are
uniformly distributed, we have

; N A— (24)
vV -+ ~Z— D¥L

where the volume of the RBC is assumed to be 94.14°. By ranging from 0.5 to 5.0,
the average L are listed in Table 1 including various cases of gr'eat interest. As the
effects of L on Bolus Flow have been treated in most literatures available, we would
rather restrict our attention to those of another two parameters A and Q.

Several pairs of A and @ chosen are shown in Table 2, in the first five rows of
which A and Q correspond to each other according to ‘‘the zero drag condition’’ (i.e.
the resulting force of pressure and stress vanishes). With the ratio of velocity U* for
eylindrical disk-shaped RBC to average velocity V* being 2/(1 + A?) and the leakback
satisfying 2xrfQ* = =rf?(U* — V*), we get

Q= % (1 — ), (25)

according to its definition. Remark that the expression (25) is only applicable to the
eylindrical disk model. Since for the real elastic RBC there seems to be no such
simple relation, some other pairs of A and @ except the first five rows have been cal-
culated. Generally speaking, the thinner the capillary and the slower the velocity, the
more A and the less  will become. The problem as to which A and @ ought fo be taken
under certain physiological or pathological conditions is beyond our consideration.

A=1.0, 0=0 A=0.9 0=0.0475 1=0.8 0=0.09
v r 4 r 17/ ,
0 0 0 0 0 0
0.01 0.0t 0.01
0,03 0.03 '
0.07-"0.05 0.05 0.03
0.09 40.5 0.07 0.5 0.05F 40.5
0_“>> 0.08 >
—0.0 1.0 —0.02
- L0 _g.0y : -0.0) == 1.0
x =0 0.5 1.0 320 0.5 1.0 F=0 0.5 1.0
A=0.75 ¢0=0.109375 A=0.5 0=0.1875
¢O o ¢0 o

0.001
0.01 0.005 L=1.0
= D ()
.04 0. ’ 5 :

Zero drag condition

0.03 =03
~0,0 —0.10
—0.07= 1.0 _g.14 . 1.0
—0.109375 . ~0.1875
F=0 0.5 1.0 T=0 0.5 1.0
Fig. 2

In Fig. 2, we have sketched some of the typical Bolus Flow patterns with L =1
and only a quarter of the flow field is drawn because of its symmetry in either £ or 7
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direction. From this we may observe that the stream lines coming from the lubrication
layer are mnearly parallel to the wall of the vessel, and that there. exists a high stress
region there, whereas in the central part a closed circulation is formed. As A 1is
increasing and @ decreasing, the circulation grows weaker (i.e. the maximum of ¥
drops) and closer to the axis. The changes of the pattern with L are essentially
consistent with those given in Reference [4]. In Fig. 3, we have made comparison of
velocity profiles between this paper and [2], which are fairly similar to each other
with the exception that there ought to be a little difference at the exit and entrance
of the lubrication layer due to different boundary conditions.

u+l.0

x=14
T \ X=0¢
o '
[
P X=04
!

o X
1.0r0.s 06 04 02 0 02 04 06 08 1.0
-
Fig. 8

Next, we attempt to analyse the pressure-flux relationship. The apparent viscosity
Mapp (Within the scope of 2—3 under general physiological conditions, Fig. 4) is rising
as L approaches to 1, and so does it when A is decreasing and the drag might even
go below the value of Poiseuille Flow (Fig. 5). Whereas the lubrication theory will
become worse with a smaller A, we merely discuss the cases with greater A in this paper.
The leakback will considerably affect it with @ increasing and p., rapidly decreasing.
Figs. 6 and 7 show that the stress v on the wall approximates those of Poiseuille’s at
7 = 0 and ascends violently at the exit or entrance of the lubrication layer (Z=1) to
a certain value depending upon the velocity profile in this layer. The fact that as A
becomes smaller or @ greater, 75 will fall a great deal perhaps may account for the
tendency of pap in Figs. 4 and 5.
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L2}
Tn
[.=1,0 Zero drag condition —30
— 25k A=1.0 0=0
A=0.9 0=0.0475
20k
— 20
A=0.8 0=0.09
— 151
A=0.75 90=0.109375 Poiseuille value
— ~.
_10pLA=0.5 0=0.1875 (0=0
—10+
5L
Dashed linc; Poiseuille value (Q=0)
0 1 Y A

0.2 0.4 06 0.8 _ Lo L L ~L L
3 . . .
Fig. 6 Fig. 7

Both the stress and the pressure distributions are essential for understanding
haemolysis phenomenon and caleulating the deformation of the RBC. In Figs. 8—11,
we have shown the data of 7s and APs at T = 1, that is equal to those at Z=—1 in
absolute value with adverse sign. There we see that the stress and pressure gradients are
smaller at the exit or entrance, while the pressure in the centre r =0 on the surface
of the RBC is higher than that on the outer edge, which may account for the back
recession of the RBC to form parachute shape after deformation. As we know, the
pressure and stress are going up in a thinner capillary with greater A or thinner lubri-
cation layer as shown in Figs. 8 and 9. Consequently the pressure in the central part
is much greater than that on the outer edge. Then we conclude that the recession of
the RBC grows deeper in a thinner ecapillary, which is in complete agreement with
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o P Zero drag condition L=1.0
ol A=1.0, 0=0
s [ Zero drag condition L=1.0 A=0.y 0=0.0475
A=1.0 0=0
-4t A=0.9 0=0.0475 -8t
o 2=0.8 0=0.0v
A=0.8 0=0.0%
—3[=0.75 0=0.109375\ —6f 2=0.75, 0=1.109375 L
k)
1=0.5 0=0.1875
—2} N —4L
\ A=0.5, 0=0_1875
—1F 9
0 L L 0
c.2 0.4 0.6 08’1.0 0.2 0.4 0.6 0.8 1.0
Fig. 8 Fig. 9
&P L=1.0 A=0.9
—10F
s L=1 A=0.9 0 0=0
—4 - ._8._
4 0=0 0.036815
-3 3 -6 0.0475
0.036815
-2  0.0475 -4
—1+ -2
0 t ' | 1 0
0.2 0.4 0.6 0.8 .o a.2 0.4 0.6 USrll)
Fig. 10 Fig. 11

modeling. Figs. 10, 11 illustrate that the leakback @ will slightly affect the stress and
pressure distribution.

Finally, we intend to give a brief discussion on how the Bolus Flow will influence
the mass transfer. Reference [4] has made a comparison between the durations needed
for oxygen exchange through diffusion and convection. They believe that the eireula-
tion shows little influence on the gas transfer, nevertheless it appears to be important
for high polymers such as protein. When the lubrication layer becomes thicker and A
smaller, the circulation will play a less important role in the process of mass transfer
due to the slowing-down of the circulation and its greater distance from the wall. On
the other hand, since more plasma saturated with oxygen from the lubrication layer (i.e.
@ rises) keeps on supplying tissue nearby with it, the situation is advantageous to the
exchange of gases.
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V. ConcLupINg REMARKS

In this paper, something unreasonable in the mathematical model suggested in the
references available is modified, and the correct boundary conditions at the entrance
. and exit of the lubrication layer are imposed. ’

We have paid more attention to the effects of the ratio A of lthe diameter of the
RBC to that of the capillary and those of the leakback paramet‘er @ on the Bolus Flow,
‘We have found that as the thickness of the lubrication layer and the leakback grow
greater, the circulation will become weaker, the axial pressure drop lower and the
period of circulation longer. With the thickness of the lubrication layer (or A) fixed,
the augment of the leakback will exert a remarkable influence on the stress at the wall
of a capillary and on the axial pressure drop. It will also tend to strengthen gas ex-
change in the region nearby the wall. On the contrary, the leakback shows minor
influence on both the stress and the pressure distributions on the surface of the RBC.
The results are reasonably consistent with other theories.

The calculation in this paper has shown that the Galerkin method widely-used in
solid mechanies is able to be applied effectively to fluid mechanics. The most prominent
merit of the method lies in its minor numerical work. For example, it is enough to
spend 6 minutes in operating CPU of a minicomputer with a speed of only 10,000 C/S
in order to obtain 25 groups of data; whereas the numerical method for partial dif-
ferential equations or double-series expansion method will involve some more caleculation.

The assumption that the RBC is considered as a cylindrical disk is merely a rough
approximation, which is justified on the ground that the flow at low Reynolds number
is ingensitive to local deformation of the RBC and the recess at the back of the RBC is
shallow enough to be neglected.

To acquire a perfect understanding of the problem, we have to make close prediction
of the RBC deformation and this is just the genuine task for future theory, as Fung
once said. The author of [1] was a pioneer in this respect. The unsatisfactory qnan-
titative results are partly due to the rough model without taking into consideration
the Bolus Flow on both sides of the RBC. It is expected that the stress and pressure on
the surface of the RBC in the Bolus Flow in this paper and the physical parameters
concerned in the lubrication layer by lubrication theory will comprise the entire ap-
proximate boundary conditions for the determination of the shape of the RBC, After
putting forward a correct elastic model and considering the balance of the forces ex-
erted on the RBC membrane, we are in a position to find an aceurate shape of the RBC
by iterating the procedure again and again. We have attempted to push a new step
forward towards the task of elucidating the RBC deformation, which attaches the prac-
tieal significance to this paper.

The author wants to take the present opportunity to express his deep indebtedness
to Prof. H. 8. Tan for his direction and help, and to Comrade Z. L. Tac for his com-
ment on the first draft.
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