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THE EFFECTS OF PROJECTILE SPEED AND 
MEDIUM RESISTANCE IN RICOCHET O F F  SAND 

Y. L. Bait1 W. Johnsonts 
It has been observed experimentally that when a sphere ricochets off water or sand the critical impact angle 

depends on the impinging velocity. 
To explain this, a model is developed which takes into account the weight of the sphere and the static resistance of 
the medium into which penetration occurs. The proposed model can also treat processes in which the angle of 
impact is large and where the velocity of the sphere undergoes considerable change. Projectile trajectories which 
have been calculated for various conditions are presented and discussed. Numerical results for steel, aluminium 

alloy, and lead spheres are in good agreement with such experimental results as are available. 

1 INTRODUCTION 

When a spherical projectile ricochets off water, there 
exists a critical angle 8,, beyond which ricochet would 
not occur and the projectile sink. This critical angle has 
been established, empirically, as 

ec 1: 1 sol+ (1) 
where u is the ratio of projectile and medium densities- 
see Johnson and Reid (1)11 who have given a fairly com- 
prehensive review of this subject up to 1975. It is worth 
noticing that, in the empirical formula (l), the critical 
angle is stated only to be dependent on a ratio of densities 
there being no explicit reference to the velocity of the 
projectile. 

Johnson and Reid (1) re-presented Birkhoff’s original 
theory and suggested a simple but satisfactory model to 
describe the above phenomenon and to predict the 
critical angle 0,. The theory provides 

6, =0*326/du= 11*5O/2/u (2) 
which renders it in excellent agreement with the expres- 
sion (1) obtained experimentally. 

However, recent experimental investigations have 
explored the dependence of the critical angle on velocity 
and have indicated that it has different tendencies in 
different media. For example, Soliman, Johnson, and 
Reid (2) found that when a spherical projectile ricochets 
off water, the critical impact angle Bc decreases with 
decreasing impact speed. But, contrariwise when the 
same projectile ricochets off sand, the dependence is 
reversed, namely, the critical impact angle 8, decreases 
with increasing impact speed. .Concluding their experi- 
mental results, the latter authors observed that they were 
led to believe that the forces responsible for ricochet 
vary significantly with impact speed and that the critical 
impact angle depends greatly on impact speed, spin, and 
the depth of immersion of the projectile in the medium. 
Thus the influence of all these merited further study. For 
a preliminary examination of the influence of these 
factors they included the gravitational force on the 
projectile in setting-up the dynamic equations of the 
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projectile following the Birkhoff approach and found the 
critical impact angle to be velocity-dependent, according 
to 

(3) 

where F=iY/ag is the average Froude number, 17 is the 
average velocity of the projectile during its passage 
through the medium surface, a is the radius of the sphere, 
and g the gravitational acceleration. In this way they 
explained the decreasing velocity dependence of critical 
impact angle. However, they did not give any explanation 
of the increasing velocity-dependence of the critical angle 
for ricochet off sand. 

In order to appreciate the above-mentioned phenomena 
and to make the description quantitative, it is useful to 
examine the Birkhoff approach carefully. 

(1) Quasi-steady flow is assumed. 
(2) Hydrodynamic pressure only is taken to be respon- 
sible for ricochet. 
(3) The latter hydrodynamic pressure is expressed as 

The latter embraces the following assumptions. 

p = 3pv2 cos2 /3 (4) 
where p denotes pressure, p the density of the medium, 
v the fluid flow velocity, and /I is the angle between the 
projectile velocity vector and the normal to the surface 
of the moving projectile. 
(4) Any splash created is assumed to have no effect on 
ricochet performance. 
(5) The angle between the projectile velocity vector and 
the horizontal remains small during the course of 
ricochet. 
(6) The velocity of the projectile remains constant dur- 
ing its encounter with the medium. 
(7) When the sphere is just fully submerged in the 
medium the inclined angle 6 of the projectile velocity 
vector is zero, and this corresponds to the occurrence of 
critical ricochet. 

In this paper, it is intended to re-examine the above 
assumptions and to attempt to clarify the importance of 
the various forces which might be responsible for 
ricochet. 

In section 2, a simple small angle case is discussed. It 
is hoped that this simple but clear approach will aid 
further exact understanding. In section 3, a more general 
and exact description is put forward. In section 4 the 

Journal Mechanical Engineering Science 0 IMechE 1981 

OO22-2542/8 1/-69 $02.00 
Vol23 No 2 1981 

 at UNIV CALIFORNIA SAN DIEGO on December 29, 2015jms.sagepub.comDownloaded from 

http://jms.sagepub.com/


70 Y. L. BAI AND W. JOHNSON 

results of some calculations are presented to facilitate a 
comparison between experimental and theoretical results. 

1.1 Notation 
a 
g 
P 
t 
V 

x, Y 
F 
FN 
K 
L 
M 
R 
V 
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5, 5 

e 
0, 

P' 

4, * 

rl 

P 

U 

Fg,- Ff 
fcp,fip Function of angula; variable 

Radius of sphere 
Gravitational acceleration 
Pressure 
Time 
Projectile velocity 
Cartesian coordinates 
= u2/ag; Froude number 
= 4uag/(K/ P) 
Static material resistance 
Lift 
Mass of projectile 
Horizontal resistance 
Dimensionless projectile velocity 
Angle between normal to surface element and 
velocity of sphere 
Coordinates fixed on sphere 
Dimensionless vertical position of sphere 
Angle of velocity inclined to horizontal 
Critical impact angle 
Density of medium 
Density of sphere 
Ratio of densities of sphere and medium 
Angular variable in coordinates fixed on sphere 
Forces exerted on where 

2 ANALYSIS FOR SMALL ANGLE OF IMPACT 

In this section a small impact angle case is discussed and 
a modification of Birkhoff's assumptions is made in that 
not only is hydrodynamic pressure taken into account 
but the gravitational weight of the projectile and the 
static pressure in the medium through which the projectile 
travels also. 

Based on a quasi-steady flow assumption, Bernoulli's 
theorem is so adapted that the pressure at the stagnation 
point consists of two parts namely a hydrodynamic 
pressure of pv2/2 and a static pressure, K. Thus 

p=4pu2 +K ( 5 )  

where 0 is the flow velocity and K could derive from the 
internal resistance of the material. (K in equations (5 )  

'Y 

Fig. 1. Side view of a partially submerged sphere defining 4, 
40, and e 

and (6) is similar to RT, the target plate resistance 
introduced by Tate (3) for considering hypervelocity 
impact penetration.) Because of the quasi-steady flow, 
assumption ( 5 )  is suitable for a moving body at the cor- 
responding stagnation point. On other parts of the 
moving body following Birkhoff et al., the pressure is 
expressed as 

where the resistance or pressure K is considered to be 
isotropic. 

P = + P V ~ C O S ~  B+K (6) 

The equation of motion of the projectile is, 

M d2y.= -L+Mg 
dt2 (7) 

where M denotes the mass of the projectile, L the lift, 
and the coordinates are as shown in Fig. 1. The sup- 
positions of constant velocity and small impact angle 
lead to 

dy-tane- e &- 
and 

d2Y,02 ! ? L U 2  d(dy/dx)2 dx 
dt2 dx2 2dx dy 

The equation of horizontal motion then becomes 

(9) 

For a spherical projectile, the lift is 

dL=p cos 4. a2 sin 4. d+ d# 

because cos ,9 = sin 4 cos +, where + and are the angular 
variables in spherical coordinates. The wetted area is 
assumed to be that at the surface level, namely 

0 Q 4 Q 90 (see Fig. 1). (12) 
Simple geometry gives 

and thus the final equation becomes 

Integrating (14) in the region [-1, 11 of q, with the 
boundary condition of O=O at ~ = l ,  yields the critical 
angle Bc as 

The third term is the reciprocal of the Froude number 
and the second involves the resistance K of the medium 
for the circumstances considered. If 

K 
~ <1  
p020 

then the medium behaves as if it was a fluid. 
If both K/pv2a and 4aglu2 can be neglected, which 

implies that the medium has no static resistance and that 
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Fig. 2. Curves of velocity dependence of critical impact angle due 
to different sphere densities and medium resistance 

the weight of the projectile is unimportant, then the 
critical impact angle is as obtained by Birkhoff et al. (1). 
This physical circumstance can be arrived at only when 
very high velocities at impact prevail, but otherwise, the 
critical angle is velocity-dependent. 

If in the case concerned the weight of the projectile is 
more significant than the static resistance of the medium, 
as in the situation of ricochet off water, then equation 
(1 5) predicts a decreasing velocity-dependence of critical 
impact angle (see Fig. 2). Alternatively, in the case of 
ricochet off sand, the static material resistance is more 
important than the weight of the projectile; sand can 
support the projectile easily whereas water cannot. 
Thus, the above model gives a reversed dependence. 
These conclusions are in agreement with the various 
mentioned observations. For an arbitrary ricochet case, 
which branch of the 8 - v curve will be followed depends 
on the ratio K/4agap, namely the ratio of the static 
resistance of the medium to the weight of the projectile. 
However, high speed impact gives upper and lower limits 
to the critical impact velocity in either case. 

3 ANALYSIS FOR LARGE ANGLES OF IMPACT 

Where the static resistance of the medium plays an 
important role, the critical impact angle increases with 
decreasing impact velocity. However, in sand the lower 
limit to the critical impact angle is 10.6 degrees for steel 
spheres and 18 degrees for aluminium spheres (2). Thus, 
the use of small angle theory is less justified and may 
lead to errors. To investigate the phenomenon more 
accurately, some modifications are now made to the 
Birkhoff assumptions (2), (5) and (6) above. Static 

pressure is now taken into account and the assumptions 
that impact angle is small and the projectile velocity 
constant are abandoned. 

Instead of equation (7), a system of equations is 
called for 

where L and R denote lift and horizontal resistance or 
drag, respectively. Because of the implied trajectory 
relations 

r = y ( t )  x=x ( t )  

equations (1 7) can be transformed into 

M d(v cos 8)2 = - 2(L - Mg) dy 

M d(v cos 8)2 = - 2R dy/tan 8 

In order to calculate the lift, L, and resistance, R, a 
new coordinate system 6,  5 and 2 is introduced (see Fig. 
l), where the 2 axis is perpendicular to the x, y plane. 
The origin lies at the centre of the sphere whilst the 
6 axis always retains the sphere velocity direction. In this 
way pressure can be expressed as 

p=  - PO2 C O S ~  B+K (20) 

(21) 

2 
with 

where y5 and + are angular variables in coordinates 5, 5, 
and 2. The forces (except for gravity) exerted on the 
sphere along the 5 and 4 axes are 

dFc=pcos#.a2sin+.d+dy5 

cos B=cos y5 sin + 

= [$ cos2 $ sin3 + cos ++K sin 4 cos $ u2d$ dy5 

(22) 
I 

and 
dFS = p  sin + cos y5 a2 sin q5 d+ d+ 

= {$ c0s3 $ sin4 $+Kcos y5 sin2 $ u2 d$ d+ (23) 1 
The range of integration is ( - ~ / 2 ,  ~ / 2 )  for $, but for 

+ is more complicated. Noting that 

and 

instead of (13) in this case 40 refers to the angle from the 
5 axis to the point on the surface of the sphere at which 
the surface level of the medium just touches it. So, if 

(26) 

S=arccos(-T) (24) 

+o= e+s (25) 

4 0  2+ 
o=+, < + < $0 

defines the wetted area; with +0<28, the wetted area is 
determined by 

$0 - 26 = +z < + < 4 0  (27) 
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where +l is the lower limit of the wetted area. Integrating 
(22) and (23) and adopting the unified notation + I  and $0 

Fc and Ft become 

and 

where 
I r r .  f C p  = pin4 $0 - 41114 $1 8 I 

I and 

The lift, L, and resistance, R, are connected with Fc and 
Fc thus 

L= Fb cos 8+ Ft sin 0 

R =  -Fc sin O+FEcos 8 

After substituting (28), (29) and (31) into (17), the 
governing equations become 

(31) 

and 

where CT= p ’ / p ,  V2=(pu2)/K, FN=(4aag)/(K/p) and f tp ,  
fCK ftp,ffK are expressed in (30). 

The initial conditions are at, 

~ = - - 1 ,  V=VO and 6 = &  (33) 
The system of equations (32) require to be integrated 

numerically with the initial conditions specified by (33). 

4 INTERPRETATION OF RESULTS 

The relationship between impact velocity and the critical 
impact angle for ricochet for the small angle impact 
case is shown in Fig. 2. It is clear that the critical impact 
angle decreases from the angle which corresponds to 
K/4agop = 1 , with decreasing or increasing impact 
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velocity according to K/4agap < 1 or > 1. These corre- 
spond to ricochet off water and off sand in the tests 
described in (2), respectively. For a steel projectile off 
sand K/4agop=1 corresponds to 6-10 degrees (see 
Fig. 2). 

For the case of the large impact angles discussed in 
section 3, the problem and the computation become 
complicated. For the non-linear combined equations 
(32), numerical integration is carried out by the Runge- 
Kutta method. In performing the calculations, the weight 
of the projectile is ignored. In this situation it is unsatis- 
factory to integrate the equations (32) from ~ = l ,  8=0 
in order to obtain the critical impact angle of ricochet. 
The reason for this is that in the Birkhoff approach it was 
assumed that 7 = 1 and 8 = 0 is the criterion of ricochet, 
no matter what the velocity is. But in the large impact 
velocity case, this is no longer so. The projectile could 
stop inside the material, even when ~ = 1  and 8=0 or 
T < 1 and, therefore, the Birkhoff assumption (7) must be 
modified. 

For the afore-mentioned reasons, some form of com- 
putational experiments with initial condition (33) are 
needed in order to observe behaviour at the end of the 
trajectory. 

During the course of movement, the projectile velocity 
decreases gradually for any impact angle and velocity. 
However, trajectories can be grouped under several 
headings. 

1 

V 

Al o = I . O  

- Small angle theory 
I Penetration . stopped Largeangletheory 
o Ricochet 1 

Threshold of ricochet 
from large angle theory 

__--- 

4‘ 
1 
I 
I 
I 

I 1 I I I I 
20 40 60 

0 (degrees) 

Fig. 3. Calculated dependence of critical impact angleon impinging 
velocity for aluminium sphere; ricochet off sand 
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(1) For +O = x, u > 0, B > 0. This implies that when fully 
submerged, the projectile can move further along the 
tangent to the trajectory. This of course is penetration. 
(2) For Boer, o=O, B>O. This indicates that before 
the projectile becomes fully wetted, it has stopped. This 
is also a form of penetration as before. 
(3) For 40 < W, v#O, B=O. In small angle impact 
theory, this situation was referred to as ricochet and if 
+o=n, as critical ricochet. In the present case, the 
projectile may ricochet off the medium or not. Physic- 
ally, although the projectile drifts upwards it would stop 
somewhere inside the material due to friction, gravity, 
and material resistance, etc., if its velocity was very low. 
In performing the present calculations a few cases of the 
projectile ending up so, were obtained. In some cases 
however the projectile drifted upward and then moved 
off the surface of material. This latter case was positively 
identified as ricochet. 

1 

V 

l 

Steel u = 2-889 

Small angle theory 
4 Penetration - Stopped Large angle theory 
o Ricochet 

----- Threshold of ricochet 
1 

from large angle theory 

0 

I I I 
10 20 30 

8 (degrees) 

Fig. 4. Calculated dependence of critical impact angle on impinging 
velocity for steel sphere; ricochet off sand 

With the aid of these categories, it is possible to arrive 
at a critical impact angle versus projectile velocity curve, 
such as those shown in Figs 3 and 4 for aluminium and 
steel spheres, respectively. For comparison, small angle 
theory results also are shown in the corresponding 
figures. It can be seen that the large angle theory curve 
lies above that of the small angle theory. As the projectile 
velocity increases, the critical impact angle decreases and 
the results for both theories converge. 

In Fig. 5 experimental results and the two sets of 

V 

Steel u=2.889 

Experimental 
(right scale) 

I 80 

120 

Small angle theory 
Large angle theory 
(left scale) 

20 25 
0 (degrees) 

Fig. 5. Comparison of calculated and experimental dependence of 
critical impact angle on impinging velocity for steel sphere; 

ricochet off sand 

theoretical results for steel projectiles are shown to 
different scales. It is clear that all of them have nearly the 
same tendency. If the scale of the dimensionless velocity 
(the left scale) is changed then the theoretical results can 
be made to fit with the experimental ones. 

Another interesting aspect pertains to the experi- 
mentally obtained cut-off angle of 29 degrees for a steel 
sphere when the dimensionless velocity is approximately 
1-75 and 1.25, respectively, for large and small angle 
theories. Supposing that there is a constant projectile 
velocity for the ricochet cut-off angle for different pro- 

Table 1 Cut-off angle 

Steel Aluminium Lead V 

(degrees) (degrees) (degrees) (mlsec) V 

Experimental 29 26 51 350 - 
Large angle (29)t 23 52 - 1-75 

Small angle (29) 24 49 - 1.25 
theory 

thiory 

t This is entered in brackets because this magnitude is used to fit 
the theoretical results. 
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jectile materials, then from the curves of critical impact 
angle versus impact velocity as obtained from the 
various theories, a prediction of the cut-off angle can be 
obtained. This is shown in Table 1. 

Bo = 50 degrees Al u = 1 - 0  
I _ _  V=O.5 ,' 1.5  

-1.0 - 

Fig. 6. Trajectories of an aluminium sphere in sand for different 
impinging velocities at an impact angle of 50 degrees 

Steel u = 2.889 80 = 30 degrees 
, v=1*0 

I 2.0 

X - - 
a 

1.8 

Fig. 7. Trajectories of a steel sphere in sand for different impinging 
velocities at an impact angle of 30 degrees 

By reference to the observed cut-off velocity of 107 m/sec, 
the dimensionless velocity 1-75 gives K -  11.6 MPa and 
1.25 gives K-22.8 MPu. These values of K seem reason- 
able for sand. 

The reason for the existence of a ricochet cut-off angle 
is still not clear. However, from the above calculations, 
it does appear to be related to the inter-relationship 
between the hydrodynamic pressure and the material 
resistance. Supposing that the projectile velocity is lower 
than the value at which the hydrodynamic pressure is 
roughly equal to the material resistance, then the quasi- 
steady ideal flow regime might no longer apply so that 
the lift, which comes from the hydrodynamic pressure, 
might be severely reduced. The problem may then be 
converted into that of the penetration of a projectile 
into a deformable body. Whether this hypothesis is 
correct or not needs further study. 

It is interesting to compare the trajectories for different 
initial angles of impact and velocity. Pure penetration of 
a medium implies that the projectile must stop somewhere 
inside it and an important point then is that with lower 
impact velocity, the point of trajectory termination rises, 
particularly in large impact angle cases, i.e., near to the 
cut-off angle. For some termination points the sphere is 
found not to have been fully submerged in the medium. 
This means that before the projectile gains maximum 
lift, its kinetic energy has been exhausted (see Figs 6, 7, 
8 and 9). These calculated trajectories are similar to the 
types of trajectory identified by Richardson (41, shown in 
Fig. 10. 

Lastly, it is worth mentioning that the exit angles 
increase dramatically when approaching critical ricochet 
at large impact angle. This result which has not pre- 
viously been obtained even by small angle theory, is in 
agreement with experimental observations (5). 

, V = 4 - 0  Al u = l * O  Bo = 25 degrees 
- 1 .o r \  

E 
a 

Fig. 8. Trajectories of an aluminium sphere in sand for different impinging velocities at an impact angle of 25 degrees 

v= 1 s o  

u =4-148 B0 = 25 degrees Lead 
-1.0 c 

11.5 
I I ,  , x  . -  P 

a 0  6 8 a  

1. 

1.0- ". .. 2.0 

Fig. 9. Trajectories of a lead sphere in sand for different impinging velocities at an impact angle of 25 degrees 
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Fig. 10. Four types of trajectory identified by Richardson, from (4) 

5 CONCLUSIONS 

Taking both weight of the projectile and static pressure 
in the impacted medium into account the impact velocity 
dependence of the critical impact angle for ricochet can 
be accounted for. It also reveals the different tendencies 
due to this velocity dependence at ricochet off water 
and sand. 

Based on these suppositions a more accurate model is 
established, with some of the Birkhoff assumptions 
modified. The velocity of the projectile need no longer 
be considered constant and the angle of impact could be 
considered large. In addition, ‘flying-off’ the surface is 
adopted as the definition of ricochet, rather than attaining 
a horizontal velocity at just complete immersion as is 
used in the Birkhoff approach. 

Numerical simulation shows that for small angles of 
impact the simplified small angle theory is indeed suffi- 

ciently accurate. But at greater impact angles, a more 
general model, capable of accommodating large angles 
of impact with variations in the projectile velocity and 
the above ricochet condition or definition must be used. 
This model reveals the termination of the projectile trajec- 
tory before gaining maximum lift at large impact angles 
and the phenomenon of dramatic increase in exit angle. 
Further, by supposing that the ideal fluid rkgime, (which 
is responsible for the lift), ceases to be operative below 
some particular impact velocity and by fitting the 
theoretical curves to known experimental ones, the rico- 
chet cut-off angles are 29 degrees, 23 degrees, and 
52 degrees for steel, lead, and aluminium spherical 
projectiles, respectively, the observed values being 29 
degrees, 26 degrees, and 51 degrees; the above corre- 
sponding static resistance of the sand used is implied to 
have been about 11.6 MPu. 
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