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Upwelling flows in the Earth’s mantle are accompanied by mass, momentum and energy transports from deep
to upper layers. Those flows beneath the mid-ocean ridges give rise to sea-floor spreading. Mantle plumes, on the
other hand, cause hot spots to be formed on the Earth’s surface. Using the basic equations of fluid dynamics,
temperature and velocity distributions in two-dimensional upwelling and cylindrical plumes can be obtained by
an integral-relation method. Then the mass, momentum and energy transported to the lithosphere by these up-
welling flows can readily be calculated. Based on those results we can more thoroughly discuss problems of plate
dynamics, such as the driving mechanism of plate motion, the causes of formation of rift valleys over mid-ocean
ridges, and the effect of mantle plumes on sea-floor spreading.

1. Introduction

Sea-floor spreading and plate tectonics serve to
explain tectonic and seismic activity within the upper
layer of the Earth. However, some questions about
plate dynamics still remain unsolved.

The causes of plate motion lie in the interior of
the Earth. Dynamical processes in the upper layer of
the Earth are due to heat- and mass-transfer from the
interior. The most efficient manner of heat- and
mass-transfer in the mantle is, of course, thermal
convection. Although the cell structure of mantle
convection is complex and its shape almost unimagin-
able, there is no doubt that a rising slab exists in each
convection cell. This is the upwelling flow of mantle
materials. The transfer of mass, momentum and energy
from deep to upper layers is carried out by this
upwelling flow. It is suggested that the origins of
plate motion and the rift valleys over mid-ocean ridges
are due to two-dimensional upwelling flows, and the
origin of surface hot spots is due to cylindrical
plumes.

The mid-ocean ridges are accreting plate margins.

There is an upwelling channel (crack) within the litho-
sphere beneath mid-ocean ridges, through which
mantle materials ascend and accrete on the plate mar-
gins. These cracks separate the lithosphere into dif-
ferent plates. These cracks form through the long-term
melting action of the large heat flux carried by the
rising slab of the convection cell. The presence of
these cracks, in turn, stabilizes the rising slab of the
convection cell beneath mid-ocean ridges. Thus, the
system of upwelling flow consists of rising flow in
mantle convection cells and flow in channels within
the lithosphere beneath mid-ocean ridges. Using fluid
dynamical equations, Li Yinting and Guan Dexiang
(1979) obtained temperature and velocity distribu-
tions in the two-dimensional upwelling flow by the
integral-relation method. Based on these results, the
mass, momentum and energy transported by the
upwelling flow to the lithospheric plate were then
calculated. The velocity of the plate motion, the
force exerted on the plate by the upwelling flow, and
the energy transported by this upwelling flow have
also been estimated.

This model of the upwelling flow has also been
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used to obtain the topographic profile of the rift val-
ley over the axial part of the mid-ocean ridges (Li
Yinting et al., 1979). Calculated results for the
depths and widths of the rift valleys agree quantita-
tively with actual observations. Thus, it is believed
that this model may provide a reasonable basis for the
study of the dynamics of rift valley formation.

It is essential, both for an understanding of the
causes of hot spots on the Earth’s surface, and for
answering the question of the relation of mantle
plumes to sea-floor spreading, that a thorough study
is made of ascending flow in cylindrical mantle
plumes. Temperature and velocity distributions in
mantle plumes and the energy transported by plumes
have been obtained by the integral-relation method
using the fluid dynamic equation (Guan Dexiang et al.,
1979). The results of the calculations showed that the
heat flux to the lithosphere from plumes is much
larger than that from two-dimensional upwelling
flows. Thus, mantle plumes are able to cause the
formation of hot spots, not only along the margins
of plates but also in their centers.

2. Two-dimensional upwelling flows and the driving
mechanisms for sea-floor spreading

2.1, The fluid dynamic equations for two-dimensional
upwelling flows

The general fluid dynamic equations govern the
flow of the mantle fluids. According to the features
of mantle flows, McKenzie et al. (1974) proposed
the following set of equations
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Fig. 1. Sketch of the upwelling flows.
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Li Yinting and Guan Dexiang (1979). The coordinate
system is shown in Fig. 1.

Since both Prandtl number and Rayleigh number
are very large for mantle flow, the central portion of
the convection cell will remain as a basically stationary
nucleus in which the temperature change is small
(Turcotte and Oxburgh, 1967). On both sides of a
cell are the uprising and downgoing flows, where
temperature and velocity change rapidly over short
distances. For a convection cell at a depth of 700 km,
the horizontal distance over which the dominant
changes of temperature and velocity occur ranges from
a few to tens of kilometers. The distance over which
the dominant changes in the rising velocity occur (i.e.
from maximum at the axis of symmetry to zero at
the boundary) is defined as the flow thickness of the
upwelling flow, denoted by 8. The distance over
which the change in temperature of the uprising flow
occurs (i.e. from the highest temperature at the axis
of symmetry to the ambient temperature at the
same depth) is defined as the thermal thickness of the
upwelling flow, denoted by §1. Parameters at y =0
are represented by the subscript w; parameters at
both sides of the channel or the outer margins of the
uprising flow in the asthenosphere are represented by
the subscript a; /; is the thickness of the lithosphere
and /, is the starting depth of the convection. Typical
values of u, v, p and u are represented by U, V, P, M.
Typical values of temperature difference in the
x- and y-directions are represented by A,T and A, T,
respectively. The characteristic distance in the x-direc-
tion is represented by ! (! = I3, for the lithosphere, I =



I, — I, for the asthenosphere). From §2 << 12, it
follows that
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From eq. 4, we have
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From eq. 1 and using eqgs. 8 and 9, it follows that
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Thus, in the set of equations (1)—(4), we can
neglect the terms
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Equation 2 does not couple with the rest of the set.
Thus we obtain the following set of equations
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2.2. The solution of the differential equations of the
upwelling flow

By analogy with the Kdrmdn—-Pohlhausen single
parameter approximate method, we can solve the
set of equations (11)—(13) in the following manner.
Let

u
wlny) = 4o +ayny tami +ami +agmd (14)

w

327

T -
8(nt) = T, 2 =py+bynr +byny +bant + bant
(15)
T?u=}’/5u ’nT=y/5T5€=6T/6u (16)

where 8 1 < §,,. The boundary conditions of eqs. 11—
13 become

¢=0 atn, =1
0 93
¢=1,-£=0,——fj=0 atn, =0
any any 17)
6=0 atnp=1
66 83
=1, =0, =0 atnt=0
ang anr
From these conditions we obtain
() =1+a,ni — (1 +tax)n§ (18)
O(n) =1+ bynk — (1 +b2) % (19)

Parmentier and Turcotte (1978) have recently
investigated finite amplitude convection in a non-
Newtonian fluid and adopted a power-law consti-
tutive relation with power n. They found that the
structure of a convection cell is very close to that of
fluids with a constant viscosity, when n < 3. There-
fore, like other papers relating to mantle convection
(Richter, 1973; McKenzie et al., 1974), we study
only the constant viscosity case in detail, considering

‘this as a first step to the study of plate dynamics. For

the case u = KTy (Vetter and Meissner, 1977), the
integral-relation method still remains valid, but
becomes complicated.

For u = constant, an analytical solution can be
obtained. Substituting egs. 18 and 19 into eq. 11,
comparing the coefficients and using the continuity
condition of du/dy at the point y = § 7, it follows
that

g_2(1+a12)e —25,=0 (20)
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‘from which we obtain

a2=——6/5,b2=—1,e=1 (23)
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Soé,=6r=6,n,=nt=n,and
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Substituting eqs. 12, 18, 19 and 23-25 into eq. 13,
and integrating for y over the region [0, §], we obtain
{ZZI'_%'ZQ — e B2 e P -28=0 o

Z=0atx=0o0rx=-I,

where single and double primes represent first- and
second-order differentiation with respect to x. Z =
Ty — Ty, 8= —dT,/dx when T, is a linear function of
x, which is a good approximation in the Earth’s
mantle. Equation 26 has the following analytical solu-
tion
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TABLE I
Physical parameters for Earth’s mantle
Parameters Values used here
Density, p 33gem™
Thermometric conductivity, & 2X 102 cm? 57!
Gravitational acceleration, g 103 cm 572
Coefficient of expansion, a 3.5x1075°C!
Thickness of the lithosphere, I3 100 (or 70) km
Starting depth, I, 700 km
Total length of the active

mid-ocean ridges, L 60000 km
Specific heat at constant

pressure, Cp, 0.27 cal g1 °Cc1
Viscosity 1018, 1019, 1029 poise
B1 1.5 (or 1.0) °C km™!
B2 8.0°Ckm™! (or eq. 36)

TABLE II

Parameters of plate dynamics

u(poise) ¥, (emy™!) Fp (dyncm™) Wigea (cals™)
1018 1.91 0.152x 1013 14.61 x 101!
1019 1.08 0.480x 10'3 822 x 10!!
1020 0.61 1.52 x 10'3  462x 10!

where X =x/ly,Zy = Zy[Byly, Zy = Z,[Baly, & =
dZ/dx. The parameters in the region —/; <x <0 are
represented by the subscript 1, and the parameters
in the region —, <x < — I; are represented by the
subscript 2.

2.3. Results of calculations and discussion

The parameters for the Earth’s mantle adopted in
this paper are listed in Table I.

After T (x), u,(x) and 6(x) are calculated, we
can obtain the parameters of the plate dynamics
according to the following formulae (Li Yinting and
Guan Dexiang, 1979)

Vp = (.64 uw15 1/]1 (29)
&y N
Fp = (%gpgakuﬁl)l/z 1 f Zl(l _ 63)—3/2 des
-189/19
(30)
Wtotal =1.036 pCPlesl(Twl - Tal)L (31)

The results of these calculations are listed in Table 1II.
From Table II, we can see an agreement between
calculated and observed plate velocities. If Wigiy =
8.22 X 10! cal s™! for u = 10*° poise is chosen as the
typical value for the energy transported by upwelling
material, it is much greater than the lower limit of the
energy which must be supplied by any driving mecha-
nism (4.6 X 10'° cal s7!), as pointed out by McKenzie
et al. (1974). Since there are no observational data for
the driving force, no comparison can be made. Since
the. plate moves with constant velocity, the total resis-
tance must balance the total driving force. The resis-
tance is primarily viscous. There is no agreement on
the calculations of resistance because there is no agree-
ment on the models of mantle flows. Richter (1973)
has propounded a model for calculating resistance.



Making use of Richter’s resuits and adopting the data
of the present paper, the resistance is found to-be 1 X
10'3 dyn cm ™. This is of the same order of magni-
tude as the 0.5 X 10'® dyn cm™! driving force given
in Table II. Therefore the following conclusion can
be drawn: the mass, momentum and energy trans-
ported to a lithospheric plate by deep-mantle material
entering the upwelling channel (crack) below a mid-
ocean ridge constitute the principal driving factors of
sea-floor spreading.

3. Upwelling flow and the rift valleys over the axial
parts of mid-ocean ridges

In our opinion the topography of rift valleys of
the axial parts of mid-ocean ridges is the surface
expression of upwelling flow beneath the ridges.
According to the model proposed in the previous
section, the flow in the upwelling channel in the
lithosphere exerts viscous shear on its wall. This shear
is directed upward and is known as a rising force. This
force must be balanced by an excessive weight at the
same location, which is produced by a rock column
of height 4. Let y,, be the horizontal distance to the
wall of an upwelling channel from the axis of a rift
valley. The rising height A(yv,,), as a function of y,,,
expresses the topographic profile of the rift valley.
Then we can define H = Max {h(y,,)} as the depth of
the rift valley. The maximum width of an upwelling
channel within the lithosphere can be defined as the
width of the rift valley, denoted by ds. The extent of
the region where the rising force becomes zero is
defined as the width of the inner floor of the rift
valley, denoted by d;.

Substituting eqs. 15 and 23 into eq. 11, and inte-
grating for y over the region [0, 8], we have

75 = 2pgad (x)(Ty — T,) (32)

where 75 represents the rising force per unit length
in the x-direction. Letting G represent the excess
weight per unit length, the relation

GAS =75 Ax, G =T (‘m )_1 (33)
=1, LG =T15—
8 $\ix
can be obtained because an increment Ax in the
x-direction corresponds to an increment A$ in the
y-direction within the wall of the upwelling channel.
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On the other hand, G must be equal to the dif-
ference between the weight of a rock column of
height A and that of a water column of the same
height, because this space was occupied by seawater
before the rock was raised. Then

G=(p-1)h (34)

and the elevation is given by

0 ds\!
h=— 2ab(x) (—) (Tw(x) — Talx) ,
{ p—13 dx ] (35)

y=5(x)

This is the topographic profile of the rift valley.

In order to calculate the functions §(x) and T\,(x)
in eq. 35, we must solve eq. 26 by a numerical
method. Using Simon’s equation and experimental
data (Griggs, 1972; Miyashiro, 1972; Bottinga and
Allégre, 1976), the following relation can be obtained

|X| -3/4
ﬁ@F%K%4—HP+Tﬂﬁ4—H} :
! (36)

lxl < [O’ ll]

From eqs. 26 and 36, Z(x) = Ty, (x) — T4(x) can be
obtained. Using the relation

5(x) = (4.8ku

1/4 n_1/a
;QJ @- 2 (37)

and the values of the parameters in Table I, the topo-
graphic profile can be obtained. The calculated results
and the measured data for the topographic profile are

shown in Fig. 2 by broken and solid curves, respec-
tively.

5 10 5 [¢) 5 10 15 [6)
km
Fig. 2. Topography of rift valley (a comparison between cal-
culated and observed results) (Le Pichon et al., 1973).
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TABLE III
Width of the rift valley

Calculated velocity of
sea-floor spreading

Width of rift valley (km)

(cm yhH Calculated Observed
2.20 9.2 10

1.24 16.3

0.69 29.1 30

The results of the calculations for the width of the
rift valley are shown in Table III. These results show
that the slower the velocity of the sea-floor spreading,
the wider the rift valley becomes. This is in agreement
with the observations.

The measurement of the inner floor width of the
rift valley was made by the “Famous” at the Azores
in the Atlantic Ocean (Ballaiche, 1974) where the
velocity of sea-floor spreading was found to be 2.3
cm y~! and the inner floor width of the rift valley is
3—5 km. The inner floor width computed in this paper
is 3.1 km. The observed depths of the rift valley are
known to be 1—2 km, and the result calculated here
is 126 km for I, =70 km and 1.99 km for /; = 100
km.

We must emphasize that there are a variety of fac-
tors influencing the topography of rift valleys, and
only the rising force exerted on the wall of a channel
by upwelling flow was considered here. Therefore the
topographic profile computed here might be only a
first approximation to the real profile.

4. A fluid-dynamic model of the plume and its effect
on geodynamic processes

Recently the phenomenon of “hot spots” on the
Earth has attracted the attention of an increasing
number of geophysicists (Burke and Wilson, 1976).
Some authors have suggested that these hot spots are
surface phenomena related to the presence of mantle
plume beneath (Morgan, 1971). Although the idea of
the mantle plume was proposed many years ago, a
reasonable dynamic explanation does not yet exist.
Attempts have been made to estimate this ascending
flow (Morgan, 1972; Khan, 1973), but a very impor-
tant process in natural convection, the effect of heat
transfer on the motion, was not considered. Guan
Dexiang et al. (1979), using the basic fluid-dynamical

equations, obtained the extent of the mantle plume,
the temperature and velocity of its ascending flow,
and the heat transported by the plume to the litho-
sphere. ,

We consider this ascending flow in a cylindrical
frame. The x-axis is vertically upward and the 7- and
-axes are within the horizontal plane. Then the
ascending flow in the plume can be described as an
axisymmetric cylindrical flow governed by the follow-
ing equations

10 ou

T (Mr 57) +pgefT — Tw) =0 (38)
oT oT 10/ oT
—+ = = -

“ ox v or ror (r ar) (39)

10 ou

-z =0

r or (o) + ox (40)

where the symbols are the same as those in Guan
Dexiang et al. (1979), and u was assumed constant.

Using the integral-relation method, we can solve
the set of equations (38)—(40). Let

u

P a0 T ayMy +ayMh +azny + aam (41)
W
T-Tw 2 3 4

6= =bo +binT +banT + banT + ban'T

Ty — Too

(42)
where ny = /6y, n7 =#/81, € =81/8,.
The boundary conditions of eqs. 38—40 become

=0 whenn, =1

9 a3
¢=1,—¢=0,——f=0 when n, =0

ony My 43)
6=0 whennt =1

00 2%
0=1,—=0,—5=0 whennt =0

anr ' ant m
From these conditions, we obtain
o(my)=1+an% — (1 +a,)n} (44)
6(nt)=1+bn% — (1+by) 0% (45)

By substituting egs. 44 and 45 into eq. 38, comparing
the coefficients and using the continuity condition of
du/or at r = 8, we obtain

a; =—4/3,by=—1,e=1 (46)



Thus 6,=87=6,n,=nr=n,and

_ 64k[1. 1/4
b= [ 3pga(—dTw/dx)] “7)

) 3 pgok 12
" = [————4‘1 s dx)] (T - T) 48)

Substituting eqs. 43—48 into eq. 39, and integrating
for r over the region [0, 8], we have

6822" + 877" —206BZ' + 11982 =0
Z=0

where Z = T, — Tw, B = ~dT/dx = constant. The fol-
lowing analytical solutions can be obtained

(1 — ) 8[(119/87) — @] 20237696

(49)
whenx =0orx=-/

7=
1
%f (1 — &)783/696 [(119/87) — &] ~2719/696 d&
(50)
@
_f (1 — &)783/696[(119/87) — @] 271%/6%6 d
F=—

1
f a- ZJ)783/696[(119/87) _ ZJ]—2719/696 do

—00

(1)

where Z = fIZ, x =I5, & = dZ/d%.

From egs. 50 and 51, we obtain Z = T, (x) —
Ta(x), as shown in Fig. 3. We can see that max
{T(x) — Tw(x)} = 0.5349 81, when |x | =0.1356 1.
Asx = 0,d[Ty(x) — Tw(x)]/d x| = oo,

Since the temperature change near point x =0
is sharp, the heat transported by the plume to the
lithosphere is large. The mantle plume acts like a “hot
drill” that steadily drills up to the lithosphere. On
drilling through a lithospheric plate, lava overflows in
large quantities as volcanic eruptions.

After T (x) — To(x) has been obtained, §(«) and
u,,(x) can be obtained by using eqs. 47 and 48.

The heat transported by a plume to the lower
surface of the lithosphere per unit time, Q, is the
most interesting parameter. Since the point x =0
(i.e. the lower surface of the lithosphere) is a singular
point of the solution of the equations governing the
ascending flow in a mantle plume, Q cannot be
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Fig. 3. Dimensionless temperature difference Z plotted versus
the dimensional depth.

obtained from the temperature gradient at this point.
Thus, we substitute the section plane at X = —e,
where ¢ is very small and positive, for the lower sur-
face of the lithosphere. Using the energy balance rela-
tion we obtain

72

1-&

where / = 600 km, § = 1°Ckm™, e=0.01,0=3.7 X
108 cal s™!. If the number of hot spots in the whole
Earth is 122, we obtain Qs =44 X 1010 cal s71.
This value is of the same order of magnitude as the
energy released by volcanic activity over the whole
Earth per second, 1.8 X 10'° cal s™ . Since this

Qrotar is much smaller than Wiy, the energy trans-
ported by the upwelling flows beneath the mid-
ocean ridges per second, the action of plumes for sea-
floor spreading is not as efficient as that of upwelling
flows beneath mid-ocean ridges.

Q=% mpCpkpl (52)

5. Concluding remarks

Some geologists and geophysicists have suggested
that sea-floor spreading may originate from the
penetration of upwelling lava into cracks in the litho-
sphere. This view remains conjectural, mainly because
the upwelling flow cannot be described quantitatively.
Using the method of hydrodynamics we have given a
mathematical description of the upwelling flow and
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have obtained results for the extent of upwelling
channels, velocities of plate motion, pushing forces,
energy transported to the lithosphere by the upwelling
flows, and the topography of the rift valleys over
mid-ocean ridges. The results obtained are found to

be in good agreement with observational data, indi-
cating that the fluid-dynamical analysis described
above is valid.

The results obtained also show that mantle plumes
are able to cause the formation of hot spots at the
Earth’s surface. However, some authors have exagger-
ated the importance of mantle plumes for sea-floor
spreading.
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