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ABSTRACT

In this paper, it is proved by using the mecthod in [1] that the stability eriteria of rotat-
ing liquid stars, which depend on all of the normal modes of oscillation, are consistent with its
secular stability ecriteria, if liquid stars are assumed to consist of incompressible, self-gravi-
tating masses of viscous liquid. Moreover, the experimental evidenee of the conclusion is
provided by the Columbus problem™. This eonclusion was predicted without proof by
Thomson and Tait in 1883. Thus, it is reaffirmed that the evolution process of the rotating
liquid stars in quasi-stationary state should be judged by the secular stability eriteria. Jeans-
Darwin’s fission theory of binary stars, which has been denied during the last three decades,
cught to be evaluated anew.

The problem of equilibrium and stability of the rotating liquid stars is classical.
Eurly works on this subject were reviewed by Jeans™ and Lamb™. Afterwards, the
survey of it was made in succession by Lyttleton", Ledoux"™ ™, Chandrasekhar®™ and
Araki Shunme™,

Before the fifties of this century, researchers of the older generation believed that
““In the practical applications we shall be concerned only with secular stability’’ and
that ‘‘For problems of cosmogony it is secular instability alone which is of interest’’
(3] §182, [4] §205). During those days Jeans-Darwin’s fission theory of binary stars
based on the above ideas was generally accepted in astronomieal cireles™®,

In 1953, Lyttleton asserted that there were serious errors in Jeans’s exposition
about the relation between secular stability and dynamic stability®™. Henceforth, some
authors attempted to seek for another fission theory of binary stars according to dynamic
stability instead. Now, opinions vary and no unanimous conelusion can be drawn®™,
One of the main points at issue consists in that which stability eriteria should be adopt-
ed in order to judge the evolution process of the rotating liquid stars.

Barly in 1883, Thomson and Tait predieted without proof that the stability of the
rotating liquid systems depends on whether total potential energy attains its minimun
when viscosity is taken into account™. Owing to lack of proof, people have every reason
to question whether it is a foregone conclusion that the secular instability means exponen-
tial inerease in amplitude with time. If viscosity is small enough, the conclusion of
stability for Maclaurin’s spheroid is positive™. But a general proof has not yet been
given. In this paper applying the variational method of non-adjoint operator, we proved
the above conclusion, and showed how secular instability depends on initial infini-
tesimal amplitude increasing exponentially with time.
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The dispute over the relation between secular stability and dynamic stability is very
gimilar to the one over ‘‘D’Alenbert paradox’’. Without taking acecount of viscosity, the
stability effect of Coriolis force corresponding to dynamic stability is untrue. Only by
taking account of viscosity, it can conform to reality. The experimental evidence of this
coneclusion is provided by the Columbus problem. Applying ‘‘stability concept of vor-
tex-lines’’, we can explain the essence of interaction between the viscosity and Coriolis
force. Finally, the application of the above mentioned conclusion to cosmogony has been

discussed,

I. SraBmiTy THEORY OF RoTATING LiQUum STARS

1. Mathematical model of the rotaling liquid star

Suppose that liguid star consisting of incompressible, self-gravitating masses of
viscous liquid uniformly rotate about a fixed axis with angular velocity €, the density of
the liquid stars be non-homogeneous and becomes zero out of them, ¥V denotes volume,
and 8 boundary surface. We shall study the stability of its equilibrium only under its
own gravitation.

In an equilibrium case, stars satisfy:

o7 { B0+ 119 x x} = vp,, )
By =G j” _w dx’, (2)

) jx — x|
(Py = on the surface S), (3)

where pi, P., gggare density, pressure and gravitating potential respectively, z radial
vector, G gravitating constant, and U = g, + 15 |2 X x|". As we know, the equilibrium
conditions require that the equipressure surface P, equals constant, both the equipoten-
tial surface U and the equidensity surface p, should be constants and the three surfaces
should coincide with each other.

The figures of rotating liquid stars in equilibrium case are obtained by solving Egs.
(1)—(3). There have been a lot of articles reviewing this subjeet™ * * *~*  and recent
references were given in [23].

2. Equations of small disturbance and corresponding eigenvalue problems

Now, we may deal with the stability of rotating liquid stars according to the stabil-
ity theory of viscous fluid dynamies™”. We take a system rotating uniformly with an-
gular veloecity Q, relative to the fixed system as the reference one.

Suppose that disturbing displacement vector is &(x, ) so the euler variation of
physical quantities of the liquid Stars may be written as,

Vix, t) = a—fﬂgtﬂ o(x, ) = oo(x) + 3(x, D), }

P(x,t) = Py(x) + P(x,t), B(xt) = B(x)+ B (x,1),
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where qualities with symbol ‘0", *‘ ~ '’ indiecate those in equilibrium and those disturbed
respectively.

The equations of small disturbance of the rotating liquid stars are:

%k i3 ( o& ) 5 vP |
— +2 X =2 — uV| 2 )= —VP—v. 2 4
o o RN Y 73 Bt (o) 2 (4)
+ o7 { ||| o2 (8 - 7)o} (5)
2 [ — x!
oF
v.-l=—=>)=0. 6
(. 6#) (6)
Disturbing boundary condition: On surface 8, it satisfies:
~ 0%, 0%; ] _
P4+ (&- V)P + n; — [—'+——’- i = 0. 7
[ SEAU L 9z;0t  Bx,0t " D

Suppose that
E(x, 1) = E(x)e”, (8

other disturbing quantities are represented by £. Thus, the eigenvalue problem for o
is derived as follows:

000%& + 0[20082) X & — uV¥]| = — VP(E) — (£ - Voo VP,

Po
+ pV HH Goo(x' )(& + V), I*le;,r-dx’}, €))
v-E=0. ’ (10)
On surface S,
[B(E) + (& - VIPo] - m; — on [-‘Z—i-j + g_ii} Cnj =0, an
j i

The eigenvalue problem given by (9)—(11) are denoted as the problem A. If ¢, &, P(§)
are the solutions of the problem A, then o*, £*, P*(&) are its solutions too. Afterwards,
according to the variational method of non-adjoint operator given by [1] we shall
further treat this problem.

First, we derive adjoint eigenvalue problem (denoted as problem A*)

puwzﬂ - w[fﬂpn.ga x n -+ ‘uvz‘q] = —Vp(n) _— (_ni)_p,g. V‘DU

00
+ o7, {{ ] st - 90 —Lax], (12)
LT |x — x'|
V.n=0. (13)
On surface 8, .
p > On; , On; :
[P(n) + (- V)Pl - n; — o | 20 o Q0| L o g, (14)
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If w, n, P(n) are the solutiens of the problem A*, then w*, n*, P*(n) are also its
solutions, The above mentioned two eigenvalue problems have their clear physical mean-
ing. If A refers to the case of the right-handed rotation, then A* to the left-handed

rotation.

3. Variational equation and the proof of variational principle

(1) In the same way as is done by [1], we can prove that A and A+ have the same
series of eigenvalues, ie. 0i= @. Multiplying both sides of (9) by the solution n of
A*, integrating over the volume V, and using (10), (11), (13), we get the variational

equation :
o6 m =t { = [we m + 2L
e o + ZEDN 1 move w |, a9

where

16, ) = [ ook - maz, *

w(E, ) = jﬂ o2 X £ - ndx,

ot =[] (3585 (20 2

U, ) = j || nreax oo

_ H o, o 5 5 S0 2k - Z)L(n U

- HS HS Goo(x)ps(x ) + V) (€ + V) —2—dx'dx.
4 v

|x — x|

Then, the problems A and A* are reduced to a variation problem of functional
o(&,m). If &, n are continuous and differentiable functions defined on t and satisfying
the additional conditions ¥ - §=0, V=0, then the totality of £, n forms a functional
space M and o(&, n)is a functional defined on M.

(2) Let 8&, om be the variations of £ and n, and satisfy & + 6§ € M, n + éne M,
it can be shown that when the functional o(&, n) reaches its extreme values, the follow-
ing relations are obtained:

— {201(&,m) + 20 (&, ) + (&, n) )60
- m {"“"25 + o[22 % & — uv§] + 9B + & -:39_0 VP,
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|x — x|

#|[{-rw+ &Pt o (5o g) - mf onas

— 067 || [ G - 9200 L x|} amix

+ HX {Pugzﬂ — 0[2002y X 1 + uvy] + VP(n) + {n- Yo VP,
7 Pa

— 009 |[ |20 920 x|} atax

(- P om0 20) o) o,

¥

From the above equation, by using the fundamental lemma of variational method
([25], Vol. 1, Chap. 4, §3) it is concluded that when the functional o(£, n) defined on
the region M takes its extreme value, the solution of problems A and A+ are derived.
On the other hand, the solutions of problems A and A+ cause the functional o(&,n) to
take its extreme values. This is a variational problem of nonlinear functional under the
natural boundary conditions. Hence, the variational equation (15) provides the varia-
tional basis of the approximate method in the treatment of stability and is also the fun-
damental starting point in the determination of the signs of the real parts of the eigen-
values.

4. Stability criteria of the rotating liguid stars

In the variational equation (15), with n substituted by &*, the integral relation of
the eigenvalue may be obtained as follows:

AR EN(CRE ) TR NS
where
1= 18 6% = {] o - 870, (19)
v = 0§ £ =[] oul@x &) - £rax, (20
S

8 = (L, &%) = jig EXTédx = — Sj —63%“- (n - &)4ds

)
i

(& - U@ - vy Lo e
E dUu dUu dox

Po

5 E SH Goy(x)po(x' ) (E* - V) (& V), 'I}__—lTidx,' (22)
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On the analogy of [1], it can be proved that each eigenvalue determined by the
variational equation (15) corresponds to each one determined by (18).

The various terms in the integral relation of eigenvalue (18), as expressed by Egs.
(19)__(22), have their clear physical meaning: I represents the perturbed kinetie
energy, 2¥ corresponds formally to the work done by Coriolis’ force (¥*<<0), ® >0
represents the dissipative work done by the visecous force, 6°U corresponds to perturbed
potential energy of the rotating liquid stars as will be proved in the next section.

According to Eq. (18), we may use the following lemma:

Lemma 1. Let Z=e+if (e>0) and a be any real number, then

¢)) Re{-—z.—t\/gz—'—ﬁz}<0, (23)
(2) 0 < max {Re [— 2z + /22 + @]} < a. (24)
The stability criteria may then be obtained as follows:
Theorem 1. If all of the eigenvectors &satisfy
50 = m E*TEdx > 0, (25)
v

then the rotating liquid stars must be stable.

Proof. According to the theory of stability of viscous fluid motion, when the real
parts of all eigenvalues are negative, the motion is stable. Now we may prove the
theorem by the deduction to absurdity. If there existed a certain eigenfunction &x
satisfying

(&, &%) <0,
and in Eq. (18), we set*
o= 2D

it = W(Er, &), o= — I(&, &), &UE &) >0,

then according to (24), the corresponding eigenvalue A« would satisfy Reoc>0. This is
obviously contrary to the assumption for stability.

Theorem 2. If there exists at least an eigenfunction & satisfying
s, £ = || rreae <o, " (26)
1 4

then the rotating liguid stars must be unstable.

Synthesizing Theorem 1 and 2, we obtain:

Theorem 3. Suppose that the liquid stars rotating uniformly consist of incompres-
sible self-gravitating masses of viscous liquid, then its critical stability conditions are

SU(E, EF) = m E*TEdx = 0. @n
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II. SECULAR STABILITY AND DYNAMIC STABILITY

1. Proof of 6°U to be the second order variation of the total potential energy

In order to derive the second order variation of the total potential energy of the
rotating liquid stars, we have examined the stability problem of the equilibrium of the
following system: Apart from viseous force and Coriolis force, its potential force
ineluding gravitational force and centrifugal force is identical with that of the rotating
liquid stars. From Egs. (9)—(11), an eigenvalue problem determining stability of
this system may be obtained as follows:

ook = —vF — £ D05p, 1 o5 {[[[ Garxr(E - 920 P x|
v-E=0 " ’ T %)

On surface S, P(§) + (§ - V)Py=0.

It is easy to prove that this is a self-adjoint eigenvalue problem and its correspond-
ing variational equation satisfies the Rayleigh principle:

(e
ot e — SUEEY) v . (29)
I(§, &%) SH ook + E*Xdx

14

Thus, the sufficient and necessary conditions of stability of the system become
S (E, £) = m E*TEdx > 0. (30)
v

It is well known that with the effeet of potential force, the sufficient and necessary
conditions of stability of conservative system are that the potential energy attains its
minimum. Thus, it can be seen that 6°U is the second order variation of the potential
energy. According to Theorem 3, we immediately obtain:

Theorem 4. If the liquid stars rotating uniformly are incompressible, self-gravi-
tating masses of viscous liquid, then its stability criteria depending on all normal modes
" of oscillation are consistent with secular stability criteria derived from minimizing po-
tential energy.

2. The relations between secular stability and dynamic stability .

It is the existence of Coriolis force that leads to the difference between secular
stability and dynamic stability for rotating systems. They are identical for system in
static equilibrium. :

For the rotating liquid systems, the properties of Coriolis force are as follows:

(1) For the inviscid case, the Coriolis force may possess stabilizing effect. In fact,
set ¢ =0in Eq. (18), we obtain

a=%{—wi\/w1-—r-azv}, (31
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then, the sufficient and necessary conditions of the stability are ®*—7J-5%U<<0. Because
W20, 82U> 0 only is sufficient condition of the stability. In the region ¥?/T<8U<0,
Coriolis force may possess stabilizing effect. It is a region of secular instability and one
of dynamie stability.

(2) For the viscid case, the Coriolis force cannot possess stabilizing effect. Critical
conditions depend on whether the total potential energy of the system attains its mini-
mum which is direetly deduced from Theorem 4.

(3) When the liquid system rotates uniformly around its symmetric axis, then,
whether we consider viscosity or not, the Coriolis force will never achieve stabilizing
effect for the axisymmetric disturbance. In fact, for the axisymmetric disturbance,

E(r, 2) = £(r, ), iL(r, 2), §i(r, 2), it is easy to prove that ¥ = [ [ (@)
V .
E*dx = 0, i.e. Coriolis force does not achieve stabilizing effect.

According to the above properties of Coriolis force, we can easily get four relations
between secular stability and dynamic stability as listed by Lyttleton ([5] p. 22). The
cases emphasized by him in which two kinds of stability disappear simultaneously
correspond to those in which Coriolis force does not acquire stabilizing effect. These
relations are not essential. In fact, for inviscid case, the dynamie stability conditions
corresponding to the stabilizing effect.-of Coriolis force, are untrue. For viscid case,
two stability concepts which were obtained by use of the mnormal mode method, are
identical.

3. Properties of the secular instability

Making use of minimizing total potential energy, we could obtain only secular stabil-
ity conditions, but could not calculate the growth rate of the instability. Thus, somebody
raises a question whether secular instability should have been unstable with initial in-
finitesimal amplitude increasing exponentially with time". Some hold that only the
initial infinitesimal amplitude for dynar;:tic instability inereases exponentially with time,
but the amplitude for secular instability linearly vary with time, the growth rate depend-
ing on the magnitude of viscosity, and when viscosity disappears, so does the growth
rate™, '

According to Eq. (18), we may calculate the growth rate of secular instability,
making use of Lemma 2.

Lemma. 2 Suppose that Z=e+if (e> 0) and a is any real number; then

(1) when f =0, — z +\/é-é—i-_}=_—a;~, (32)
x/a3+ez+e

a? . P
gt T Vi—a),
) if @< (33)
(2) when e K1, — z+ +/2*+ &> ={+/a? — 2 — if, if a> > 2, (34)
7 —
\/—;—+-;—Je4 + 46’f* — ¢ — if,

if =72  (35)

-
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where
277
352, 1:f=‘£, Gz=—££.
21 I I

At first, when W = 0, i.e. in the cases when dynamic and secular stabilities disappear
simultaneously, making use of Eq. (32), we get

U
I
A — > 0. (36)
2
\/—_dU.g._Q_-{-_g
I 410 21

At this moment, it will not be overstable any longer, even if viscosity exists; in this case
small disturbance will increase exponentially with time, and viscosity effect only reduces
the growth rate of instability. Such a view that secular instability would also cause
small disturbance to increase exponentially with time is of great difference from earlier
concept. It seems to be the most dangerous instability, for if only &'V < 0, small
disturbance would increase exponentially with time:

2rT M 2
expo;tr-exp{—&t/{ ——5'_22-}-";_]_2]}_
I I 472 2r

For small viseid case, the growth rates of instability would hardly depend on viscosity.

Approximately we have
exp o,l = exp {t‘/ - %},

It will not vanish when viseosity is equal to zero.

When ¥ == 0 and in small viseid case, i.e. @ «1, from (18), by using Lemma 2, we

get
. _1-”¢ ILY —_—
BN SNVt Z s B
_ —W 418U I I ’
o=o Fw =9 if — @ 418U >0, (37)
-%«,/ﬂﬂ—loazU—%-if—*lf3+1-32U<0, (38)

When 0> 6*U > W?/I, this is a region of secular instability but of dynamic
stability. Right now, secular instability is a kind of overstability, the growth rate of
instability

L pens

— 56 8
—w 4180

o’rhﬂ

depends on the magnitude of viscosity. When &°U < W*/I <0, this is a region of
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dynamic instability as well as of secular instability, and it is also a kind of overstability.
In the approximate expression (38) corresponding to small viscid ease, o does not
depend on @, thus, the growth rate of instability o. does not depend on the magnitude
.of viscosity. It will not vanish when viscosity is equal to zero.

Here, we have not only given the expressions for caleulating the growth rate of in-
stability in various cases, but also cleared some erroneous points of view about secular

instability.
4. Physical essence of the viscous effect on instability

In the problem of motion stability, the viscosity possesses double effects: first, it
possesses an ordinary effect of decreasing the disturbance; second, it indirectly gives
rise to instability by cancelling factors of motion stability. Owing to viscosity, the stabil-
ity effect of Coroiolis force disappears in the system of rotating liquid stars, which is
known as the viscous instability effect. Now, we may explain the essence of interaction
between the viscosity and Coriolis force by applying the concept of vortex-lines stability.”’

According to the Taylor-Prondman theorem, we know that®® (i) the liquid
system rotating with angular velocity £, uniformly possesses vorticity 2£2y; (ii) in the
rotating frame, the rotating system of barotropic fluid (containing incompressible fluid)
possesses a total vorticity rot v+ 2w and in the process of motion the strength of vortex

tube H (rot v+282,) ds remains constant (where 8 is an arbitrary curved surface enclosed

3
by a-simple closed curve C). It is easy from the proof of the theorem to see that vorticity

282, exactly corresponds to Coriolis force.

Before disturbance, the rotating liquid stars possesses uniformly vorticity 282,. In
proceeding of disturbance, its vorticity 242, remains constant. At this moment, we may
envisage that the fluid elements resemble small spheres adhering to vortex-line, and
rotating with angular velocity 2€2,around it. In such case the total system could be re-
garded as a set of the above-mentioned clusters of vortex-lines, which attach to the fluid
permanently. The original elements on the vortex-lines before disturbance will still form
the same vortex-lines during the period of disturbance, i.e. all of fluid elements forming
the vortex-lines are disturbed as a whole. Here the vorext-lines just like frozen-in
magnetic lines would produce stabilizing effect to decrease the disturbance. Thus, the
stabilizing effect of Coriolis force resembles exactly that of the frozen-in vortex-lines. As
soon as viscous effects are taken into account, the frozen-in vorticity and the stabilizing
effect of vortex-lines would disappear. In this way, the Coriolis force would not actually
.arouse any stabilizing effect.

5. Comment on the dispute over relation between secular stability and dynamic stability

The historical dispute over the question which lasted nearly about one hundred
years, might be attributed to the following two factors:

First of all, the stability criterion obtained for the dynamic stability without
considering viscosity is false. In the theory of hydrodynamic stability, a lot of examples
have shown that the negleet of viscosity would bring about false conclusions. For
.example, as to the stability of plane-parallel flow, the flow is always stable for inviscid
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case, and the instability of laminar motion would never appear; the critical Reynold
number could only be obtained for viscid ease. This is also a long-standing dispute™*”,
very similar to the one over ‘‘D’Alembert paradox’’. Only for the viseid cases, can such
a conclusion conform to reality.

On the other hand, when the secular stability based on the minimum of total poten-
tial energy is taken, only stability criteria may be obtained, but the growth rate of
secular instability could not be calculated. As a result, it is only under the excessive con-
dition that the stability is required everywhere that the evolution process of the rotat-
ing liguid stars in quasi-stationary state would come true.

Taking account of viscosity, we may deal with the stability of the rotating liquid
stars by the method of small disturbance. It might be concluded that the two stability
concepts are identical. Moreover, to give growth rate of secular instability would bring
about dynamic property of quasi-stationary evolution process. Thus, a real process need
not demand stability everywhere.

VI. DiscussioN AND CONCLUSION

Experimental evidence proving truthfulness of sccular stability

Although direct simulation of rotating liquid stars is impossible, after altering self-
gravitating field to uniform foree field, it would be possible to carry out experiment of
simulation. The possibility for doing this is provided by the Columbus problem.
Kelvin’s experiment had already proved that the stabilizing effect of Coriolis force is
false”®, which is fairly clear by comparing Maclaulin’s ellipsoid with Kelvin’s experi-
ment in their theory modes, eigenequations and stability conditions (see Table 1). The
consistency between Kelvin’s experiment and theory is exactly the proof of the reality
of secular stability condition of Maclaulin’s ellipsoid.

Table 1 .
Comparison Between Rotating Liquid Stars and Columbus Problem in Stability Conditions
Inviseid Cases Viseid Cases®
Dynamie Stability | Dynamie Insta- | Secular Stability |Sencular Instabil-
Conditions bility Conditions Conditions ity Conditions
generl cases W —J-80<0 | —1-8T>0 S>>0 ) §U<0
Rotating liquid
stars Maclaulin’s 0<e<0.8127 :
ellipsoid 0.8127 <6<0.9125 0.9125<e<1 0<e<0.8127 0.8127<e<1
general eases | WP — I - &'W,<<0 |¥* — I §'W.>0 &*W.=>0 &Wr<0
ellipsoid-shape a>>c¢ ’
. Gobambus problemieyi” rotor gyros 3a<o a<o<3a a=>o a<e
Kelvin’s _ -
experiment a>e a<e

In Table 1, I, W are given by Egs. (19) and (20). ¢°U, 6°W, represent the potential
energy variation of the second order in two cases respectively, ¢ being equator radius, ¢
polar radius and e ellipticity.
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2. Quasi-stationary cvolution procéss of the rotating liquid stars must be judged by

secular stability criteria

This paper has proved that stability criteria of rotating liquid stars, which depend
on all the normal modes of oscillation, are consistent with its secular stability criteria.
This conclusion had proved theoretically the falsehood of stabilizing effect of Coriolis
force. By applying ‘‘concept of vortex-lines stability’”’, we have further explained
physically the essence of interaction between the viscosity and the Coriolis force, and
made use of Kelvin’s experiment to prove this conclusion. Thus, it may be affirmed
that quasi-stationary evolution process of the rotating liquid stars must be judged by
secular sability criteria.

3. Jeans-Darwin’s fission theory of binary stars must be evaluated anew.

Previously, the secular stability criteria could only be obtained by minimizing total
potential energy, whereas the growth rate of secular instability still remains unknown,
and this leads to such an excessive condition that the evolution process of rotating liquid
stars in quasi-stationary state would come true only by demanding stability everywhere.
It is just due to the above-mentioned weak point that Jeans-Darwin’s fission theory of
binary stars was rejected.

On the condition that the dependence of secular instability on small disturbance in-
creasing exponentially with time is established, that would bring about dynamic property
of quasi-stationary evolution proeess, and that the characteristic time of the secular in-
stability is larger than that of the process evolution, such process will be realized. On such
basis, we can discuss the reality of Jeans-Darwin’s fission process of binary stars and
some new light may be thrown upon the problem.

4. The conclusion of this paper is suitable for rotating magnetic stars as well

As for the case of rotating MHD system, our conclusion is identical to that of the
present paper, i.e. the stabilizing effect of Coriolis force is false®. The application of
the method in the present paper and the conclusion on rotating magnetic stars will be
described elsewhere. ;

The author is grateful to Professor Tan Haosheng (H. S. Tan) for his guidance and

encouragement in this work,
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