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ABSTRACT

The axial-symmetric magnetic flux tube may be deseribed as the slender configuration.
The series solutions of the exact nonlinear equations are obtained by expanding the polar angle
in the spheric coordinate gystem for the boundary value problem of the static equilibrium
configuration. By using these solutions, the features of the solar magnetic flux tube are
discussed, The results show that the magnetic field will be strenghened in the flux tube in case
that the transversal temperature has nonuniform distribution; the magnetic flux tube has the
tendency to contract at the lower photosphere and expand at both sides; and the magnetie force
lines are twisted in the magnetic surface in general, The feature of the magnetic field varies
from the forced one at the lower level to the force-free one at the upper level in a flux tube,
and the much twisting of the flux tube in the lower level will make larger the magnetic
energy of the transversal field on the upper level to supply the energy needed for solar flare.
Finally, some typical models of the flux tube are discussed in detail.

I. INTRODUCTION

Recent observations show that the elementary structure of solar magnetic field is
solitary and discrete flux tubes. The typical radius of the flux tube is only 200—
400 km, and the average magnetic field is 5002000 gauss. The flux tubes emerge
from convective region and streteh through the photosphere into the chromosphere and
corona, thus giving complicated characteristic configurations. It is important to study
the equilibrium configuration of the flux tube and the influence of thermodynamic
parameters on the configuration for farther comprehension of the solar magnetic field
and the dynamic processes in the active region'™. The magnetic field in the active
region is often described as a force-free field”. This assumption holds approximately
only in the chromosphere and the lower corona. The pressure gradient and the grav-
itation are important in the convective region and the photosphere, and the general
relations of static magnetohydrodynamics have to be dealt with. In addition, the quiet
prominences could also be deseribed as a magnetic flux tube™. It is also important to
study the influence of plasma parameters on the equilibrium relations of magnetic field.
A general discussion about the static equilibrium relations is given for the axial-symmet-
ric magnetic flux tube, and the plasma temperature may be considered as two-dimen-
sional non-uniform.

Liist and Schiiter had obtained the solution for the uniform cross-section of the
flux tube™, Later Parker extended the one-dimensional result of [4] to a two-dimen-
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sional one™", though his approach is not so rigorous in mathematies. Then, Wilson
obtained a kind of special asymptotic solutions of the static magnetohydrodynamic
equations by the expansion method in eylindrie coordinate™. Recently, Low discussed
generally the properties of two-dimensional forced field using the magnetic potential™®,
restudied the equilibrium configuration of Schliiter-Temesvary (1954) solar spot model
and obtained the Wilson solution as one of his special examples, On the other hand,
Comfort et al. found some speeial solutions of the nonlinear eqﬁations using separate

variables, and made use of the results obtained to discuss some solar spot configurations
in detail™™,

The difficulties of solving the static magnetohydrodynamic problems stem from the
nonlinear properties of the differential equations. The problem will be more difficult
if some initial and boundary conditions are given. And what is more, the thermodynamiec
parameters vary rapidly with the height, as a result, the computations are not easy to
carry on for special problems. By considering the slender feature of the magnetic flux
tube, the parameters may be expanded for small polar angle 8 in the spheric coordinate
(r, 6, p), and the solutions of two-dimensional problem may be obtained for the static
magnetohydrodynamic equations in general. The terse form of the expanding solution
are convenient to apply for various problems.

II. Basic EQUATIONS AND THEIR SOLUTIONS

The equations of static magnetohydrodynamic equilibrium include the conservative
relations of mass, momentum and energy, the condition of solenoidal magnetic field and
the state equation. In the case of axial-symmetry, these equations may be written in
the spheriec coordinates as follow:

B, (3_3' — —_6"3) — Bw% = 4nr (@ + @M, p), CAY
86 or Or or r
B (arBa _ QB,) — Bo OBgsin6 _, 0p (2.2)
or 86/ sin® 66 00
B OrBy | By 0Bysin6 _ (2.3)
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where B,, Bg, B,, are the magnetic field intensities; p, p, T are the plasma density,
pressure and temperature respectively; B is the gaseous constant; M, , the solar mass;
and @, the gravitational constant. The energy equation is not included here and the
temperature of plasma T'(r, 8) is thought to be given or from observations. By intro-
ducing the following non-dimensional parameters, we have

0, (24)
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where the subscript 0 denotes the corresponding typical value of the parameter‘.
Omitting the superseript + which denotes the non-dimensional quantity, we get the non-
dimensional equations as follows:

. 8B, ORB, ORB op o
B( r e)_B g:R(.- + — ), 2.7
“\s6 ~ oR *"BR bor TR &1
B, (BRBE _ QB,) _ B, OBpsin® _ ,0p (2.8)
8R o6 gin® 086 o6
B, 8RB, + .Bg OBgsinf _ 0, (2.9)
8R sin 6 a0
R .
1 OR’B, + .1 OBgsin 6 __ 0, (2.10)
R OR sin 6 86
p = o. (2.11)

As the magnetic flux tube is generally of a slender configuration, the polar angle
9 is small in the tube if the origin of the spheric coordinate is placed at some point in
the convective region, Hence, the two-dimensional parameters may be expanded for 6

as follows:

p= Z p(m)em’ p = Z p(m)em,
e "t (2.12)
T = Z T(m)em’ B = 2 Bimgm
m=10 m=10
By substituting the expanding relations into the basic equations (2.7)—(2.11), and
using the formulae

_l)m . i‘ (_1):71 .
cosg = S (=" 6", sinf = > ————t 6",
,,Z=0 (2m) MZ=6 (2m + 1)1

then we obtain the differential equations for every order of 6™

The relations of the zeroth order are

dpfo) 5 (o '
+ [ ) = 0, 2.13

ie B (2.13)
B =0, B =0, . (2.14)
,pto} = p(OJT(O)' (2_15)

By using the relations (2.13) and (2.15), the pressure distribution can be written as

[=] =) R 6

PO(R) = pi® exp (— .‘17321‘@ dR), (2.16)

where the boundary value p{® = p‘®’(1) =1, which is the same value of pressure
p(1, 0). This relation is reasonable. The zeroth relations correspond to the relations at
the symmetric axis @ = 0 which must be a magnetic force line, and the pressure gradient
is balanced with the gravitation along the magnetic force line'™. B{°? is arbitrary in the
equations of the zeroth relations. The higher order quantities can be determined if the
distribution of B!°? is given as any special type.
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The equations of the first order are given as:

dp™® T .
BU)B‘}D = §R P 4 = tlf-', (217)
o R TR
—BOBW = gp® (2.18)
1 dR?BY .
BY = — + oo T 2.19)
o 2R dR ) ¢
PO = pOITW 4y (2.20)

Substituting (2.20) and (2.18) into Eq. (2.17), the equation of pressure can be written
as,

dp™® ( & 1 dR*B&"J) w_ 5 P TP
dR R*T®  2RB!®) dR R2T®) T

By using the relation (2.16), the solution of the above equation is

PRy R (1)
P(R) = B v/ BP OB (5 + L—:/a:) Todr) (2D
_ R/ B
where p{® = p®@(1). Substituting (2.21) into (2.18), we get B as
(o) R (1)
BO(R) = — —2E_ [pé“ + S —f_—_—T—dR]. (2.22)
VBO(R) 'RV B T

The relation of B is given in Eq. (2.19). In the one-dimensional cases, there is B§’=0,
then RB, = constant. The non-zero BY’ just reflects the two-dimensional features of
the magnetic field. In integrating (2.21), the condition B!*(1) =1 is taken,

Similarly, the second order equations may be written as:

@ 6 3
B (ﬁ ap® ip(z)) = BY (239’ — %) + By’B® — BY @%, (2:23)

dR  R?

1)
2BOB — B SEEE 4 por — 9ppr = 299, (2.24)

1)
B GEBE 4 opppp =0, (2.25)

(D
B — — 5-}?_ dR‘;gr , (2.26)
p@ = pOTD 4 WTW 4 ,BPE) (2.27)
By using Egs. (2.24)—(2.27), Eq. (2.23) becomes
2 8 2 By’ '

?R N (R ™ E Bi,;) p? = 8(R), (2.28)

where the term 8.(R) in the right-hand side is

5 7w 7@ T \2
SJ(R)=——{P(°-—~—-+P®) W_( )]}

R2T®) peo) _T(OJ
(1) 1
+ L[ B8 ompr— oy 4 mpme —pp EIE| 220)
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Considering the relation (2.19), we have the solution of p™® as :

R S(R ' |
(2 = (L0) (0) (2) 2
pIE) = BB (o + || D an). (230)

Using the relation (2.19), we obtain, by integrating Eq. (2.25), the following result:
BY(R) = BYARB!“)(R), (2.31)
where BY = BY’ (1). From Egs. (2.22) and (2.26), we get
_ 1 4 {ﬂR"pco’(R) [ r 8 7™ ]}
(R) = — 2L s (0 | 2 = 4r|t. 2.32
B(E) 3R dR \,/ B°oX(R) B 13 /B T (232)

The source term 8,(R) is determined completely using Eqs. (2.31) and (2.32), and
furthermore, the pressure is determined by Eq. (2.30). Thus B*® can be obtained
from (2.30) and (2.32) as:

1 dRBY , 2B — Bw g { r 8,(R)dR }
2) —_ ") P r Y mp2.(0) (2) 2
B2(R) T + S5 + 5 R {pf® + BB | (2.33)

The equations of the third order may be given as:

Bg) (33:._3} — dRBE}) + Bb‘z‘) (239) — dRB{ED) + Bf,UB?J — (Bg)\dRBg)
dR dR adRr

(1 (3)
+ BY %L) —R (,9 %e_ +Z pm), (2.34)
B (dl;};“e” _ 33&3}) + BW (dlzgg) _ 23:3)) — BWBW — 5BHRY)

+ _?S_B}_G)B&D = ﬂ(gp(a) — %p(n), (2-35)

B dRB{
’ dR

+ B

1)
w IRB 1 sBPBY + 28PB ~ 0, (2:36)

1 dR?*B® 1 dR?B* 2

oS LGNS 4By — L BP =y, 2.37
R dE 6B dR oy (237)
PO = OO 4 WD L OPW O, (2.38)

Substituting (2.35) and (2.37) into (2.34), we derive the equation of pressure as:

dp® ( 5 3 dR’B“”) "
+ — . — S(R), 2.39
dE  \RT® 2rB® dg /P (&) (239)

and

1 N @ W \2
Sx(R) = B§ p® 5 {p‘“’T—+p‘”{T (T )]

6RB© RT© 7(°) 7\
T3 ) 7w 3] } BY dRB},”
(0) _ ] M)
4 [T“” g T (T“”) * 8RB [B£ dR

— 3BWB® — 5BWBY| 4 ﬁ?,- [Bﬁ’-‘B?’ + 2BWBY 4 %B&’JB&”
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dRBy" dRBY a‘.RB‘“]
— B — BW ® . g Ol I 2.4
°"dR " 4R * 4R (2.40)
The pressure p® can be derived from Eq. (2.39) as:
— o0)y2,.(0 ' k S(R)dR
pO(R) = BB @) (a0 + [ ), (241)

where the boundary eondition p{® = p® (1). The linear differéntial equation of B¥
can be given using (2.36):

dRB® ( 3 dR*B“”) @ o B®(R) dRBY BLBY
- L) BY + = Li8e 2 =0. (242
dR 2RB'® dR ¥ T B2(R) dR B® (2.42)

The solution of the above equation is

dRBll)
#2BPBY + BP — 5
. R¥(BY" dR}! (2.43)
where B, BY’, B!® are given respectively by Eqs. (2.32), (2.31) and (2.22). Eg.
(2.37) gives

BP(R) = R¥(B)} [ng - E

(1) 2plo) 2 p(2)
BP(R) = BY 1 dEB® 1 dR'B; (2.44)

6 24R dR 4R dR
The solution of B® is obtained from Eq. (2.35) as:

BO(R) — % dRBf’ , B> (dRB‘a" _ 33}2))_M+§E

dR 3B:‘.O“ dR 38‘;0) 18
B R©) (0 R 8,(R)dR }
18B{? ﬁR%‘/ B p et + 1 R3(BLO))¥2pt)’ (2.45)

On the analogy of this, the equations and solutions of higher orders may be demon-
strated. There are only contained some boundary value of parameters at B =1 and
some simple differential and integral operations in these solutions. Hence, the solutions
of expanding series can be obtained formally for the initial problem. By applying these
solutions, we may begin to discuss the general features of the magnetic flux tube.

TII. GENERAL FEATURES OF SoLAR MaAanETIC FLUX TUBE

1. The nfluence of non-unitform temperature distribution

The total pressures between the inside and outside of the magnetic flux tube must
be kept in balance as,

p+E—p, (8.1)

8x
where p. 1s the pressure just outside the tube. Hence, the magnetic field magnitude is
determined from the pressure difference between both sides p, —p. Observations of
solar photosphere show that the magnitude of the magnetic field is not larger than 1500
gauss if the observed value p, — p is used. So some mechanisms are required so as to
increase the magnetic field. Parker has pointed out that the temperature difference
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between both sides of the magnetic flux tube can increase the magnetic field in the
tube. Without losing generality, let temperature field be described as,

T(R,6) = T(R)(1 + &6 + &6 + - --), (3.2)

and the relation between the functions a.(R) and T“(R) be

a(R) = ;':—:f)((f;—)). (3.3)

Substituting (3.2) into the formulas (2.21), (2.28) and (2.39), we have the expanding
expression of pressure as

o(R, 6) = exp (—ar dR ){1+ B+ B> [pgu—t— arw}e

1 RzT(O) ERB\/ B,(_O)
> i o R “ilg,'dR i ‘
+ 'Z; Ri(B®)i" [p(u” + L_—_R‘(Bi‘”)‘”] 6 } (3.4)

The pressure increases in the flux tube at the solar surface with the increase of 6.
Generally, there are relations p{® > 0 and & (R)>0, then p*(R)>0. Hence, formula
(2.22) gives
R R
BB = — R exp(—o [ BB N[+ [ @B _) <o (35)
\/B,‘,D’ 1 R*T() IRE‘T(”’\/B}OJ

The magnetic energy density may be written as:

2
g-: = 13]_ [Bi®* + 2B”'BR6 + (B + B§ + B + 2BOB®)6* + ---1,  (3.6)
F 3
where the coefficient of term 6 is negative. This means that the magnetic energy
distribution has marked nonuniformity if the temperature is nonuniform across the flux
tube. The magnetic energy of nonuniform part is a small quantity of higher order if
the transversal state is uniform.

For the linear problem, the nonuniform component of pressure is,

PR o _ o /B [pcu + SS“M} 6, 3.7)

0

p(R) 183\/ B
and the nonuniformity of magnetic energy may be described as,
D (0) D
2B g — — 260 P20 (3.8)

B‘;UJ B&O}l p{ol

Outside the solar convective region, both p® and B{® decrease as the height increases.
The magnitude of p” decreases nearly 5 magnitude orders from the lower photosphere
to the transition region, while B{®) decreases only 1—2 magnitude order. Therefore,
the nonuniformity of the pressure and the magnetic pressure caused by the nonuniformity
of the temperatures are larger in the photosphere or in the region under the photo-
sphere. On the other hand, the nonuniformity of magnetic pressure is weakened more
rapidly and much less than the nonuniformity of pressure in the region above the
photosphere. So, the increase of magnetic pressure caused by the nonuniform tempera-
ture occurs mainly in the lower solar atmosphere.
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Let us disecuss once more the case where the transversal temperature gradient is
absent. Then, there are

@ =0 i=128-:
If the initial pressure is uniform at B = 1, we have:
PO =0, i=1,23- -
Using (221) and (2.22), we get: 2
pO(R) =0, BS(R)=0. (3.9)

In Eq. (2.29), the source term caused by the variation of magnetic field is not zero, that
is

}

S.(R) = L [2BEBSY _ g aRBY]
pR L B dR
J— (Bgt)})z LO) d o]
S - B L [R(R + 1)B1. 3.10
2 IR ( ) (3.10)

The distribution of p®(R) is obtained correspondingly:
)2 R

o(R) = — (Bio) papco) <°>j 1 _ 4 [RR+1)B”R. (311

PO(R) ) e [ 2l & r(r + DB (3.11)
The above formula shows that p® (R) = 0 if the initial magnetic flux tube is not twisted
at the base, that is, B® = 0; otherwise, p® is positive, when B{°’ decays more rapidly
than 1/R(R + 1), and vice versa. Correspondingly, the variation of the magnetic
pressure is:

B_ (B 81 (BN BD & gpe 4 (BRY | R(BOY

8« 8z 8z UR’\ dR 2 dR?
° R dR(R + 1B dR ]}
2R?B!® — R'B° <°>§ 0(6%). 3.12
+ 2R*BI® — B'Bp' | 7 7))t CY) (3.12)

Therefore, the magnetic pressure and the thermodynamic pressure may be nonuniform

Pressure Pressure

[ Pe

(a) (b)

a; =0 a, 50
Fig. 1. The influence of temperature distribution on fhe magnetie pressure.
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even if the transversal temperature is uniform, but these nonuniformities appear in the
terms 6°. The magnetic pressure may be increased if the decay of B{°) is faster.

According to the above analyses, the influence of temperature distribution on the
magnetic pressure is shown in Fig. 1, where the surface 6 = 6, is the boundary of the

magnetic flux tube.

2. Configuration features of magnetic surface

 The equation of magnetic force line can be written as,

dR _ Rd6 _ Rsinbde (3.13)
B, By B,
In the axial-symmetric problem, every magnetic force line in the meridional surface
rotates around the symmetric axis and thus forms a magnetic surface which may be

written as:

(1) (2) ‘e

dR R B + B0 + BY6 +--
Expanding the equation in series of 6, the asymptotic equation is given as:
) 2) WRW ) W R
dE R BY R \B{®  B°? R LB  B°"
Bg" B B
+ B£°>(2 i B&‘”)J 6+ - (3.15)

This is a complete nonlinear equation which is generally difficult to solve. If we con-
fine ourselves only to the 6* terms, omit the higher order terms and let Eq. (3.15) be
divided by #°, we then obtain a linear equation of 1/8 as,

d (l) + (l _BE) i__ 1 (Bi’ — M), (3.16)

dR \ 6 R B/ 6 R \B®  B°%?
Eq. (3.16) gives
e (L (- B ),
e 6, 1 BW (Rz,\/B‘{roJ)a
or
6 _ 1/R +/B® . (3.17)

R (1) pl1
% 1+eaj (B?JFBFBf) aB
1

B (RI,\/B}.D))S
The above result can be expressed approximately as:

R P

iz—flﬂ—___{l +Guj (B?’ — BB ) aB_ }+ 0(6). (3.18)
6, R '\/B:‘.O)(R) 1 B®) (RZN/BEO)):’

The result of (3.18) shows that the basic configuration of the magnetic surface may be

written as:

= 60/R v/ BO(R).
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The magnetic force line diverges with the increase of B if the decay of B! is faster
than 1/R*, otherwise, the force line will converge. In application of the result to the
magnetic flux tube near the solar surface, B{°} decays rapidly outward the photosphere,
so the force lines diverge. But with some dynamo effects that increase the magnetic
field in the convective region, the foree line would concentrate outward to the photo-
sphere. Therefore, the whole force lines concentrate at the base of the photosphere, and
then diverge at both sides, as shown in Fig. 2. When the therrpody‘namie parameters
are uniform in transversal cross section of the flux tube, there are

B:(-D =0, BS” =0,

and the linear term in (8.18) disappear. Therefore, the nonlinear terms give expres-
sion about the influence of nonuniform temperature on the configuration of magnetie
surface.

'Fh: }:a; of photosphere

|

Fig. 2. Schematic diagram of the configuration of the magnetic surface.

3. Twisting effect of magnetic force lines

In the cases of force-free field, the force lines tend to twist. The force lines twist
round in the magnetic surface as space lines in the case of axial-symmetry™, Initially,
if BY) =0, with Egs. (2.31) and (2.43), the following relations always hold:

B =0, B =0.

On the contrary, the force lines will twist as they stretch outward, if they are twisted
initially at the base. It seems that the twisting features exist not only in the force-free
field but also in the forced magnetic field.

As the expansion is confined to the geometric coordinate 6, not the value of B,
so these solutions can be applied to study the match region between the forced field and
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the force-free field. A lot of solar flare theories consider that the transversal compo-
nent of magnetic field is increasing gradually in the chromosphere and corona as the
magnetic field is twisted at the base of photosphere, so that the energy is stored. The
solution (2.31) shows that the magnetic field will twist in the photosphere if it is
twisted in the conveetive region, with B -= 0. In this case, the magnitude of the
twisted field will increase or decrease according as the variation of RB(®)(R). As the
decay of RB{®’(R) is not faster under the photosphere, the twisting degree does not dif-
fer greatly from the initial one, and then the twisting degree is weakened above the
photosphere. The twisting degree will be changed in the upper level according to the
initial one BY). The transversal component of magnetic field will be increased in the
upper atmosphere if the magnetic field is twisted gradually in the convective region
-and as a result the magnetic energy is stored. Combining the result with the analyses
about the force-free field, the process about storage energy in solar flare may be well
explained. Of course, in a detailed discussion we need to study the dynamie proeess
about the flux tube. Estimating roughly from (2.31), we get the ratio of a longitudinal
magnetic energy to a transversal one as:

BY __ (BPOV _ omvemia
B (BEO’) ~ (B 2R, (3.19)
If BY) is not small and the above ratio may reach 0.1, then the corresponding energy
is large enough to supply a solar flare.

It must be pointed out that the expanding asymptotic solution is a local one and
we need to pay attention to the effective region in application. The solar parameters
in the atmosphere change rapidly; the local value 8 = p/(B?/8x) is larger than 1 in
the convective region, near 1 in the photosphere, and much smaller than 1 in the outer
region. When 8 is much smaller than 1, the equilibuium relation between the loeal
quantities will change, and the magnetic force would play an increasing important role.
The balance between the pressure gradient and the gravitation holds only in the region
nearer to the symmetric axis.

4. A kind of solution

Let us discuss the following typical two-dimensional temperature field,
T(R,6) = R"(1 + aR"6 + a,R™6% + --.), (3.20)

where the constant coefficient a; and the power index m, are given. The temperature
increases as E increases, when n > 0; the temperature is uniform along the symmetrie
axis when » = 0; and the temperature is constant in the cross section of the flux tube
when o; = 0. Furthermore, we assumes that,

B®) = R—m, (3.21)
This is a decaying field when m > 0.
Substituting the above relations into Mgs. (2.16) and (2.21), we have respectively :

(O)(R) =e [——8—-(1- 1 )l e —1: 3.22
p7(R) =exp s o n (3.22)
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—— e — —

o 8 1 \1[ 8
- 1— +
JR 2exp[ fn+1( Rt/ 24 n—mn —m/2

pP(R) = X (1 — R(v-rﬂ—zﬂﬂ?’):l, (n+ 220, + m/2) (3.23)
= +6 ; )] ° ( B )
F —_ 1 +adInR], (n+2=mn+ .
IR exp [ 1 ( Rt [ 2 a8In R] 1 D)

Using (2.19), (2.22) and (2.31), we obtain the first order rclatio;ls as:
BO(R) =
. ﬁRH-? exp [__ 8 (1 _ _L)] [pg]_) + 016

n+ 1\ Rtn 24+ n—n —m/2
X (1 — R(ul—-u—-ﬂm;’z))] . (ﬂ + 220, + %)’ (3_24)
+ 5 1 — m
— BR "7 exp [—- paras (1 — R"“)} [P + a8 1n R, (ﬂ +2=mn+ E)’
BP(R) =T 2_ 2 R, (3.25)
BY(R) = BRR™. (3.26)

Eq. (2.32) gives:

B"’(R)—gtxp [——5—-(1— 1 )] {pg Rg[(3+ 2)1: 3]

n—+1 Rite R
_ Rmﬁ m &
+ s [R”’*”l_" s [(3 + —) R—- ]
“ 24+ n—mn —m/2 2 R™
X [1 . Rn;"u—ii‘mﬂ]]}’ ("n -+ 2 5\: m -+ %) I (3_27)

and

B®) = o = 4 (1= o) o (2 + )R - ]

+ a8 [R + [(3 + -’;3) R— %] In RJ R”'”}. (n Fo—n+ %) (3.28)

Other corresponding components may be further obtained,

In the case of solar surface flux tube, the rate of temperature increase is nearly
equal to the rate of the decrease of magnetic field, so n > m/2. At the same time, the
transversal temperature gradient decreases as the height inereases, that is 7, < 0. There-
fore, the power index in the above equations satisfies n+ 2> n, +m/2. So, for R
that is several scales larger in height, the asymptotic relations of (3.23) and (3.24) are

given as:
_fm=2 6 ﬂ-s
RY~R ( ] ) (__)[ + 1 ]’
P2 (R) exp +1 P 24+n—mn—m/2 (3.29)
& a
BY(R) ~ —BR' T ex (-———)[ 1 ] 3.3
(R) I p A e 7 (3.30)
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The above relations show that owing to conditions p{® >0 and g, >0 for the trans-
versal nonuniformity of thermodynamic parameters as in the solar flux tube, B® is a
larger negative quantity for several scales in height. The magnetic field is enormously
amplituded by the nonuniform temperature in this model.

As a simple case, there is gi =0 if the nonuniformity of temperature is one-
dimensional, and the solutions are obtained as below:

p=exp[— 2 (1 )]{1+pE”R 23+R?"”[“’)+i——2

n+1 R~
X BewT SR exp (—- g__1_ )dR] 6+ -- } (8.31)
v : n+ 1R™ ’ '
Br = R™ — (DRH’; [_ é (1 . 1 )] e + {_ (?ﬂ —_ 2)(m — 1)
oms oxp n+1 AR 4
ﬁ’ m 26 (1 __1\] oy po
RH} exp + 1 1 - Rﬂ"‘l pn 2 + B&pquz_m
+ -ER’ exp [—- 26 (1 ~ L )] [pé"’ +2m —2) ngle-ﬂ—i'?
2 n+ 1 R+ g
X r exp (-— 9 1 )dR]} 0+ .- (8.32)
1 n + 1 Ru+l

_m—2 @ £ [ 8 ( 1 )] i’![( m)
B —m—20 8 1— B |(3+™\R
o R el B+ T3
]e
Rl‘l

2 R 8 1
B, = BRE—0 + B (B9 — 2 o83 " exp [— 2 (1 - L)

5 \ dR
: (2m —~ W) RI_M} o+ - (3.34)

In case of a uniform initial pressure at the entry section (p!°’=0) and without twist-
ing of the magnetic flux tube (BYj = 0), a very simple basic configuration of the
magnetic field is given by:

p= el 25 (- g0 0

B,= R™ — (m — 2)4(m— Dy 0(6%),

(3.33)

(3.35)

B, =M - 2 R-m9 + 0(6°),
B, = 0(&).

This is an untwisting flux tube, which is one of the simplest configurations and corres-
‘'ponds to the case with the lowest density of magnetic energy.

Now, the axial-symmetrie configuration of slender magnetic flux tube and the
thermodynamic parameters in the tube are given. Applying this expanding solution,
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we have discussed the features of magnetic field configurations in the solar atmos-
phere and the influence about the nonuniform temperature distribution on the in-
crease of the magnetic field. This method is efficient only if the angle 6 is small. 'When
the angle 0 is not small, local expansion may be taken at 6, and the feature of the
solutions can be discussed in the region near f,. The complete picture about the whole
magnetic flux tube is finally presented by the depiction of the properties of solutiens in
several regions. =
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