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ABSTRACT. C o n c l u s i o n  i n  [1] have been f u r t h e r  v e r i f i e d .  New r e s u l t s  a r e :  (1) I f  

t h e  e l e c t r i c  p o t e n t i a l  V¢ obeys  the  gauge r e l a t i o n  

a 2  
- .  ~ = 0 

dt 

t h e n  t he  n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  f o r  a to  be c o n s t a n t  i s  

v x(Px~)=#J, OA Ot = O. 

(2) An e q u a t i o n  g o v e r n i n g  t he  b e h a v i o u r  o f  a has  been d e r i v e d ,  which shows t h a t  

the  e l e c t r i c a l  r e s i s t a n c e  i s  t he  agency  t h a t  c a u s e s  a n o n - c o n s t a n t  ~ to  e vo lve  

i n t o  a c o n s t a n t  one .  

i .  INTRODUCTION 

However l a r g e  t h e  e l e c t r i c a l  c o n d u c t i v i t y  i n  a c o n d u c t i n g  gas  may be ,  t h e r e  i s  a lways 

some resistance. When we deal with the evolution of an astrophysical plasmoid constrained 

by a magnetic field, we must take into account the dispersive effect of the finite 

resistance on the field. In this paper, we shall consider the case where electrical 

resistance and gas motion co-exist, for in actual cases, the gas need not be at rest. 

The equations of the force-free field are 

V X B = aB, (1) 

4 ~ = V  X #. (23 
C 

A solution of eqn (i) need not be stable. In [I], the present writer gave an answer to the 

question of stability in the presence of both resistance and a flow field and pointed out 

that the magnetic energy of the system is a potential energy with regard to the gas motion 

and it is only when the potential energy is at its minimum state that the gas will not he 

perturbed out of the force-free equilibrium state. Using a variational analysis, I found 

in [i] that, whether the field is resistive or frozen-in, and whether the gas is static or in 

motion, a constant value of a characterizes the state of minimum magnetic energy. This 
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paper is a continuation of [i], and considers further the necessary and sufficient conditions 

for e to he a constant. 

2. BASIC EQUATIONS 

For the force-free field in magnetohydrodynamics, in addition to eqns. (i) and (2), we have 

also the Maxwell's equations, 

V .  B =~0,  (3) 

v x ~ = t O~ (s) 
c Ot " 

and a a r e  t he  e l e c t r i c  f i e l d  and c o n d u c t i v i t y  o f  t h e  gas  and 7 i s  i t s  v e l o c i t y  o f  f low.  

Taking  t h e  d i v e r g e n c e  o f  (1) and n o t i n g  (3 ) ,  we have  

• V~ = O. (6) 

The c i r c u m f l e x  or  t he  d o u b l e - b a r  w i l l  be u se d  i n d i s c r i m i n a t e l y  to  de no t e  u n i t  v e c t o r s .  To 

s a t i s f y  (3 ) ,  we d e f i n e  

= V  X A. (7) 

I n s e r t i n g  t h i s  i n  (S) and i n t e g r a t i n g ,  we have  

~- I OA V~. (8) 
¢ @t 

The potential field A¢ permits some freedom of adjustment, usually we take the gauge that 

gives vanishing V.~, then the source of ¢ is the charge density. We shall be making some 

other adjustment below. The above set of equations are not closed and the E can be given. 

3. GEOMETRICAL MEANING OF ~ AND ITS GOVERNING EQUATION 

1. The Geomet r i ca l  Meaning o f  ~ Eqn. (1) can  be w r i t t e n  i n  t he  form 

a ~  ~-Vln  e X ~ 4 - V  X 2. (9) 

D o t - m u l t i p l y i n g  t h i s  by # g i v e s  

= ~ . V x  2.  (10) 

This  shows t h a t  a i s  a f u n c t i o n  of  ~ o n l y ,  i n  f a c t ,  t h e  component i n  t he  ~ d i r e c t i o n  of  

V x #, and is not directly related to B. 

Cross-multiplying (9) by # gives 

V, InB --  (V  X 2 )  X ~ + V ~ n B .  

t h e  s u f f i x  ,, d e n o t e s  t he  component p a r a l l e l  to  ~.  

• VlnB ~ - - V .  2 .  

Hence (11) can be w r i t t e n  as  

VlnB == ~ / R .  - -  V • f 1 2 .  

Here we have  u sed  t he  f o l l o w i n g  r e l a t i o n :  

(v x 2 )  x ~ = ~ • v ~  = ~ / R . .  

From (3 ) ,  we have  

(il) 

(i2) 

(13) 

(14) 
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d i r e c t e d  towards  t he  c e n t r e  o f  c u r v a t u r e .  Def ine  

S u b s t i t u t i n g  (13) i n  (9) ,  we have 

v x D = ~ D  + ~ / R , .  

i s  the  r a d i u s  o f  c u r v a t u r e  o f  the  magnet ic  l i n e ,  ~ i s  t h e  u n i t  normal v e c t o r ,  

(15) 

(16) 

The v a r i o u s  q u a n t i t i e s  i n  (13) and (16) a re  shown in  F ig .  1. 

From Fig .  1, we see  t h a t  VlnB i s  the  r a t i o  o f  the  magnet ic  p r e s s u r e  g r a d i e n t  to  B 2, 

whi le  ~/R n i s  the  r a t i o  o f  the  ~-component  o f  t h e  magnet ic  l i n e  t e n s i o n  (or  the  "magnet ic  

c e n t r i p e t a l  f o r c e " )  to  B 2. The ~-component o f  VlnB i s  equal  to  the  magnet ic  c e n t r i p e t a l  

f o r c e  d i v i d e d  by B 2 whi le  i t s  B-component i s  equal  to  magnet ic  t e n s i o n  g r a d i e n t  a long 

d i v i d e d  by B 2. The ~-component o f  V x~  i s  c~ and t h i s  r e f e r s  to  the  r a t i o  o f  t he  w o r k - l e s s  

c u r r e n t  to  (o/411)8.  For a s t a t i c  magnet ic  f l u i d  wi th  VP, t h e  V lnBshou ld  be r e p l a c e d  by 

VlnB + 4~VP/B 2, which e x p r e s s e s  the  ba l ance  between the  Lorentz  f o r c e  and VP and in  t h a t  

case  t h e r e  i s  a working c u r r e n t  to  ba l ance  &P. Whether the  f i e l d  i s  f o r c e - f r e e  or  o t h e r w i s e ,  

t he  f o r c e - f r e e  pa ramete r  a i s  the  ~-component o f  V x~  and i s  r e l a t e d  to  t he  s p a t i a l  

v a r i a t i o n  o f  ~ and has no d i r e c t  r e l a t i o n  wi th  B. 

2. Basic  Equat ion  Governing the  Behaviour o f  ~ Let 

5 = v x  ( ~ x ~ ) .  
Partial differentiating (I) with respect to time, we have 

at  a t  at  " 

Taking the  c u r l  o f  (4) and n o t i n g  (5) ,  we have 

O~ B - -  c2 
= v x (,~). 

Ot 4,rcr 

Substituting the last in (18) and using (13), we obtain 

07) 

(18) 

(19) 
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-- C2( 2 ~ . V ~  ) a~ ~}=vx~ (~5+ v~ +~~+2V~.V~ 

Let us r e s o l v e  t h i s  equa t i on  a long and p e r p e n d i c u l a r  to  ~. 

0_.~_~ ~ • ( v  x ~ - ~ B ) / ~  + ~ v , ~  + - -  
Ot 4uo" 

whi le  p e r p e n d i c u l a r  to  ~, we have 

C ~ V~ X ~ - - ~ .  +~V~.V/~=0. 
B 2=o" 

Along ~, we have 

(20) 

• V a  
2~ R :  ) ,  (21) 

(22) 

Here, Vx X D means the  component o f  VxDperpend icu la r  to  2. Eqn. (21) shows t h a t  t he  l o c a l  

r a t e  o f  change o f  a a re  c o n t r o l l e d  by two f a c t o r s :  the  f i r s t  term on the  r i g h t  r e p r e s e n t s  

the  e f f e c t  o f  the  motion o f  the  gas ,  a l s o  i n t e r p r e t a b l e  as t he  e f f e c t  o f  an e f f e c t i v e  f i e l d  

o f  c u r r e n t ;  in  the  second term,  (c2/4~o)_ V2a r e p r e s e n t s  the  d i s p e r s i n g  e f f e c t  o f  the  

r e s i s t a n c e  on a whi le  (c2/4~o) (~.ya/Rn) r e p r e s e n t s  the  c o n t r i b u t i o n  to  ~a/~t by the  

e l e c t r i c a l  r e s i s t a n c e ,  the  c u r v a t u r e  and the  g r a d i e n t  o f  a a long ~. 

4, NECESSARY AND SUFFICIENT CONDITIONS FOR a TO BE A CONSTANT 

We shall discuss the necessary and sufficient condition for a to be a constant separately 

for the resistive and frozen-in fields. 

i. Force-Free Field of Resistive Type 

Eqn. (21) shows that a necessary condition for ~ to he a constant is 

V X D -- c~D ,~  O. (23) 

According to the definition of D at (17), it is divergence-free, that is 

V" D ' m  0. (24) 

Comparing t h e s e  l a s t  two e q u a t i o n s  wi th  (1) and (2) ,  we see  t h a t  D i s  governed by the  same 

b a s i c  e q u a t i o n s  as B i s ,  and t h a t  D i s  a l s o  p e r p e n d i c u l a r  to  V~, 

D • V a  - ,  0. (25) 

The nex t  q u e s t i o n  i s :  what i s  t he  n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  f o r  u to  be c o n s t a n t ?  

Before answer ing  t h i s  q u e s t i o n ,  we say a few words on the  c o o r d i n a t e  u n i t  v e c t o r s  to  he used 

Eqns. (21) and (22) can be more s imply  w r i t t e n  as 

o, - 4,,~-- v~'  + - - W ~ ,  )'  (26) 

V{,  • V ~  ~ o. 

Here we have r e - w r i t t e n  the  R 
n 

o f  c u r v a t u r e .  Def ine  

= o /I 1 
- wllwl. 

Using (6) and (25), and dot-multiplying (19) by ~, we have 

(27) 

in  (21) as R1, t he  s u f f i x  1 r e f e r r i n g  to  t h e  f i r s t  r a d i u s  

(28)  
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B," ~'~0 .  (29) 

The property that ~ is a unit vector means  that 

BIB,. (30) 

In the following discussion, we shall use the orthogonal coordinate system (B, ~, Bt). 

is in the same direction as ~t " 

Dot-multiplying by ~ gives 

a • VB • a - ~ - ~ . "  B/R,.= 0. (31) 

~a and R1a represent respectively the components along ~ of the principal normal unit vector 
and the first radius of curvature. If R1a # O, then 

~.iB, 
~..L.a. } (32) 

- ~t We can take na and to be parallel or anti-parallel, without loss of generality. 

First, we discuss the sufficient condition for a to be a constant and this will be done 
in three steps (A), (B) and (C). 

(A) Calculation of V~, V~ and ~t 

formula, thus, 

Their derivatives along~ can be found from Frenet's 

a • vB = -~./R~ = o, ] 
(33) 

The f i r s t  o f  t h e s e  e q u a t i o n s  shows t h a t  t h e  s e c o n d  r a d i u s  o f  c u r v a t u r e  R2a a l o n g  t h e  A - a x i s  

m u s t  be  i n f i n i t e  i n  o r d e r  t o  s a t i s f y  ( 2 5 ) ,  and  t h i s  shows t h a t  t h i s  l i n e  i s  l o c a t e d  i n  

t h e  p l a n e  p e r p e n d i c u l a r  t o  B. The d e r i v a t i v e s  a l o n g  ~ o f  t h e  above  t h r e e  t e n s o r s  a r e  

c a l c u l a t e d  a s  f o l l o w s :  

B • vD = ,~IR, (34) 

B • va = B • va. BB + B • Va • B,B, 

=-B.vB.aB+ {vci. B-B x (vx~)}.B,B, 
(3s) 

-- ~ " ~ B + aB,, 
R, 

B • VB, ~" B • VB, • ~a --I- B " V'~, " BB (36) 
= -(~. B,/R, )B - ~ .  

In  t h e  c a l c u l a t i o n  ( 3 5 ) ,  we h a v e  u s e d  t h e  r e l a t i o n  

S i m i l a r l y ,  t h e i r  d e r i v a t i v e s  a l o n g  ~ t  a r e  

B,  , v B  = - , ~  - (,~, • B I R , , ) B , .  ( 3 7 )  

B,  . v ~  = , , B  - (,~, . , ~ I R , , ) B , ,  O s )  
B, .  v B ,  - ~,/R.,. ( 3 9 )  

Here n t and Blt are respectively the principal normal unit vector of the ~t-axis and the first 
radius of curvature. The expressions for the 3 tensors calculated accordingly are 
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(B) 

R, R. [ 

~" n ~ + ~-~"+ ~, + ~,~- ~'£ ~,~,, (4o) v~ = -~; R,. R,, 

• B, 1 1 . aBa ~ 
v ~ ,  = v ~ .  = ~ ~ - ~ j ,  ~ + - ~ , ,  ~,~, - . 

R e l a t i o n  between .OaO, " I O n ]  and [7a] . The t ime der ivat ive of ( 1 0 ) i s  

Ot & Ot 

" ( ~ ' ' V X  J ~ + ~ ' V X  J ~ , ) + J ~ ' V  ~ t  X /}, (41) 

~ - , ,  x &  

I 'l I I ---- ~-e (V" ~+21),. ~/R,) +a.V ~'t-" 

Eqn. (26) can be reduced to  a similar form, thus, 

- + ,.,),, + , .  ,,,,,°, ]. 

Because ~ J _ ~ ,  ~ t [ ~ ,  and a l l  t h e s e  4 u n i t  v e c t o r s  a re  p e r p e n d i c u l a r  to  ~, we have 

B, • ~ ==' ~ " a. ( 4 3 )  

Hence (42) can a l s o  be written as 

Oa ~_ (44) 
e t a = 4  [ ( v - a + 2 ~ , .  ~ / ~ , ) l w l  + ~ - v l w l ] .  

This is reduced to the same form as (41) i f  we replace (c2/4ao) IVel by la~/atl. The re la t ion  

between the  two i s  

4 ~  ~ - -  - I - G .  

in which G satisfies the equation 

G(v • ~ + 2~,. ~/R,) + a. vG = o. 

Using (45), we re-write (19) in the form 

= a__~ + :<v x (,,~) 
at 4~ 

- _  , , ( l ~ t  c, ) OB ~ + - I w l  ~, 
Ot \ l O t  I " ~  

[(~_lnB + c'a'~4u~/B -- GB,]. 
B [ \--~-t 

(4s) 

(46) 

4- c2"~ B B (47) 

This shows t h a t  -GB i s  the  ~t-component  of  D; i s  the  gas i s  a t  r e s t ,  or  D i s  p a r a l l e l  to  3, 

then G w i l l  be ze ro .  

i O ~ l  O a a n  d OR (C) R e l a t i o n s  Between ~0~ . ~ From expe r i ence  ga ined  in  [1] ,  we take  
Ot " II~ & Ot 

the  gauge fo r  V¢ so t h a t  the  term 8A/at  in  (8) s a t i s f y  the  r e l a t i o n  
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Let 

o__~A. ~ = o. 
Ot 

O2 
dt 

S u b s t i t u t i n g  in  (48) ,  we have  

2 . B : o .  

B/@t (50) and u s i n g  (49), we o b t a i n  

o__~.3=o. 
Ot 

In o t h e r  words,  i f  ~ ~ - 0 t h e n  

/t,-2--0 
From t h i s  and (50) we see  t h a t  .~ i s  p e r p e n d i c u l a r  to  b o t h  } t  and },  hence  

2 = a .  

Then, on u s i n g  (49) ,  we have  

~ o2:m =0. 

a/at(e.VB) and using (27) and (54), we have, for B~/Bt=O, 

1 Ot l o t  I ~ a.vB,--o. 

Using the third expression in (40), we reduce the above to 

~" ~/. e ' v N -  / ~-V,. N-a- -0 .  
The ~-component of this is 

a~ 
I ~'-~-- 02,. 0 =0 .  
[ Ot ~ -  

S u b s t i t u t i n g  i n  (41) ,  we have 

The above a n a l y s i s  shows t h a t  i f  @~l/at=O, t h e n  so a re  la}/atl, a~/at and 

(57) i n  (45) ,  we have 

c---i I v , ~ l o ~  = e ,  
4~n" o, 

Hence 

]Val o ! : ,  = 0. 
@t 

G = 0  

Putting G = 0 in (47), we have 

where 8 is independent of position. 

for e to be constant is 

(48) 

(49) 

(so) 

(51) 

(s2) 

(s3) 

(54) 

(ss) 

(56) 

(57) 

(S8) 

Ba/~t. S u b s t i t u t i n g  

(59) 

(6o) 

(61) 

The above analysis shows that a sufficient condition 
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B = # ~ ,  

°A" =- o. } 
Ot 

of  which the  gauge f o r  VO i s  (48).  

To Prove t h a t  (62) i s  Also Necessa ry  (D) 

we have 

I =¢onst ~,i~ °.  

E x p r e s s i o n  (47) can be s imply  w r i t t e n  as 

B = #~ - BC~,.  

S u b s t i t u t i n g  t h i s  in  (20),  we have 

v #  x ~ - V ( B G )  x i}, - -  B G V  X 8,  =- - - ,~BG~, .  

Using the third expression of (40), }. (65) gives 

,~. Vm(BG) = ~ • ~,/R,,. 

S u b s t i t u t i n g  in  (46),  we have 

G(V'~ + 2AT'''~ --~'VlaB+~'"'~ ~=o. 
R, R. I 

Hence 

G=0. 

Substituting in (63), we obtain 

l 0% I.=copst 

Hence, l e t  

where B0 i s  the  va lue  o f  B a t  ¢ = 0 ,  hence f(O) =1. 

u s i n g  a -- c o n s t . ,  we have 

= # ~  = #fBo. 
This i n t e g r a t e s  i n t o  

~ x  ~ =--~  ~ + v ~ .  

Here,  the  gauge r e l a t i o n  f o r  ~ i s  

where c~ i s  the  l i n e  e iement  a long the  magnet ic  f i e l d .  

we have 

(62) 

From (45) we know that when ~ is constant, 

(63) 

(64) 

(65) 

(66) 

(67) 

(68)  

(69) 

(70) 

S u b s t i t u t i n g  the  l a s t  i n  (19) and 

(71) 

(72) 

(73) 

I n s e r t i n g  t h i s  in  (4) and u s i n g  (8) ,  

Ot \ 4 ~  a / 

From t h i s ,  we see tha t  A does not change shape ( the shape o f  the e l e c t r i c  f i e l d  does not 

change) ,  t h a t  i s ,  
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Al~st 0. 

2. Force=Free Field of Frozen-In Type 

By "Frozen-in Type", we mean the case where o is infinite and it might appear that the 

above proof would no longer hold, but any actual gas has some finite o, so the above 

conclusion still applies to a force-free field of the frozen-in type. Also, according to [i], 

the state of minimum magnetic energy is characterized by a constant a. According to the 

physical mechanism revealed in (21) and (22), we see that the transition from a variable a 

to a constant a requires the agency of a finite o. 

5. CONCLUSIONS 

The conclusions reached up to this point are the following: 

i. In [I], I proved that, whether the force-free field is of the resistive or the 

frozen-in type, and whether the gas is at rest or in motion, a constant a characterizes 

the state of minimum magnetic energy of the system, or the stable force-free field, which 

is the final fate of any force-free field. 

2. This paper is a continuation of [I]. Besides proving the above proposition once again, 

a new result is this: if V¢ obeys the gauge relation (48), then eqns. (62) are the necessary 

and sufficient conditions for a to be constant, and then the local electric and magnetic 

fields will not change shape. 

3. Eqn. (21) shows that the mechanism that makes a non-constant a evolve into a constant 

one, (or the system from some initial state evolve into a stable force-free field) is the 

dispersive action of the electrical resistance on the a-field. Without this mechanism, we 

can not explain how a force-free field of the frozen-in type can evolve into the state of 

minimum magnetic energy. 

4. For a discussion on the physical parameters of the force-free field with constant, a, 

the reader is referred to [i]. 
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