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ABSTRACT. This paper deals with the steady basic state of a disc galaxy with
finite thickness. A hydrodynamical model is used and the zeroth and first
order solutions in the small parameter thickness/(overall radius) are obtained.

1. MATHEMATICAL FORMULATION OF THE PROBLEM NON-DIMENSIONAL EQUATIONS

We adopt the simplifying method of simulating a galactic disk by a self-gravitating, 'gaseous
disk".Turbulent stress is simulated by the gas pressure, and the dispersion of star velocities by
the “equivalent velocity of sound", and the basic equations consist of the equation of
continuity, the hydrodynamical equations and Poisson's equation for the gravitational
potential. Let the total mass of the system be M and, with the gravitational force balancing

the centrifugal force and the "pressure', the matter be concentrated in a disc of finite
8
thickness: 0 << < R; 6 =108(r); €= E < 1, We adopt the orthogonal curvilinear coordinates

(r', 8, 2') shown in Fig. 1, in which z’= const. is a family of curved surfaces parallel to
the boundary profile of the disk. In terms of the basic parameters M, G, R, and §(r), we
define the non-dimensional radius »r, height z, time ¢, volume and surface densities p and o(r},
velocities in the 3-coordinate directions (u,v,w,), equivalent sound velocities (arz,, a%, ag),

reciprocal Mach numbers (M_%, M%, M%) and gravitational potential y as follows:

w2
V= (47rgM) , \
t'=Rr,2’ =8(r) 2z, ¢ = (E—)t
Ve

(“” ”’: w’) = Vo(ua U,y w).

(1.1)

’” ? ’”
a, = MVia}; ag = MyViay, ax = MiVias.

a* a a
M, = My =L M2 = "2
27 Vi’
o = (4::}(2;M> 0. )
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First we suppose the disk profile to vary slowly (

dind(r)
dr

< 1), so we may neglect the

additional small quantities due to transformation of curvilinear coordinates in the Lam¢

coefficients and obtain the following set of basic non-dimensional equations:

Fig.1 Curvilinear coordinate system for a disk galaxy
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Next we note that the disk thickness § is maintained by the velocity dispersion against the

*l
force of gravity, so that as M,—> 0, we must have §-— 0, Hence we may takeM? = ¢ — Ras

42GM
Lastly, we shall consider the axisymmetric basic state to be in a steady state with no

outward material flow from the centre. Then from (1.2), we get

lnp 64»

.0 (1.3)

S T Ma T !

0= e2lne 4 84 (1.3);
Oz 9z’

2(Fd 10 _ ) 3 _ (1.3)

& (6r’ + r Or ° az? ' ’

The projected surface density is determined by

o(r) = j gpdz, (1.4)
Boundary Conditions
1. At infinity, when » —> 00 |2| = p, $—0; (1.5)
2. On the plane of symmetry:
(o) 0
(1) &5 plomet = by ploms 22 = 22 = 0; (1.6)

Oz Oz
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2

) £ = f|,= 15 a known function .7
r | z=0

or ¢(r) is a known function (1.8)

or o(r, 2)| =0 = p(r, 0) is a known function (1.9)

2. SOLUTION OF POISSON'S EQUATION AND ITS DEVELOPMENT

Under the boundary conditions (1.5) and (1.6), the solution of Poisson's equation is: when
z>0,

@o(r, g)==— L S“ Sw Uﬂ‘ c"‘k""l‘t-:p(r.z,)dz,] ridoChkr ) JoChrddrdk, s ¢AY)

2 JoJo L)-o

and when 2 <0.
$Cry 2) = (ry — 2)5 0(r, 2) = p(r, — 2, 2.2)
From the physical characteristics of the basic state of the disk galaxy, we specifically
suppose that, as r—>c0, |z| — 00 5 the density tends to zero sufficiently fast and
sufficiently smoothly so as to satisfy the following mathematical conditions:
1. For any arbitrary, small positive number §,, provided r* is sufficiently large, the

following inequality holds for arbitrary (k,z):

< 8y 2.3)

[ CCodriuChrdar

2. For any arbitrary small positive number &,, provided k* is sufficiently large, the

following inequality holds for arbitrary (k,»,2):

S:*’(”P(k, z)Jolkrddk| < 8, 2.4

L

Nt

where
PCk, =) = | CedrdiChrar, (25)

Under these assumptions, the solution (2.1) can be developed into
o Jo

Gy 1) = — %é e U he = siCeodan, | mathronchnanat, 2.6y

3. THREE-DIMENSIONAL SOLUTION OF THE BASIC STATE

We now pass to the solution of the equation (1.3). Since the parameter e <<1, we have the

following developments in powers of e:
Ep=py+ep +el.p+ .-,

g=o0,+ €0, + €0+ -,
+oo

Ok = pxdz,
—90

G.D
=i+ P+ &P+ -0,

2
f=S=tftehi+eh+-

-
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Then, from (1.3) and (2.6), we can find approximations of various orders.

1. Zero-Order Approximation. We have

== 2 a1k 2 = [ ol Irnhedar; (.2)
= M4 8lnp, %
fo=M; e (3.3)

Let, further,

— Po(’a z)_ Pﬂ(rs 0) (3.4)

o = s

Po 3
o5 0) a’

We then derive the equation for the density distribution:

dz* (3.5)

2
{Me + ap, = 0;
Po(0) = 13 p(0) = 0,

Its solution is

po(2) == sech? (f—), Gy == \/%— (3.6)

The projected surface density is

-] o0
o(r) =2 L oz = 2p,(r, 0) L (po(z)dz = 224pu. 3.7
Here we can suppose a=const., and 2, is then the non-dimensional characteristic thickness
The disk profile is

2z’ = Rz = zxR Ll (3.8)

showing that it is determined by pu(s) = p,(r, 0) and the dispersion velocity a(r),
The curve g,(x) is shown in Fig. 2 and it agrees with the results of previous researchers.

Also, putting z=0 in (3.2) and (3.3), we have
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fol o = M2 5‘—;—"- - —;— ff (3.9)
26(r) = | siCosschrak, (3.10)
olr)
po(r,0)
¢=—;;
: |
3

Fig. 2 Distributionof relative density along height in the zeroth appreximation

2. First-Order Approximation Similar to the foregoing, we have

-1 VTR & ol
¢ 2 L sCkTo(krddk + 2 S_-] ilowdz;
50 = [ oI Chrdr;

[ W N #)dk:

O — oy~ 2 7 a1k ddk;

= 2 (2) 428
Or \p, or

Now let

t (e R NP
8 == (2), 0> =3 [T aCOIh R,

and we have, for the density distribution,

e -1-
{dz’ +opd =1 (3.16)

$:1(0) =0,

(3.11)

(3.12)
(3.13)

(3.14)

(3.15%)
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If we take boundary condition (1.8), then
a(r) =0 (r) =+ =0, G317

From this we get as the second condition necessary for a definate solution of (3.16),
S: Pobidz = 0, (3.18)

If we denote
=25 Zaua) = Y@, (3.1

Z % 2

then from (3.16) and (3.18) we obtain the general solution

Y(x) = C,thx + C,(1 — zthx) + [thx Sx(l — x,thx,)dx,
0

— (1 — xthx) Sxthxldx,, (3.20)
Q

with the constants of integration

C,=0; C,=Y(0) = — 0.705, (3.21)

e

o7.0)

—0.4¢-

—0.6

Fio. 3 Distribution of the relative density along height in the first-order approximation

Finally, we have

or(rs x) = 2C(r)@(2) Y (%)

pi(rs 0) = — 1.41C(r); (3.22)
pi(ry 2) _ pu(x)Y(2)

Pl(’s 0) Y<0)
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while the first-order solution for the potential in the plane of symmetry is

N = “z 7z = n2 r
(I’xlsso = L zpudz Poo L (Po(#)d JE;UO( ) (3.23)

hence

fxlz—o=

_ 4ME: a4 (C(n) In2 do,
Vo dr (o‘o(r)) + e dr (3.24)

To give a specific example, we suppose 0,(r) to have the form given by Toomre, that is,

c .
( at + rz)l/z 2
g C [ a 1]

oM =
(3.25)

—_ — | ———

dr r

and

4\ Ca —
Ug~+u=,<a> G| =0 L ). (3.26)

Correspondingly,

sSVTOCR) = | ChVem*k| 5

- (3.27)
(= [ 01k = (s

CNI(,) = _;_USI\HZ)(’.).

Then we have

N)
V0 g = Mg L g0y — L 947,
dr 2 dr

0]y = — M2 2 [0 102 df (3.28)
\/a dr Lo{¥*n \/E ar °

For a '"cold disk", M?4? = 0, and we have

iact] [N do™M +6 In 2 do{Ntv

2 3.29
dr N 2a dr +0CD, 29
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and for the density distribution along height,

eo™I(r, 5) = [\/% AVT(r) + aa-g"’ﬂ)(r)Y(x)] sech? x + O(&?), (3.30)

Obviously, as &-—> 0, this degenerates into Toomre's result for an infinitely thin disk.

I thank Professor Tan Hao-sheng for valuable advice and Comrade Hu Wen-rui for many

helpful discussions.
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Translator's Note: An Appendix outlining a
general analytical soltuion of Poisson's
Equation in the non-axi-symmetric case is
omitted in the translation.



