Vol. XXIIT No. 12 SCIENTIA SINICA December 1980

HYDRODYNAMICAL THEORY OF THREE-
DIMENSIONAL DENSITY WAVE FOR SPIRAL
STRUCTURE OF GALAXIES (II)

——GLOBAL MODE SOLUTION AND EFFECT OF THICKNESS

Xu JuaNmun (HREE)
(Institute of Mechanics, Academia Sinica)

Received May 15, 1979; revised March 15, 1980,

ABSTRACT

The present paper presents the solution of the equation governing density wave propaga-
tion in & galaxy disk with finite thickness, its global uniformly valid asymptotic solutions and
the dispersion relation. By means of these solutions the influences of disk’s thickness, the
spiral arm’s inclination and other physical factors at the eorotation cirele of the spiral galaxy
are investigated. Results show that with other conditions kept invariant, the thicker the disk,
the lower becomes the growth rate of the mode solution. From this it follows that in a thick
lenticular or an elliptical galaxy, no spiral structure exists.

I. INTRODUCTION
This paper is a continuation of [1]. In [1], the perturbed density is expressed as,

pr = pi(r, 2)H, (L) e em?, (1.1

Then, from Poisson’s equation and hydrodynamie equation we have derived the per-
turbed gravitational potential on the symmetric plane of galaxy in the first-order
approximation of the thickness parameter & and the ‘‘quasi-monochromatic wave’’ param-

eter ey,
D1l z=0 = d)lﬂm(g)sf(m_me): &1 = <510 = 2*1 1+ e, -+ Q!’e.u)
be, = —Do(r)k — Di(r),

Dir) = 4. 1588206(r), D(r) = 1.81002%) s—(”—)(qg"—) + (81n4) 206 j"' (12)

Pege = 0(Ex). (S* _ % d:;k)

We further obtained the equation governing wave propagation as follows:

61 + ) +F(1 + W + Gk [230 D, — 23“ g(l— D) + Rlu] — B(1— )

+ R + Q [G(Dl (15':..0) G'R:(l 4+ ‘!’s, -+ 4’5“) + (1 + d’sn_]' d’s*n)]
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In this paper. We adopt the ‘‘quasi-monochromatic wave’’ approximation (i.e. put
e+=0 in Eq. (1.3)), and, for the time being, owing to physical factors (according to
C. C. Lin), do not consider the corotation response term in the right-hand side of
Eq. (1.3). Now, set &£ = k/ko, then Eq. (1.3) can be rewritten as follows:

Ly + gh 1, (16)
T

2Fky _1—D, _ Ro-+ uR, _ dlnk
¢ 1+ w)Q 14 u dr

f:‘.—%ka’ g =

B ko , 2 ) Ry
“aFee T g B P - Dl s aase, (0
2Ry {_1 — D,
1+ #)GQ ko

Obviously, if we conld find out the function k(r, &) and £(r, &) from Eq. (1.6),
then the perturbed density wave (1.1) will be completely determined, In [1], we have
discussed the local approximate solutions of this equation. Now we shall deal with its.
global mode solutions and analyse the influence of disk’s thickness on them.

h

—Do}; D2=Dm+iDy==%D;+D1.

IT1.  ITERATIVE DIAGRAM FOR TREATMENT

For the equation governing wave propagation in this section, we shall present a
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diagram for the treatment of the complex nonlinear ordinary differential equation (1.6).
It should be noted, to begin with, that the coefficients of this equation depend on
parameter e, while the unknown quantities (£, %k, @) are also the functions of e. We
are attempting to find out the first-order approximate solution in e As, in a disk
galaxy, the relation k%, 3 1 generally holds, so

€ K eky. (2.1)

Now we can proceed to simplify further the first-order approximate solution in g, so
that there remain only the terms containing the parameter p = O(ek,) without con-
sidering the other terms of O(g). In the calculation of the quantities of basic state, it
is allowable to put e = 0. Furthermore, it should also be noted that the unknown quan-
tities (¢, #) are included in the functions G, F, f, g and h. In so doing Eq. (1.6) is
not a common Riccati equation. For its solution, we adopt the following iterative
process :

—_—

put ‘
&= 5(0)(”")*? = L(r)
¥
G =6lw);, Fo=Flw) [fo=/7{Cw)
_ Jaoy = g(@km); hegy = h(gtm,fﬁ(m)
1 ¥

Solve Riceati equation

dz . .
—d;f—lz = fuduy + doZay + Moy

¥
| 2 =2q)(r), T ="{Lu(r) ’

After iterating several times, the needed solution may be expected. But actually, as
coefficients f, g, h are not sensitive to the change of #£, only one iteration would give
a sufficiently good qualitative physical picture of the problem.

The problem on hand is closely related to solving a nonlinear Riccati equation.
Now, let us put

i’r(gj = 1, g(gj = (kf)max + [ k?’d‘?’, (2-2)
Tmax

(the subseript (%) in this paper denotes the kth iteration. Do not confuse it with the

same notation in [1]), and make the following transformation,

W(r) = exp P] éfdr} ko= ko = % @ch-f-gil, (2.3)

then Eq. (1.6) can be reduced to a second-order linear ordinary differential equation

as follows:

W — (g + %‘;i) W+ fhW =0. (2.4)
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By further letting
W = uexp [-%-g(g-i—dh';f) ], (2.5)

We can change Eq. (2.4) into following standard form:

== + B(r, w)u =0, (2.6)
in which
(B(r, o) == L(g+22LY 4 L8 (1 dI1) .
25 il o) 75

Returning to the original variable, we have

=g [t 4 3o 200 w

For the solution of Eq. (2.6), we adopt the following boundary conditions which are
the same as those used by C. C. Lin.

1) Asr—>0, ue’™* decays quickly; (2.9)
2) As r—>co, ug™' gatisfies radiation condition as an outgoing wave. (2-10)

In such case, our problem is reduced to an eigenvalue problem of a- second-order
ordinary differential equation.

III. TieeTLY WouND SPIRAL (GLoBAL Mope SoLuTioN For ‘‘Lin’s Disg”’

From the discussion of local solution, it is known that provided that there is no
other mechanism of instability working, if ¢ — 0, we should have @ =1"". This means
that when a disk of galaxy collapses entirely to a plane disk, it will be in a marginal
Jeans’ stable state everywhere. Now let us imagine, starting from this plane disk
state, keeping the values of M,, go(or @, o) invariant, but gradually increasing the
Z-direction dispersion velocity M, in disk’s central part, then we can get a galaxy disk
of such a type that in the central part the thickness would gradually increase to a
nuclear ball (as shown in Fig. 1), Such a type of galaxy disk is rather similar to that
galaxy model as envisaged by Lin with a eentral rigid nuclear ball added to an infini-
tesimally thin disk, which may be called ‘“‘Lin’s disk’’. But, it should be pointed out
that there is a difference between our treatment and Lin’s. For with ours, the whole
galaxy disk is taken to be a self-gravitational material system without dividing it into
disk component and nuclear ball component and without assuming the central part to
be rigid.

For a tightly wound spiral wave, |£] > holds, so we could have the asymptotie
expansions as follows: '
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1/4 — m?
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G(C)wis-—%+is + e

3.1

Taking only the first term of them, and neglecting the higher order small terms O
(1/¢) in (2.7), we get,

K3 [(1 — Dy)? ]
B~ 2 — (1= | 3.2
S Tvalarwe T @2
By introducing symbols,
(1 + )2 ko
Q= -—I—:IE):: Q k= REPL (8.3)
oge = 1, [—17 —1+ :ﬂ], (3.4)
) Q&
Eq. (2.5) is reduced to
312 B = 0, (3.5)

The form of this equation is the same as that of C. C. Lin®’., But here the funection
Qc(r), due to @ =1, is completely determined by the profile of galaxy. At the corota-
tion eirele (r =r.), because £ =0, Q(r.) =1 holds. When r approaches the central
part of galaxy, the value of function Qx(r) will keep on increasing with the increase
of &. As a special numerical example, we take the basic-state model (II) by Mark,
et al."™, and let Z) = 0.5, o = (0.95, 0.05), a1 =12, a2 = 0.8, a, = 0.175, M, =20, M. =

1 r \2 212 .
0.8, M.=0.54, &(r) =&, + goexp [—— (-——) }, zj = [1 + (__) ] (1=1,29).
. aj

And then,
4, 5M1 1 4.0, 1 M, 1
O, S
= mat it nal :.:i‘ 2wtz
M, 1
Q3 - :
i) = 105 [4:ra H(z) H(m)] dnaizl’

_ 4.5M, __4.55{, M (1_3
c(r) “al I(zy) -—;ai-—-lfﬁzj —=\ :),

5 2.5 5 5 5 1
I@=T8 "8 "% 07 B B
H) = 59. 0“625 + 26.?5 + 16.8r75+ 11.,25 +6.5§25_

T T T & x

Then we may draw the corresponding curves of function Qz(r) and those of function
]2, (r) from various profiles of galaxy (see Fig. 1 a and b). It should be pointed out
that in the density wave theory of plane disk, the distribution of the function Qg(r) is
an uncertain one., To eliminate this uncertainty is of important theoretical signifi-
cance. As has been noted by Panatoni (1979)" the global mode solution is very sensi-
tive to the distribution of this funetion. Now, starting from the three-dimensional
"model of galaxy disk, we proposed an approach to the solution of this problem.

It can be seen from Fig, 1 b that the funection %2 (r) has a double zero turning
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* Fig. 1. 'The distribution of funetions. b
a) Qz(r); b) Ei(r) for various “Lin’s disks” (with the basic state model (I)
by Mark, et al. and [M] = 10'°My, [R] = 10kpe).
point at r =r., and may also have a simple zero turning point at r =r. inside the
corotation cirele. Analogous to the Schrédinger wave, the density wave will go to and
fro by reflection in the region r.. << r << r.,, but will be amplified continually at r., to
form a ‘‘waser”’. Therefore, for ‘“‘Lin’s disk’’ model, all the mathematical results
obtained by C. C. Lin for density wave of plane disk may be brought here in a proper
way. The quantum condition by him is changed to

5 ksdr = (n + _;_) <+ 71:' Ine. (3.6)

fee

IV. GuoBanL MopeE SoLUTION oF (GALAXY Disk WitH FiNiTE THICKNESS .

In the treatment of ‘‘Iin’s disk’’, we neglected the thickness effect, the effect of
loosely wound character of spiral structure, and other higher order effects. Now
suppose @ =1+ 1 (1> 0) holds, then the thickness of disk at the corotation circle
i8 larger than zero, ie., £(r.) > 0. We further retain the first three terms of asymp-
totic expansions (3.1) for the consideration of the higher order effects. Thus, we have

F 1o mt8/d

— ~ 1 — ,

@ 2L 2¢?

1 1 mr—3/4
E“_““‘i“*f’_‘z—gz“““" (4.1)
AF el ... eG_ .1 ...

dg g2 ag 282

and

kg—kgt{i(1+i‘?—mz+l)—(1—1:2)(1 1\)-!-&

Q% z z ) T TR
2By (1—=D, _p\, 1 (.0 _1\[1=D:p R
T (Q:.Em) 2)+Qkﬂ(”‘ 2§)[1+,¢z( o+ #F)

d k, ' (R + uR,)?
+—1u(-#“—)—2R 1—D --1-21)]—=—--——--—I
dr QE 2( 1) 2 4ké(1 + ”)
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_1+pd (Rm =+ #Rz)} (4.2)
212 dr\ 1-4p /)’
. 1 k . 1 Ro+ uB, , dlnu
k='—(1«8+—) {_,5(15_.“)_ g + J (4.3)
20/ L Qg 27 1+4+pu dr

By denoting the typical value of k.(r) with 2(1 > 1), the expression (4.2) may be re-
written as,

g=2| i+ L, (44)
in which the principal term
= [ () 1+ =

is a real function and its behaviour is the same as the funection %% (r) of ‘‘Lin’s disk”
with a double zero point at the corotation cirecle .. Generally speaking, the funection
ks(r) itself has, instead of a double zero turning point near r., but two simple zero
points situated close-by. Specifically, for a neutral tightly wound spiral wave, because

%) >1, B~ B =K (L ~1+7)

(4.6)
<o,

fz’fco

B ~ K (g5 —1)

these two simple zero points are all on the real axis (see Fig. 2b). In this case, our
problem becomes analogous to Schridinger’s wave with penetration through a potential
barrier,

Like Lin’s disk, the prinecipal term A'f,® may be assumed to have another simple
zero point at r.. inside the corotation circle, then the funection k*(r) will have a
complex simple zero turning point /. near the point r.. The behaviours of the global
mode solutions of galaxy disk with finite thickness are just determined by the characters
and the distribution of these turning points. In the following the asymptotic solutions

Re(—k})

40t

e L Et 7 =)
T T T

i 30}
20t
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Fig. 2. The distribution of function.

a) Qe(r); b) Ki(r) for disk-shaped galaxies with various thicknesses (with the
basic state model (I) by Mark, et al. and [M] = 10""Mp, [R] = 10 kpe).
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of Eq. (2.6) with formula (4.4) should be found near r =r, and 7 = 7. respectively,
and then have them smoothly connected in overlapped region for a global mode solution
of this equation. This has been done in [2] for general case with the following results:

(1) Um'formlgjr valid asymptotic solutions near r = re

We make the following power series expansions near e,

{lzf%(r) = A.ZA%(T - ch)z + - % (4 7)
lfl(r) = lz[_dﬂ + dl(r - rco) -+ dl(r - rcu)l + e ]- -
Then it follows that,
B A2 (r—ri ) —dy+ -+ 1, (4.7
in which
Ve (A )t — O
2(4 + dp) (4.8)
e B b dy_ B(r) '
4(45—dy)? 7 Af+d, T Af At
From (4.7)" we have derived two simple zero turning points sy, rs; of ki(r) as
Fyy = Feo + \/dT;, Pyr = oo — \/3 (0 < arg(dy) < 2x) (4.9)
Introduce a transformation £ = &(r), so that
r=— S kdr = alty/# —1 —In(t + /£ —1)],
4 (4.10)
t=F/Ey.

in which the single-valued branch of the function k:(r) may be obtained in the same
way as shown in [2].

Furthermore,
fu= ) = —2v0, Ea=iGrw) =2/a, a=2% ()
We may make Langer’s transformation,
= = ’ El- ’ - -—§——f — ‘;T
F=En, v=EW (=h)/(£-0)) (412)

As the lowest order approximation, Eq. (2.6) can be reduced to the following parabolic
cylindrical equation :

Po (&)=
2 +(Z a)v=0. (4.13)

Then the uniformly valid asymptotic solutions of Eq. (2.6) near r.. can be obtained:
2 4
wmigt(E—a)' - (B, 08,0,
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where E(a, £), E,(a, £) are parabolic cylindrical functions. When |[&| 5> 1, its asymp-
totic expansions are:

2 2 . T
E(a,8) ~ [ 7 Ex(a,8) ~ \/; e“e( larg(8)| < Z)’ (4.15)

2
@=§ﬂam§+%+%, ¢2ma.rgr(%+'ia). (4.16)
Owing to
20)'2
L i TP CE S CR LY
K

we get
| (4.18)

K "eo K i)

1’2 = "LZA% = (M)z or 2‘) == ]M&.

From this it follows that

o~ — LB _( £ ﬁ-ﬂ_ﬁ) , (4.19)
2 2mQy |s| ki/Tco

Specifically, for tightly wound spiral waves, from (4.6) we have
a={ 5 kﬁ(l_i.,.vg)} _ (4.20)
2mQ, |s| Q% "eo

Since Qz(r.)> 1, the value of @ is positive real. The thicker the disk, the larger be-
comes the value of a.

After finding out solutions of u(r), we may turn to the solution of the function
E(r) or £(r). To this end we need only use formula (4.3). For tightly wound spiral
waves, the relation is simple. Indeed, as

ucc exp (ii ] k;dr), (4.21)
Tz
we have,
ko~ oy g, (4.22)
Qc

Furthermore, we know the group velocity C, of density waves (1.1) can be written as,

C, = —e (E’&) - (Qk_;)“ i (&) (4.23)
Ok Ow B \v

From the way the single-valued funection %;(r) was obtained, we know that the real part
of the multiplier (k,/v)is always negative (i.e. Re(k;/v)< 0). Therefore, the group
velocity of the branch wave corresponding to positive sign (+) in front of %:;(r) in
(4.21) is always positive. In this case, if e=+1 (which corresponds to a leading
wave), its wave number k will take a larger value, so that this branch wave will be
a short wave; If € = — 1, (which corresponds to a trailing wave), its wave number %
will take a smaller value, and then the branch wave will be a long wave. In Table 1,
we have shown the types and directions of these branch waves. Table 1 shows that for
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trailing waves, the long wave will go to the corotation eircle, while the short wave will
depart from it; for leading waves, the situation is the reverse.

Table 1

€ = —1 (Trailing Wave) & = +1 (Leading Wave)

VR <0 >0 <0 >0

Re(ks) >0 <0 >0 <0
dlnu _ . Co>0 Co>0 Cg>0 Co>0
ar e (Long) (short) (Short) (Long)
dlnu _ _ . Cy<0 Cy<0 Cy<0 C,<0
dr ' (Short) - (Lon®) (Long) (Short)

From the above, it is obvious that if we want the boundary condition (2.10) to be
satisfied and the density wave to become an outgoing short wave outside the corotation
circle (i.e. take the radiation condition of short wave to simulate the short wave
absorbed by outer Lindblad response as was done by Lin), then we must take e = — 1,
and

2 : .
U = k‘;é (% - a) . E*(ﬂr, Eﬂ_“). (424)
Inside the corotation cirele, owing to arg(£) =0, we get
Ueo == Uco + U,
u, = ie”E.(a, §),
y (B2 i
X k3y? (? — a) , (4.25)

Uy = s‘—Jé; P (%ﬁ _ 't'qbz) E(a, &)

T

where w}, corresponds to the outgoing trailing long wave, and %z to the ingoing
trailing short wave. For the tightly wound spiral wave, because the value of a is real,
and

1 T
— s = L aEid,
r ( ) j:'m) ‘J(ﬂh(ﬂ?ﬂ) e ’ (426)
we get
ug—n = ‘ie“‘E*(a’) §) } 1 §2 % ’
2 X k—,(_ —_ a) . 4.95
us =i—+/1 + e~ E(a, &) > \4 (4.25)

(4

In this cose, there exists a ‘‘potential barrier’’ near the corotation cirele (in the regitm‘
|E| < 2\/a). The thicker the disk, the higher becomes the ‘‘potential barrier’’. There,
exists no wave within the barrier. When an outgoing long wave uJ, meets the potential,
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barrier, one part of it penetrates through the potential barrier due to the ‘‘tunnel
effect’’, and becomes an ovutgoing short wave, while the other part will be reflected
and becomes an ingoing short wave u;, (see Fig. 3). The reflection ratio B and the
transmission ratio T are respectively as follows:

R=+1+¢2, T=c. (4.27)

Yo
+ RN |
“co/\//*[\:-\’\ “,,
< ~,
/ Teo \

Fig. 3. The sketeh of wave’s propagation near the eorotation
eircle potential barrier.

(2) Uniformly valid asympiotic solutions near r,

Let
g . = E':g kgdr,
Then the asymptotic solution near 7. satisfying the boundary condition (2.8) is,
z\? .
Uy = (—‘) Hg’ (Z.e7™). (4.28)
ks
In the region r > r., we have

Uge = UL = Uce,

o= (B mpe),  w=(5)F moi), (429)

(3) Dispersion relation

In the overlapped region (7. & T <« Te), the solutions w., #.. are all available. By
smoothly connecting them in this region, we obtain the desired global mode solutions
and the following quantum condition:

1 .
?—tfl

O I PO S =

J, (4.30)

from which we can solve the eigenfrequencies {@}.
For the tightly wound spiral wave in particular, from (4.30), we obtain

1 a ¢2 % =2xa
= — |z — —_1) — = —In(1 . .
¢ (n—{— 2) +2(lna ) 9 +4 (1 4 e72=) (4.31)

For the eigenfrequencies with small imaginary part (i.e. w=cog+%w;, |w;]| <K |wg]),
the above expression can be simplified to:
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j",“ (ks ugdr = (n + %) x+ B =P

2
1 (4.32)
WTy = E In A,
in which we have adopted the following relations:
do="(lne—1), A=+/1+ ¢, 7,= E* (%) dr. (4.33)
2 Tee Ow “R

For ““Lin’s disk’’, as p(re)=06=0, A= \/.Q_, then formula (4.31) is reduced to
formula (3.6).

For the case of galaxy disk with finite thickness, we can introduce a B.,-multiplier
as defined below:

WrT 4 In A
= = 2 . 4.34
P (074 )a=0 In 2 (434)

In so doing, B.-multiplier reflects the influence of the thickness of disk on growth rate
of the mode, its curve being shown in Fig. 4. Provided other conditions are kept
invariant, and let the galaxy disk gets thicker increasingly, the no-wave region near
the corotation ecircle will get larger and larger (see Fig. 2 a and b), and the growth
rate of the mode solution will become smaller and smaller, so that the spiral design
becomes increasingly fainter until it vanishes. From the above reasoning it can be
naturally deduced that in a thicker lenticular galaxy and an elliptical galaxy the spiral
design cannot be present. This is in agreement with observations.

8

12

@

-02 —o0rf O 0.1 02 03 04 05 06 0.7
- 'Fig. 4. The Se-multiplier versus the parameter a.

V. INFLUENCE OoF OTHER PHYSICAL FACTORS AT COROTATION
CIRCLE ON SPIRAL STRUCTURE

We have already discussed the effect of thickness of the dick for tightly wound
spiral wave. Now we shall discuss the loosely wound spiral wave. From (4.2), and
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(4.9), we get

a = ag + iea,, (5.1)
=X +Y +7Z, (5.2)
e () )
v (P e - ) <o 2
7Tax pgﬁ?(nl(?- s/2)" (5 ?25 A=) = k) <0
- () i An(O0E2) 11 1=
+ Qu %m (eﬁ’g"ﬂ )] — Qlka [Dma@;m (911—8:7”2—)—) + 4 — Dl ] (5.4)

in which all physical quantities on the right-hand side are evaluated at r = r.,, and the
following symbol has been adopted,

="

kor
It should be noted that when we derived the value of @ from ks*(r..), we neglected the
higher order small terms O(1/%%) but kept the terms O (m?/?).

It may be assumed that d/dr In (Q*/M?)~0 near the corotation circle. In this case,
the imaginary part a; is an order magnitude smaller than the real part as, and its
influence may be ignored. From formula (5.3), it may be seen that (i) presence of
parameters 4 (the degree of Jeans’ stability) and p (the thickness of disk) will enchance
the value of @z, thus decreasing the growth rate of the mode solution; (ii) presence
of parameters 7. (the inclination of spiral arm) and /s/ (the shear multiplier) will
decrease the value of ar thus increasing the growth rate of the mode solution. This
indicates again that the loosely wound effect can excite a bigger instability. In our
previous work™, we have discussed such a gravitational instability caused by loosely
‘wound spiral wave, and called it ‘‘loosely wound instability’’.

(5.5)

T

VI. CoNcLUSIONS

The results obtained in the present paper can be briefly summarized as follows:

(1) The uncertain funetion Q:(r) in the equation governing density wave prop-
agation on a plane disk can be determined by the profile of galaxy disk with finite
thickness.

(2) The ‘““waser’’ mechanism and existence of growth-type mode solutions pro-
posed by Lin, et al. for the plane disk galaxy exist also for galaxies of ‘‘Lin’s disk”’
model. It must, however, be noted that for a general galactic disk with finite thick-
ness, such ‘‘waser’’ mechanism will be modulated by the thickness of disk, the loosely

" wound character and other physical factors through the parameter @ at the corotation
circle,
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(3) The presence of parameters (%, p) will raise the potential barrier of the coro-
tation circle, thus decreasing the growth rate of the mode solutions, while the presence
of parameters (%, /s/) will lower that potential barrier, thus increasing the growth
rate of the mode solutions. When the other conditions remain invariant, the greater the-
thickness of a galactic disk, the fainter becomes its spiral design. '

The author wishes to acknowledge his sincere thanks for the invaluable guidance
and direction given by Prof. H. S. Tan, and for the enthusiastic encouragement and
direction given by Prof. C. C. Lin when he was lecturing in China from August to
October in 1979. ' : . . :
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