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ABSTRACT 

By taking the variation of the magnetic energy o f  a given system 

1 J [ ( V  x A)~#~ wi th  t h e  c o n s t r a i n t  t h a t  a [ , A .  v x A S ~ =  c o n s t ,  and 
8 z  t 

under  t he  c o n d i t i o n  t h a t  t he  p o t e n t i a l  p a r t  V¢ o f  E i s  d e f i n e d  as 

~A v@ = ~-~vc faB.d] which e n s u r e s  t h a t  ~ .  B = 0, i t  w i l l  be shown t h a t  

t he  f o r c e - f r e e  f a c t o r  a i s  a c o n s t a n t  f o r  a s t a b l e  magnet ic  f i e l d .  

i. INTRODUCTION 

A tenuous  i o n i s e d  gas c a r r i e s  a s t r o n g  magnet ic  f i e l d ;  when the  p r e s s u r e  g r a d i e n t  vP i s  

l e s s  than  the  magne t ic  p r e s s u r e  g r a d i e n t  VB2/8~ by more than  one o r d e r  o f  magnitude i t s  

e l e c t r o m a g n e t i c  body f o r c e  w i l l  be n e a r l y  ze ro ,  and we have a f o r c e - f r e e  f i e l d ,  whose 

e q u a t i o n s  a r e  

V × B ,= o B ,  ( 1 )  

4 ~ J = v  x e .  ( 2 )  
C 

u i s  t he  f o r c e - f r e e  f a c t o r ,  and i s ,  i n  g e n e r a l ,  a f u n c t i o n  o f  p o s i t i o n  and t ime .  I t  i s  a t o p i c  

o f  i n t e r e s t  i n  bo th  a s t r o p h y s i c s  and c o n t r o l l e d  t he rmonuc l ea r  r e a c t i o n s .  

I t  was proved by Lundquis t  [1] t h a t  f o r  a s t a t i c  f l u i d  whose magnet ic  f i e l d  decays  w i t h o u t  

d i s t o r t i o n  a must be a c o n s t a n t .  Chandrasekhar  and W o l t j e r  [2] proved t h a t  a f o r c e - f r e e  f i e l d  

wi th  a c o n s t a n t  u i s  a f i e l d  w i th  a g iven  magnet ic  energy  t h a t  has the  s m a l l e s t  Ohmic 

d i s s i p a t i o n .  W o l t j e r  [3] ,  by t a k i n g  the  v a r i a t i o n  o£ the  magnet ic  ene rgy  o f  a sys tem under  a 

g i v e n  c o n s t r a i n t ,  found t h a t  f o r  a f r o z e n - i n ,  c l o s e d  sys tem,  a c o n s t a n t  u r e p r e s e n t s  a s t a t e  o f  

l e a s t  magne t ic  ene rgy  and a l s o  t h a t  i f  t he  f l u i d  i s  s t a t i c ,  t hen  u i s  a c o n s t a n t .  

J e t t e  [4] proved t h a t  f o r  a r e s i s t i v e  f o r c e - f r e e  f i e l d ,  i f  i t  i s  s t a t i c ,  t hen  a i s  a c o n s t a n t .  

No m a t t e r  what i t s  i n i t i a l  s t a t e  i s ,  a mass o f  tenuous  conduc t ing  gas c o n s t r a i n e d  by a 

s t r o n g  magne t ic  f i e l d  w i l l  evo lve  towards  a s t a t e  o f  s t a b l e  e q u i l i b r i u m  when i t s  p o t e n t i a l  

energy  ( t h a t  i s ,  magne t ic  energy)  w i l l  be a t  a minimum. In t h i s  p ap e r ,  by t a k i n g  the  
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v a r i a t i o n  o f  t h e  magnet ic  energy  in  a f i x e d  volume o f  space ,  i t  w i l l  be shown t h a t ,  whether  

t h e  gas i s  s t a t i c  o r  i n  mot ion ,  and whether  i t s  c o n d u c t i v i t y  i s  i n f i n i t e  or  f i n i t e ,  a s t a b l e  

f o r c e - f r e e  f i e l d  must have a c o n s t a n t  ~. Also ,  by t ak i n g  the  v a r i a t i o n  o f  t he  Ohmic 

d i s s i p a t i o n  in  a f i x e d  volume, i t  w i l l  be shown t h a t  a c o n s t a n t  a r e p r e s e n t s  minimum Ohmic 

d i s s i p a t i o n  in  some p a r t i c u l a r  c a s e s .  

2. VARIATIONAL TREATMENT 

Fol lowing [3] ,  we t ake  the  v a r i a t i o n  o f  t he  magnet ic  energy  ~ under  the  c o n s t r a i n t  o f  a 

f o r c e - f r e e  f i e l d .  The magnet ic  energy  i s  

I I B'd~. (3) Q, = ~ , 

where v represents a f ixed volume of space. 

We shall prove below that the constraint representing a force-free f i e l d  should be 

I A • m (4) Bd~ c o n s t  

where A i s  t he  magnet ic  v e c t o r  p o t e n t i a l ,  t h a t  i s  

B = V X A .  (5) 
Introducing arbitrary variation VA and Lagrange multiplier -a/8r, we have 

B~ (I I 8g=,~Q ~ ,A'vxAa~ 

= r ~. (-2v x A + ~A) x 8Aa~ + • IV x (v x A) 

- ~v x A]~Ad~ = 0 ( 6 )  

where d~ is an elemental area on the boundary r and ~, the uni t  vector along i t s  outward 

normal. On r ,  ~A should be set to zero, hence (6) s impl i f ies into 

J ~ ~B (7) 

where a i s  a c o n s t a n t .  From the  foregoing~ we see t h a t  (4) r e p r e s e n t s  t he  c o n s t r a i n t  o f  a 

f o r c e - f r e e  f i e l d .  Hence f o r  a s t a b l e  f o r c e - f r e e  f i e l d ,  a must be a c o n s t a n t ,  and t h i s  can 

a l s o  be u n d e r s t o o d  as t he  f i n a l  s t a t e  o f  a f o r c e - f r e e  f i e l d .  

3. BOUNDARY CONDITIONS SATISFYING (4) 

We now seek boundary conditions that satisfy (4). From the latter, we have 

a..i A.vxAd~.I OAxAd~+2 10A a, , , -~" -&--- ,%-F" .V X A#~. (8) 

I n t r o d u c e  Ohm's Law: 

J = E + V X B  (g) 

The e l e c t r i c  f i e l d  E should  be 

E = - -  ± O__AA _ v + .  el0) 
c at 
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V ~  i s  p o t e n t i a l  g r a d i e n t  and, in  t h e  usua l  e l e c t r o d y n a m i c a l  t h e o r y ,  i t  i s  used to  a d j u s t  V.A 

to zero. But here, we shall use a gauge that will ensure 

0A .vxA:0. 
Ot 

S c a l a r  m u l t i p l y  Eq (9) by B and u s i n g  the  l a s t ,  we have 

J . B  B . V ~ .  
(7 

I n t e g r a t i n g  t h i s  and us ing  (1 ) ,  we have 

4, = -- ('/c°B-" dl 
4mm~' " J0 

(ii) 

(12) 

(13 )  

Here d] is an element of the field line, and the integration begins at the point where ¢ : 0. 

This is the special gauge used in the present paper. Substituting (ii) into (8), we have 

07 ,A'vxMr= r ~.oAat x~. 

This agrees with the result given in [3] on frozen-in, force-free fields. We now introduce 

unit vector 2 and generalize the above into 

r.4',~ . -- X 2d~. (8") Ot 

Eq. (8") shows t h a t  on t h e  boundary r ,  one o f  t h e  two f o l l o w i n g  c o n d i t i o n s  must be s a t i s f i e d  

in order that (4) may hold: 

(i) Physical Meaning of Ar = 0 

From (5) we know that 

Introducing condition (a), we have 

I (a )  A t :  O, (14) 

~- t l r  : o. (is) (b) 0 2  

B--VAX2+AVX2. 06) 

Br ~VAIr X ~r. (17) 

Hence t h e  boundary r e p r e s e n t e d  by A F = 0 i s  a magnet ic  s u r f a c e  which i s ,  moreover ,  f i x e d  in  

space ;  t h i s  i s  one kind o f  boundary in  a s t a b l e  f o r c e - f r e e  f i e l d .  

021 = o (ii) Physical Meaning of ~-f r 

Substituting (13) into (i0), then substituting the result into (9) and using condition (b), 

we have, on F, 

_ c I / Jr/or = 1 OA 2r + c Ot r ~Vr o=B" dl + Vr X Br/c. (18) 
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which can  be  w r i t t e n  as  

10AI 2r + ¢f_.Vr('aBdl_Jr/a,=BrXVr/¢, 
In t roduce the d e f i n i t i o n s  

Er= f ' , , s a l ,  c at r ~-~Vr o 

Er~) = E r - -  J r / ~ - -  ¢1 oAL' r÷ at 4:en'c~ Vr± J'B " dl 0 (19) 

where E(~ ) is the effective electr ic  f i e l d  and Vr± is the gradieht perpendicular to ~. 

Taking t h e  components  o f  t h i s  l a s t  a l o n g  t h e  ~, ~, ~ d i r e c t i o n s ,  ~ b e i n g  d e f i n e d  by  

2 × ~ = ~. (20) 

we have  

E(¢) 

[ Wtw) CO~ IIF 
- ' ~ r ~  = + ~ ~' " V _o BI~ • d l  - -  Jr~/cx . -  - - B r V r ~ / C  (23) 

These t e l l  us  t h a t  when a ~ ] r  = 0  , ~ i s  p e r p e n d i c u l a r  to  ~ r  and t h e  ~-component  o f  t h e  

e f f e c t i v e  e l e c t r i c  f i e l d  e x i s t s  o n l y  i n  t h e  r e s i s t i v e  c a s e ,  and v a n i s h e s  as  a ÷ =, when t h e  

form o f  E r does  n o t  change .  Th i s  i s  t h e  o t h e r  s e t  o f  boundary  c o n d i t i o n s  t h a t  a s t a b l e  f o r c e -  

f r e e  f i e l d  must have .  The p h y s i c a l  meaning o f  a ~  - - 0  w i l l  be d i s c u s s e d  i n  a n o t h e r  p a p e r .  
a t  

4. PHYSICAL PICTURES 

No f u r t h e r  p h y s i c a l  q u a n t i t i e s  can  be e v a l u a t e d  by t h e  v a r i a t i o n a l  method u sed  h e r e .  To 

c l a r i f y  t h e  p h y s i c a l  p i c t u r e  o f  a s t a b l e  f o r c e - f r e e  f i e l d ,  I now i n t r o d u c e  two a s s u m p t i o n s  

( t h e i r  p r o o f  has  been  o b t a i n e d  by  me i n  a n o t h e r  work) .  

(A) I f  a i s  a c o n s t a n t ,  t h e n  [ a ~ l  i s  ze ro ,  t h a t  i s  , 

a t  '== 0 ; (24) 

(B) The n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n s  f o r  a c o n s t a n t  a a r e  

V x D = aO, (26) 

where D i s  d e f i n e d  by 

D = V  X ( V  X B) = # B .  

Under t h e s e  a s s u m p t i o n s ,  we t a k e  t h e  c u r l  o f  Eq. (9) end o b t a i n  

_ _ ± a_ s a + D / c .  
4~r~ c Ot 

(27) 

(28) 
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From (27) and (26) we have 

hence 

Substituting (27) into (26) gives 

v . D f f i .  o. (29) 

• V ?  ~ 0 .  (30) 

v~x D-0.  (31) 

Hence on in tegra t ing  (28), we (30) and (31) show that B is a position-independent function. 

have 

B == Boexp ( - -  c2~, -l- I 'o ,d t ) .  4--~ (s2) 

If the fluid is static, then B = O, and the result in [1] will be recovered, B 0 is a function 

of space only and (32) states that because of the resistence, the magnetic field decays with 

the factor exp (=c2a2t/4~o) and the motion of the fluid produces a Poyting energy flux, 

causing B to increase by the factor exp fotSdt. 

Integrating (27), we have 

V x B = OBI~ + v ~ .  (s3) 

Similar to the gauge (13) imposed on ¢, we now set 

Subst i tu t ing  {33) and (34) into (18) gives 

.o,,, [ o.,. ,+,, i : , ' .o_~) ] 
4 ~  Ir "= - #0~ \ ~ - ~  B .  al + # B l o c  r (3s) 

From (32), (35) and (28), we then have 

., =.,o:,, ( -  ":', + j;, , ,).  4. 

Ao = Bolc , - -  v I*oBo . allc~. 

(36) 

Substituting these into (i0) gives 

c~ cc~ rl ~. = ( , ~ -  ~I.) ~. + ~ , , j  ~,.~,. 
(37) 

From these and (9), we have 

V ~ #Eo x J~/Bo. C38) 
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Note that V is independent of time, so is a stationary drift field; this shows that the 

magnetic field and the plasma do not exchange mechanical energy, which is a property that 

should be possessed by a force~free field. From (37), we see that, as a ÷ ~, Eo does not 

change its form, in agreement with the results at (22) and (23). Also, (37) shows that the 

component of the electric field E balances the potential fall of the current, and its 

component perpendicular to ~ is along ~, and is controlled by the Joule current and the fluid 

motion. 

5. MINIMUM OHMIC DISSIPATION 

As in the variational treatment of the magnetic energy, we can, under the constraint, 

I B .V X Bd~= cons t  (39) 

take  the  variation of the  Ohmic dissipation 

in  a f i x e d  volume o f  space v.  

co r respond ing  to  (6) ,  

This  gives 

with a a constant. 

g,_  c' I ( v x B ) ' d r  (4o) 
16Mo" • 

With variation 68 and Lagrange's multiplier -o2~/16~2o,  we have 

8Q=0Qc,~+o[_ d~ I B . V X B d r ]  
16ua,7 

6-2 
[v x (v x B)-- ~v x B] • ~Ba~ = 0. 

164-'o" J, 
(41) 

V X J = =J, (42) 

The condition (44) is the same as the condition (24), and is one that must be satisfied by all 

cases with constant u. Condition (45) states that there is no magnetic field on the 

boundary, and since according to the Virial Theorem [5], a force-free field cannot exist in 

OR ( 4 4 )  
(a) ~'t Ir =0, 
(b)  B r - 0 .  0 5 )  

Corresponding to  (8) ,  we now o b t a i n  from (39) ,  

r Ot • (43) 

This last is satisfied by two sorts of conditions, one sort referring to the boundary: 
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the interior of a system, we shall not discuss this case further. 

conditions come from equating the last integral of (43) to zero, 

I I .~7"vxBar= aB OB ar = O. 
, @t 

which gives 

The other sort of 

(46) 

( c )  # ~ O, (47) 

(a) oB 
~ -  = 0.  ( 4 8 )  

Cond i t i on  (47) s ta tes  t h a t  t he re  i s  no c u r r e n t  i n  the i n t e r i o r  o f  the system; by combining 

this with (44) we see that (32) and (37) are the solution when a = 0. Similarly, condition 

(48) is a particular case of (32) with 8 = e2a2/4wg. 

The above analysis shows that a = const also represents the state of minimum Ohmic 

dissipation, and that it is a particular case of minimum energy when ~ = 0 or aB/3t = O. 

6. DISCUSSION AND CONCLUSION 

I. A constant a represents the state of minimum magnetic energy of a frozen-in and 

resistive field, a stable force-free field, or the end configuration of a force-free field. 

Its physical meanings are: (i) The magnetic field does not change its form, (ii) the field 

decays with the factor exp (-e2a2t/4~a), and also increases by the factor exp f~Bdt, (iii) the 

component of the electric field is the potential fall in the current, or the effective 

electric field is perpendicular to B, and (iv) the V± of the gas is a drift induced by the 

effective electric field, it is stationary, that is, it is not accelerated or deccelerated by 

the magnetic field, and there is no exchange of mechanical energy between the gas and the 

magnetic field. 

2. A constant ~ also represents the state of minimum Ohmic dissipation of the force-free 

field and is a particular case of the state of minimum magnetic energy with a = 0 or aB/at = 

3. Ferraro and Plumpton [6] have surmised that a constant ~ is a natural end configuration, 

but our analysis shows that the only force-free field that can be maintained in a strong field 

is one with a constant ~, otherwise such a field will he unstable, thus the end configuration 

cannot be asserted from the present analysis. 

4. A word should be said about the gauge relation (12). On integration, it gives 

4 ~ "  a ~ = - -  • B • V ~ d r  = - -  r ~ " B4 ,d~ .  ( 4 9 )  

If £ is a magnetic surface and ¢ is a single-valued, then the right side of (49) is zero, 

hence so is the left side, giving either a = 0 or B = 0, which is physically meaningless; but 

from (13) we see that ~ can be multi-valued, and so this difficulty is by-passed. 

5. A mass of gas always has some electrical resistance, and the present writer has found 

that the resistance not only causes the diffusion of the field but also that of ~. When 

considering the long-term evolution, the resistance must be included; but if we consider the 

short-term behaviour of an unstabilised or quasi-stable force-free field, then we can treat it 

as a frozen-in field. 
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