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ABSTRACT

Three methods are used in the ecaleculation of stress intensity factors Kr and K of
combined mode bend specimens, i.e., the boundary collocation method, the finite element
method and an approximate method. In the finite element method, special elements are used
in a wider area, not restricted in the vicinity of the erack tip. The approximate method
employs an approximate relation between K and Kii, which is introduced in this paper. The
results of caleulations by different methods arc compared with cach other and are found in
good agreement. '

I. INTRODUCTION

In order to test the combined mode fracture criteria experimentally it is necessary
to use specimens with a wide range of K; and K,; and to obtain the calibrated curves of
K, and K, values for these specimens either by calculation or by experiment. As no
such caleulated curves of K; and K. values are readily available for three-point-bend
specimens with eracks in an unsymmetrical position (Fig. 1), such curves are obtained by
use of the boundary collocation method and the finite element method. The boundary
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Fig. 1. Three-point-bend specimen with erack in unsymmetrical position.

collocation method was first used by Gross et al."~* to caleulate K, values for opening
mode specimens, Later the method was used to caleulate K; and K values for some com-
bined mode specimens™*. As for the finite element method used to determine stress inten-
sity factors, a growing interest is now directed to the special elements at the crack tip*®™. A
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term of \/ 7 is included in the displacement functions of these special elements, where
r is the distance of the given point to the erack tip. As this term gives the required
singularities of stresses and strains in the vicinity of the erack tip, a higher accuracy
can often be obtained with relatively fewer elements. Since the’other elements around
the special elements are still ordinary ones, whose displacement functions do not con-
tain the terms of \/r, the results obtained by the use of these special elements are,
therefore, not very satisfactory, especially in the case when the size of the elements is
getting smaller. It should be noted that the convergence of the results cannot be en-
sured for the elements of diminishing size, if the condition of constant strain is not
satisfied by those special elements™, as is the case with the commonly adopted ones.
However, the distorted isoparametric elements, proposed by Henshell ef al." and
Barsoum"™®, satisfy the constant strain condition and their displacement functions con-
tain the terms of \/r. The 8-noded isoparametric quadratic and triangular elements
with the mid-side nodes near the crack tip at the quarter point have been used in the
vicinity of the crack tip and their displacement funetions contain the terms of \/r.
Now we have succeeded in including the terms of \/r in the displacement funections of
any isoparametric elements at any arbitrary positions. When these special elements
are used in a wider area, not restricted in the vicinity of the crack tip, the accuracy
of the calculated results is improved considerably.

On analysing the energy-momentum tensor, which was proposed by Eshelby'"

and was later used in the combined mode fracture criteria by Hellen et al."”, it was
pointed out that this kind of application of the energy-momentum tensor is question-
able theoretically, and that the results thus obtained are doubtful"™®. In the meantime,
an approximate relation between K; and K is used to derive the approximate formula
of K;: for the bend specimens mentioned above. The results calculated by this formula
are compared with that of the boundary collocation method.

II. BounparRY CoLLOCATION METHOD

Consider the following expansion of the stress function with the crack tip as the
centre:
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According to the approach adopted by Gross et al."*¥, the expansion is truncated to
the first 2¥ terms and M (M > N) points on the boundary of the specimen are chosen.
From the boundary conditions on these M points, 2M equations are obtained and the 2N
coefficients in the truncated expansion can be determined. The values of K; and Ky
are determined from the first two coefficients:
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K = — Cy/2x, Ky = D,/ 2x. (2)

Note that as the term of D, in Eq. (1) is identical with zero, this term should be deleted
from the resulting simultaneous equations, otherwise an overflow will take place during
the calculation if M is equal to N. The overflow was mentioned in [4] by Wilson et al.,
and the reason is now explained here,

We take 43 terms and choose 63 collocation points. The calculated results are
shown in Table 1. It can be seen from Table 1 that K;BW**/M and K,BW"/Q depend
only on a/W in a wide range (so far as the crack tip is not very close to the concen-
trated forces and the support points). It follows that the values of K; and Ki can be
determined approximately by the bending moment and the shearing force on the crack
section, respectively.

Table 1

Caleulated Results of KT and K7y for Three-Point-Bend Specimens With s/W = 4
by Boundary Collocation Method

S 21 /s 0 1/6 2/6 3/6 4/6 5/6 11/12
0.40 Kt 7.71 8.50 8.55 | 8.36 8.33 8.50 8.50
’ Kh 0 1:082 1.400 1.350 | 1.208 1.376 1.644
0 45 K 8.86 9.67 9.72 9.38 9.48 9,55
) K% 0 1.142 1.562 1.488 1.466 1.464
0.50 K} 10.27 11.48 11.50 11.60 11.15 11.59 11.53
) K% 0 1.410 1.864 1.840 1.664 1.660 1.760
0.55 K} 12.11 13.30 13.60 13.03 12.90 13.46
' K} 0 1.588 1.980 2.050 1.976 2.100
0.60 K} 14.47 | 14.25 14.65 14.91 14.88 14.74 14.50
) K 0 2.348 2,248 2.276 2.320 2,204 2.090

K} = K:BW*|M K = KuBW'Y*|Q

III. Fmite ELEMENT METHOD

An 8-noded isoparametric quadratic element is shown in Fig. 2. Its shape fune-
tions are

N;= % (1 + &) + g)(EE + 9 — 1)
for the corner nodes,

No=-2(1—= ) + 97 (3)

b2 |

for the mid-side nodes with & = 0, and

N, = %(1 + EEXL — o)
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Fig. 2. 8-noded isoparametric quadratic element.

for the mid-side nodes with m: = 0. Taking the side n = +1, we have (Fig. 3)

N.1='_ (1“_ )1
2
N,=1—§, (4)
N3=§(1 -+ ﬁ)_
2

By the coordinate transformation used for the isoparametric elements, this side is as-
sumed to be mapped into a segment AB on a line passing through the crack tip O

(Fig. 3).

Fig. 3. Distorted side of 8-noded isoparsmetric element.

The lengths of OA and AB are equal to Lo and L, respectively. The point, £ = 0, is map-
ped into a point C, which is supposed to divide the segment AB into a ratio of p and
(1 — p). If the coordinate on the segment AB, after the transformation, is denoted by

z, it follows that

I=_§£.12“_.5)L0+(1—g’)(L0+pL)+§Q;—§)(LD+L). (5)
Let Lo/L =k, it can be shown that
§=—~[l+2k+«/4k(k+1)]+2(«/i_+_l_c+\/};:_)\/%, (6
when |
p=—i—[\/4k(k+1)+1—'2k]- (1)
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By substituting Eq. (6) into the relevant formulas of the isoparametric element, we
obtain the expressions for the displacement that include the terms of \/7. Let k=0,
the relations given in [9] and [10] can be obtained. From Eq. (7), it is easily seen
that p approaches 1/2 as k is gett-ing larger. That is to say that the distorted elements
approach the normal (undistorted) ones as the elements are getting farther away from
the crack tip. :
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Fig. 4. Distorted side of 12-noded isoparametric element.

For the 12-noded isoparametric quadratic element (see [8]), if we assume that the
mid- side nodes of the distorted elements divide the side into a ratio of p, (¢—p), and
(1—q) (Fig. 4), it can be shown that Bq. (6) is again established, when
1

p=—=[1—4k + 4V k(k + 1)1,

w0

1 (8)
qg= —[4-——4k+4\/k(k+1)]

The corresponding expressions for the displacement thus obtained contain the terms of
V1 and n/r.

To test the method we consider the three-point-bend specimen with the crack at a
symmetrical position. The geometry of the specimen and its finite element idealization
are shown in Fig. 5. In the vicinity of the crack tip we use triangular elements, which
were shown to be superior to the quadratic ones"”.

First we use the same procedure as given in [10]. Only those triangular elements
in the vicinity of the crack tip are taken to be distorted ones, with the mid-side nodes
near the crack tip at the quarter point and all other elements taken to be mnormal
ones. The final results are shown in Fig. 6a. By the use of the caleulated values of the
displacements of the points on the crack edges, the apparent values of the stress inten-
sity factors can be determined by

£, = f )
4(1 — v’) '

where K is plotted against the distance ». By analysing the expansion of the displace-
ment at the crack tip, it can be shown that the apparent value K, is a linear function
of r, if r is sufficiently small. The intersecting point of the straight part of the curve
on the vertical axis (r =0) gives the true K, value. Some points near the erack tip
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Fig. 5. Finite element idealization of three-point-bend specimen with crack in
symmetrical position, a/W = 0.4.
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Fig. 6. Apparent values of stress intensity factors for specimen shown in Fig. 5.

(a) Special elements are restricted in the vicinity of crack tip;
(b) Special elements are not restricted in the vicinity of erack tip.

that deviates from the straight line can be seen in Fig. 6a. This indicates that these
apparent values of K, are questionable and should be discarded.

Secondly, we re-calculate the mid-side nodes according to Eq. (7) for all elements
in the shaded area of Fig. 5. The final results are shown in Fig. 6b. The curve is
superior to that of Fig. 6a in the sense that all points near the crack tip fall on a
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straight line, as expected from the analysis. The intersecting point gives K;BW**/M—=
7.79, with a/W = 0.4. It is in good agreement with the result calenlated by the boundary
collocation method: K,BW**/M = T7.71.

1V. ApPrOXIMATE RELATION BETWEEN K, AND K|/

For any plane configuration with a crack as shown in Fig. 7, it can be proved that

ou j ou
Jy=——= dy — T - —ds,
' ol CWy oz (10
J;=—-@-=S—Wd¢—T-§5ds, (11)
Os ¢ Oy

where U is the total potential energy of the system and C is the exterior contour of
the configuration. Eq. (11) gives the rate of the increase of the total potential energy

i

Fig. 7. Plane configuration with crack,

as the crack translates in the direction perpendicular to the crack. Eq. (10) defines the
J-integral, whose value is path-independent, so long as the path starts at the lower edge
of the erack and ends at the upper edge. As for Eq. (11), it can be proved that the
value of the integral is also path-independent, if the points on the crack edges remain
intact™. If a contour 1) sufficiently near the crack tip is taken, it can be shown that

J, = L wdy — T - Ou e — QA+ 2)(1 + ) (Ki + K%),

ox 4F
(12)
J}='[ e War—T Mg = — QA +r) g g
D Oy 4F
where .

8 — 2 for plane stress.

g=41+w (13)
3 — 4y,  for plane strain, "

Due to the properties of J-integral, J, is equal to J,’. It can be shown that
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R==J;—J;=J de=(1+")(1+")j- ids, (14)

r+r, 8F r+r,

where I'; and I, are the upper and lower edges of the ecrack respectively. For the
upper edge the integration proceeds from left to right and for the lower edge from right
to left. Since o." takes the same value on the upper and lower edges in the viecinity of
the crack tip and o- dwindles when the point moves towards the open end of the crack,
it is expected that B will be a small quantity and will not be very senmsitive to a small
change in the crack length. So it is reasonable to assume that

8R
— =~ 0. 15
Bl (15)

Combining Egs. (15), (10), (11), and (12), we obtain

aJ, _ ol (16)

s oL’
from which we obtain the following approximate relation between K; and K :

=, 17
ol ol Os Os an

KH

If we further assume that K; and Ky can be determined by the bending moment M
and the shearing force @ on the erack section respectively, we can write

M a
K, = ; fe (—’),
Bw: ‘W

K” = Q i f: (£>
BW? w

After substituting Eq. (18) into Eq. (17), we get the following equation:

(18)

a df‘(%)+df”(%)f 2\ [ (2 =o. (19)

The equation is solved to obtain

() - . (1%) I [ (i%)]d(ﬁ?) (20)

For fu(a/W), we make use of the results for pure bending due to Benthem et al."*, The
calculated values of f,(¢/W) according to Eq. (20) are given in Table 2 and are in
reasonably good agreement with the results caleulated by the boundary collocation
method.
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Table 2
Calenlated Results by Eq. (20)

alw ralw) | falw) | fila/w) Dg:m;egem
0.05 2.54 0.0636

0.10 3.51 0.180

0.15 4.26 0.327

0.20 4.97 0.496

0.2 5.67 0.667

0.30 6.45 0.857

0.35 7.32 1.080

0.40 8.35 1.317 . 1.350 -2.5
0.45 9.60 1.557 1.488 4.4
0.50 11.12 1.838 1.840 -0.1
0.55 13.09 2.125 2.050 3.5
0.60 15.66 2.441 2.276 6.8
0.65 19.17 2,794

0.70 24.15 3.077

Note: fs(a/W) and f.(a/W) are identieal with KT and K|
in Table 1. fi(a/W) is caleulated by the boundary
collocation method for the case 2s:/s = 3/6.

V. CoNcLuDING REMARKS

This paper has outlined the results of three methods used in the calculation of K; and

K of the combined mode bend specimens. If an estimate is to be made at the design
stage of an experiment, the results (Table 2) calculated from the approximate relation
of Section 4 can be used. K; and K. can be determined by the crack length a/W, the
bending moment and the shearing force on the crack section. The final calculation
for a specimen may be made by the boundary collocation method or the finite element

method.
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