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ABSTRACT

The general stable oscillation condition for high specd flow lasers is derived directly from
the radiation differential equation and the boundary conditions. It has been pointed out that
the stable osecillation condition postulated in [1] is approximately satisfied under ecertain
condition. The analytical formula of GDL output power is derived from our general oscilla-
{ion condition and the saturated gain formula given in [2]. The relation betwcen the GDL

. output power and various parameters is also shown. Analytical expression of the optieal resona-
tor modes for high speed flow lasers is derived from geometrical optical approximation. The
mode characters in the Fabry-Perot resonator which eontains flowing aetive medium are manifest-
ed and the typical casc of Gerry’s experiment'™ is caleulated.

I. OriGIN OF THE PROBLEM

With the appearance of high-power high-energy lasers, the high speed flow tech-
niques have been widely adopted for removing unavailable energy and freezing the
upper energy level of laser medium. The radiation field distribution and the output
power characters in the resonators of high speed flow lasers have ever attracted
universal attention. But as the interaction between the radiation field and the active
medium is nonlinear, the problems are rather cbmplex. Early in 1969, Cool first
calculated the radiation field distribution and the output power in the parallel-plane
resonator which contains flowing active medium under the assumption that the light
propagates along the straight line perpendicular to the mirror surfaces. He obtained
the stable oscillation condition of the resonator in high speed flow lasers: g =

—Ej—'iln (R, R;), where R,, R, are the reflectivitics of the mirrors M,, M, respectively,

L is the distance between the two mirror surfaces (see Fig. 1), and g is the average
saturated gain along the light axis in the resonator (refer to [4], formula (14)). This
condition is similar to the stable oscillation conditicn in non-flow laser. From this
condition, as the flow active medium enters the inlet of the resonator, its gain is

saturated to the value ~§Eln(Rl R;) assigned by the mirror surface losses. Therefore

on the mirror surface of the flow inlet, the radiation field rcaches the high peak value.
Explicitly, this phenomenon is not in aceordance with the experimental observations™®.
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In 1974, Lee also pointed out that this condition was unreasonable and suggested an-
other stable oscillation condition : ijs(g-—iln 1 ‘)da:=0, where s is the mirror
s Jo 2L R,R, ,
length along the flow direction. He did not prove the correctness of this condition,
but he supposed that this condition is better than Cool’s as it seems to have ineluded
the diffraction effect. He calculated the output power with this stable oscillation
condition under the assumption that the radiation field distribution is uniform. In
this paper, we derive a general stable oscillation eondition for the flow lasers and
point out that as long as g(z) does not vary violently, Lee’s condition is approximately
available. But his assumption that the radiation field distribution is uniform, is not

well founded in ¢ertaln cases.

Recently, there have been issued some results of the unstable resonators in high
speed flow lasers™"¥ obtained by solving the gain dynamic equations and the radia-
tion field equations simultaneously. With these calculations, we may obtain the three-
dimensional distribution of the radiation field and ecalculate the effects of shocks,
mirror distortions and mirror tilts on the radiation field distribution and on the output
power. But for the parallel-plane resonators, we fail to get a steady convergent solution
with these numerical iterations. As will be seen later in this paper the oseillation in
these resonators is of multi-mode generally.

In this paper, we discuss the mode structure and the output power in the parallel-
plane resonators which contain flowing active medium. First, we derive the general
stable osecillation condition from the radiation differential equation and the boundary
conditions. From this condition, we obtain the GDL output power formula. With the
geometrical optical approximation, we get the transverse mode expression. The typical
case of Gerry’s experiments is also caleulated.

II. Tue Basic EQUATION oF RADIATION FIELD AND BoUNDARY CONDITIONS

Suppose that the active medium flows along the 2 direction (see Fig. 1). Let two
plane reflective mirrors M,, M, be placed along the x direction. The light axis is in
parallel with the 2z axis and perpendicular to the flow direction. The excited region is
upstream above the origin point. As the gas reaches the upstream boundary of the
resonator # = 0, the initial vibrational population inversion of the gas has been gener-
ated. In the region of the optical resonator where z > 0, the energy transfer generated
from the molecular collisions and the stimulated radiation in the laser resonator
makes the vibrational population inversion decay gradually. Suppose that all physical
quantities are independent of y, i.e., the problem may be treated as a two-dimensional
problem. Suppose also that within one wavelength scope, the change of the complex
dielectric constant & is small (because the change of the saturated gain is small within
one wavelength scope). Then the radiation equation in the resonator becomes

2
V’E+—§z—-aE=0, (1)

where E is the component of the electrical veetor, @ is the angular frequeney, ¢ is the
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light speed in vacuum; & = & -° g1, where & is the real part of the complex dielectric
. w .

constant and is taken as 1 here, ¢ is the saturated gain. In our cases, g can be taken
as the function of z only. In fact, as we took the numerical caleulations with Rensch’s
method'”, we found that the change of g with 2 is small, and g is considered as the
average value in L length along z direetion.

Y
T Optical axis
b | 7
7
y,

Fig. 1. The sketch of the resonator in high speed flow lasers.

Suppose that the boundary conditions in the inlet and the outlet of the resonator
are

B0, 2) = E(s, 2) = 0 )

respectively. In fact, since the Fresnel number of the resonator in high speed flow
laser is high in general, from the results of the passive parallel plane resonators, we
know that the conditions (2) are satisfied approximately for high Fresnel number.
This means that for high Fresnel number, the diffraction losses may be neglected.
Therefore, in the inlet of the resonator, we may suppose that the value of g(0) is
equal to the small signal gain g, in the inlet. '

Eq. (1) is to be solved under the boundary conditions (2). We may assume that the
solution of the equation has the form:

E(z,2) = X(2)Z(2). ' (3)

Substituting (3) into (1) and separating the variables, we obtain

2
X"+(i-—k§—£—“lg)x=0, (4)
c? c

Z(2) = C,e'*=* 4 C,e~7%s2, (5)
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where k. is the separate constant, and C,, C. are integrating constants. They can be
determined by the boundary conditions in the two mirror surfaces.

Let the reflectivities of the two plane reflective mirrors M,, M, be R,, R. respec-
tively. For mirror M,, from (5) the incident radiation field (it means the electric
vector here) may be assumed as

E(z, 2) = = X(z)e *s%e, |y,

where e, is the unit vector in the polarization direction of the incident wave, and k.
is a complex number in general. Then the radiation field reflected from mirror M, is

E(2, )l = —V/ B, X(2)e€,] .
So the radiation field on the M, mirror surface may be written as
E(#,2) | smo = (X(2)e™ %5 — &/ B, X(2)6™s*) 1ms.

From this we obtain the boundary condition on the M, mirror surface as

E(z, 0) — 1_'\/31 (6)

0E(z, 0) 1 + /R, '

0z

For the same reason, the boundary condition on the M, mirror surface is

* OE(z, L) 1 + ‘\/Rz
Oz

Substituting (3), (5) into (6), (7), we obtain

E(z, 2) = c;(—~/R, e*s* + ¢~i*a%) « X (), (8)
where
k‘=ﬂi"_—¢L1n_l_. (9)
L 4. R.\R;,

2 / 2
Now substitute (9) into (4) and let %2 = % —_ (—mg-) , where m denotes the longi-
¢

tudinal mode order ( ~ -2{1-) and is a large integer (m_;) / (—r:—) ~ 1. For high
1 1\ .
speed flow lasers, there are generall ——(ln —-) ~ (0. In so doing, (4) and the
8 v 16 L*\ R\R, 4
boundary conditions (2) become
rr 2 1 1
X +[k i—(g——ln )]X=0, (10
2L R,R;
X(0) =0, (11)

X(s)=0. (12)
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We know that the radiation-flux density is that
1#,2) = = E(z,2) - B*(z,2), (13)

where x denotes the conjugate complex number taken. Let I(z) denote the average value
of I(z, 2z) between 0 and L along the Z direction. g(z) in (10) is generally attributed
to the function which varies with I(z). So substituting (8) into (13), taking the
average between 0 and L along the Z direction and introducing the suitable constant in
X (z), we obtain I(z) = X (z) X X*(z), where X (z) satisfies (10)—(12). The problem
is attributed to solving Eq. (10) under the boundary conditions (11) and (12).

ITT. StaBLE OscmLrATioON ConprrioNn N Hicon Speep FrLow
Lasers aAnp Ourpur Power EXPRESsiON oF GDL

In (10), let X(z) = f(z)-e’¥" where f(z), () are the real functions of .
Substituting it into Eq. (10) and letting the real part and the imaginary part equal
zero respectively, we obtain

7+ (K — ¢*)f =0, (14)
fo' + 2f ¢’ —k(g— -—1—1n—1—)f= 0, (15)
2L R\R,
where k=" The boundary conditions (11) and (12) become
c
f(0) =0, (16)
f(s) =0. Qan

In (15) according to the first-order linear ordinary differential equation to solve ¢"(z),
we obtain '

‘ @’ (z) = %5 [C + Lk (g —.-213 ln.Rlle) f’d:c’], (18)

where C is the integrating constant. From the boundary condition (16), we see that in
order to make ¢@’(0) finite, it is necessary to have C = 0. At the same time, from the
boundary condition (17), in order to make @’(s) finite, we must have

Y gfldx 1 1
‘: = In . (19)
0

This is the general oscillation condition in high speed flow laser. It is the condition that
is necessary for flowing active medium to create the radiation field from the inlet of
the resonator to the outlet of it.

In (19), the left-hand side of the equation is weighted average where the weighted
funetion is f*(z). If I(z) = f*(z) approaches the uniform distribution (at # =0 and
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z =3, f*(x) might have large gradients), then the left-hand side of (19) approaches
the average value of ¢g(z) along the flow direction more correctly, and the condition (19)
becomes the stable oseillation condition in [1]. In general cases, as will be pointed out
later, f*(z) has the distributed shape of Fig. 2. The position of the peak value is just
approximately at Zm.. which satisfies Bq. ¢(Zau) = Eli_m R-—-——IR However, on both sides
2
Of Tmar, f7(z) decreases gradually with the increase of the distance from Z.... Henece, if
g(x) does not change violently (corresponding to the radiation intensity not too large),

(19) becomes approximately,

1 g 1 1
e = ——1 20
S g(z)dx A nRR; 20)

This explains that Lee’s stable oscillation condition can be available approximately in
general cases.

For the case of CO. GDL, we adopt Siegmans’ expression of the flowing saturated
gain (refer to the formulas (23)—(25) in [2]): :

g(z) = [____g.,(x) ] exp [— Xcolf “_—_IV(x’) dz’], | (21)

1+ W(a) 0Vl 1+ W)
where
90(2) = goexp(—Xco0x/Ax)V), (22)
W(z) = oI(z)/hvg, (23)

9o is the small signal gain in the inlet, @, 8 are the collisional exchange rates between
the vibrational energy level (001) and the ground state and those between the vibration-*
al energy level (100) and the ground state respectively, V is the flow veloecity, Xco
Xy, are the mole fractions of CO. and N: respectively, v is the photon frequency, % is
the Planck constant, and o is the optical cross-section of the laser transition. As
Siegman et al.”’ pointed out, Formula (21) was derived under certain assumptions.
Although these assumptions are not satisfied permanently, particularly in the front
edge of the light beam (i.e. approaching the inlet of the resonator), where the change
of I(z) may be large, yet even in these cases, Formula (21) can also offer a correct
description of the saturated tendency of the GDL gain.

Let
Xco,_ a ch;: . ﬁ _ hvﬁ _
feo =, T Ay - = ‘409
xl\'z V xr\'z Vv [v2

then from (21)—(23), we obtain

g(x )—‘—i—ﬁ:;;; exp l—-BS:T%dw']. | (24)

Substituting (24) into (19), from the boundary eonditioﬁ (17), and with the integra-
tion by parts, and letting §=ijsg(x)d:c be the average saturated gain along the flow
s Jo
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direction, we obtain
2LA,
(a+B)In

Y fzd:s —_ gy — g(s) —_ a.sg].

0

1

1442

Let the transmittance of the mirror M, be t. The output power P is

2tHLA,
1
@+ B)In ——
( )In

14%v2

* [90 — g(s) — asgl. (25)

P =tH 5 fidz =

o

This is the output power expression derived from the stable oscillation condition (19)
and the saturated gain formula (21).

Substituting the approximate stable oscillation condition (20) into (25), we obtain
the approximate expression of the output power,

po—BHLA [, g 8 1] (26
R\R,

Substituting the expressions of A,, @, B into (26) and from [12], 0= {_}; (where

the value of the numerator changes in fact slightly with the temperature 7', N is the
population density in the resonator, and T' is the translation temperature in the

resonator), we obtain

P =

2tﬂLhDﬂX\12VAYT Jo — g(S) _ Xm, S In 1 ].

T18%co (o + ) In = 2%n,+ V- L RiR,
: R.R,

From this formula, we may see in general the relation between the output power and
the various parameters. '

Since g(s) « go is required for the design of GDL, therefore, from (26), -the
maximum output power which does not take into agecount the energy of the flowing
loss, is

P = 2tHLA, ) [gﬁ_ as 4 1 ]
(a 4+ B)In - 2L R.R,
Rle

With respect to the typical experiment of GDL as was done by Gerry™ we have
caleulated the output power with (26). The caleulated results are as follows:

Gerry’s primary data:
Xco, = 0.08, Xn,=0.91, Xuo=0.01,

the temperatuare of the combustion chamber = 1300°K, the pressure of the combustion chamber
= 17atm, the exit Mach number =4, the area ratio = 14, the loss of the mirror surfacc = 0.02,
t=0.02, H = 3em, 8= 20em, L= 30cm,

We adopt the small signal gain go =4 X 10™°em™, as has been done in [7] and [13]
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for Gerry’s 55 kilowatts installation. The calculated results are in the following:
Let y be taken as 1.35 (p is the specific heat ratio), then we have
T = 842°K, p=0.0987atm, V = 1.45 X 10° cm/seec,
N =2145 X 10®¥em™, o= 0.913 X 107" em?,
from the data of the relaxation time in [14], we obtain
L — 95.4 x 10-5sec, %= 3.3 X 10~*sec, a = 0.024em™,

(14

B=0184em~, A,= 6716 Watts/em?, —In—1— =1 X 10~*em~',

2L R\R,

In the expression (21) of g(z), let z = s, then we obtain the expression g(s). Suppose

that I(z) is uniform approximately, then I (z)== tg . We find the value P with the
s

expression g(s) and the output power formula (26) by iteration. After three iterations,
the output power and the saturated gain of the outlet reach the steady values: P =
6280 watts, g(s) = 0.278 X 10"*em™".

With (26) to caleylate the optimum output coupling, we obtain 7, = 0.09, but if
we adopt Rigrod’s formula to caleulate it, we obtain %, == 0.06.

IV. THE APPROXIMATE DISTRIBUTION OF THE TRANSVERSE
MobDE IN THE RESONATOR OF F'LOW LASER

We treat the mirror surface losses as the absorbtion distributed in the medinm, so
the radiation field equation in the resonator becomes

V’E+[k‘—£k(g——-1—~ln 1 )]E=O. @7
oL R.R,

From (21), we know that g(z) is the function of I(z), and therefore, is the function
of EE*. Eq. (27) is nonlinear. But as g(z) influences the amplitude primarily, so
Eq. (27) can also be solved by geometrical optical approximation. With respect to
the light wave, k is large. Let E be the form

E(z,2) = f(=,2) + eFlna), (28)
Substituting (28) into (27), dividing the both sides of the equation by k°, neglecting
the terms containing 1/k°, and making equal the coefficients of the equal power terms
of 1/k in both sides of the equation, we obtain that:
. 11\
from the coefficients of (?) ,
Vs+Vs=1 (eiconal equation); (29)

from the coefficients of (—i—)l ,
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1 1 .
29Vs - Vf+ f - [V’ —( ————-]n—-—)]=-0 transport tion). 30
s Vf+f s oL R E, ( port equation) (30)

With the characteristic method to solve (29)"¢, we obtain

2
% =0, (31)

S =8, + o, (32)

where o is the are length of the ray, S, is the integrating constant, r is the radius
vector of the point on the ray. From (31), we know that under the geometrical
optical approximation, the ray is the straight line. Substituting (32) into (30), and

in consideration of j—j =+ % along the ray, then (30) becomes

E dx 2L R\R,

To solve f, we obtain

k r( 1 1 ) ,]
= + — ——1In dz’ |,
f=foexp [ 2k, Jo g 2L R,R, ? (33)

where fo is the integrating constant. Formula (33) denotes that the amplitude changes
with . From (28), we see that the phase factors which change with z is ¥k,
Therefore, we obtain two approximate solutions of Eq. (10):

X = ~— —In——)dx" + ik.z|,
() L exp 3% )o g YA N3 x + ik x

and

[ k| 1 1 v '
X, (z) = C exp | — J ( ——-1n-——)d<c—@k,x],
A(z) = Cexp 2. Jo \9 or " R.E,
where C,, C; are the integrating constants. Obviousiy, X,(z) denotes the wave propagat-
ing to the positive X direction, and X.(z) denotes the wave propagating to the negative
X direction. The real wave is the superposition of these two waves. In consideration
of the boundary condition (11), the approximate solution of (10) is

X(z) =10, {exp l-—k- Y(g — —«1—111—1—) dz’ + ikxa:]

2k, Jo 2. R\R,
e[ o ) o i)
exp[ ok, 3,0 T o “RE/ T T D
From this expression, to find |X (z)[*, we have
| X(z)|? = xg{sin= koz + sink? [—"- j (g — »—1—-111-—1—-) dx” (34)
2k, Jo 2L R\R,

where X,' is a eonstant. In consideration of the approximate stable oscillation condition
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(20) and_the boundary condition (12), and from (34), we obtain

he=CAEDT a2, 00, (35)

If k. satisfies (35), the solution (34) approximately satisfies the boundary eondi-
tion (12). Egs. (34) and (35) are the analytical expressions of the transverse modes we
want to find.

From (34), we see that the larger k. is, the flatter the curve of |X(z)|* is, and
then the larger the mode volume is (see Fig. 2). As has been pointed out in [17], the
experimental results indicate that the radiation intensity distributions are flat and the
mode structure is of high order. In fact, since the erergy of the vibrational energy
level v =1 of N, is liberated through the near resonant exchange with the vibrational
energy level (001) of CO., the liberation of the energy requires a certain time, i.e.,
requires a certain length along the flow direction. The high-order modes which have
the larger mode volume can obtain more energy from the medium than the lower-order
modes, so from the result of the mode competitions, the higher-order modes will be
predominant. But with the inerease of the order of the transverse modes, the diffraec-
tion loss will increase too. From [18], we know that for the Fabry-Perot resonators
which contain the uniform active medium, and for high Fresnel number, the diffraction
loss primarily corresponds to the walk-off loss, which is then,

— 0880y (1 — 2L gin 90),
L s

where sin 6, = Eﬁ. In order to have it predominant in the competitions, we require

that the mode volume is large, but it is also necessary to make the diffraction loss far
less than the mirror surface losses, i.e.,

tg%@lln(l—QLsinﬂo)<< 1 In 1

$ 9L R.R,
Sinee k, € ¥ and sin@, = %, we get
[
2he o 1 p 1 (36)

sk 2L R.R,

Of course, the small signal gain must be not so large (if g, is very large, the modes
which correspond to the larger diffraction losses will oscillate too). Although we
require that k. has to correspond to the higher-order modes and is restricted by (36),
k. can still take many values. This indicates that the oscillation is of multi-mode in
general.

From (34), we see that the first term in the brackets corresponds to the modes in
the passive resonators and the second term indicates the effect of the flow gain deflec-

tion. Except that k. is large or g, is very eclose to —Lln ——l—, the shapes of the modes

oy ¥ 1 2
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are determined primarily by the second term in the brackets of (34). We may discuss
this case briefly. From the second term in the brackets of (34), We see that [ X (z)|* is
zero at z == 0, and |X (x)|* increases gradually with the increase of #z (in the neigh-
borhoods of z = 0 and z = s, owing to the effect of sin’k.X, [X(2)|* has some small
waves) until reaching the position of the peak value Zumw, which can be determined
approximately by

1, 1
2L R\R,

9(Tmax) = 37

and if & goes over Zma, |X (2)|* will decrease with the increase of z, until | X (s)|’=0
(See Fig. 2). From (37), we know that in spite of the differences of the modes, the
position of the peak value is basically identical and is determined by (37).

In order to express Z... with analytical expression, we substitute the average
value along the flow direction,
T2 1 55 zd . p
=_ — €T = -—-—,
f s of tHs
for f* in (24). (Of course, this is allowed only in case that f*(x) varies not so large.)
Substituting g(z) in (24) into (37) and solving Zm., We obtain

_ A, + F* “In[1+f=/An]n 1 ] (38)
ady, + (a + B)f? 2¢9,L R.R,

xmax =

Eq. (38) gives the relation between the position of the peak value and the various
parameters. For example, from (38), we see that if the output coupling increases,
the position of the peak value will generally move toward the origin point, and since
a, B are proportional to Xco /X~ , therefore, if the CO. component increases, the posi-

A
70—
60
50

40

| X ()2

30

20

10

Fig. 2. For Gerry’s typical experiments'?, the transverse mode distributions
calenlated by (84) (ks is taken as 1,557 and 27 respectively).



600 SCIENTIA SINICA Vol. XXTI

tion of the peak value will move toward the origin point too.
For Gerry’s typical experiments'”, we have calculated the patterns of the
transverse modes (See Fig. 2).

i]_n—l—+—1>< 107% s =20 cem and in econsideration of condition (36) we

1B,

can take k.= 155 and k. = 2x respectively. By substituting these k. value into (34)
and in to (24), substituting approximately f*= 5000 watt/cm® for f?, and then substitu-
ting (24) into (34), we obtain the distribution curves of the transverse modes in Fig. 2.
From (38), we obtain the position of the peak value Zmax==8.1cm. It can be seen from
Fig. 2 that the value of k. influences the shape of the curve sensitively. The curve
corresponding to the larger k. value is similar to the experimental burning results of
the many-hole coupling in [6]. Therefore, the transverse mode in reality is of high

order.

Sinece
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