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ABSTRAOT

It is of significanee, both for the exploitation of geothermal resources and for an
understanding of the causes of volecanic and seismiec aetivities and the continental drift,
to make a thorough study of the ascending flows in the mantle plumes that lie beneath the
hot spots of the earth. In this paper, a fluid-dynamic model of this ascending flow is
presented. The extent of the mantle plume, the maximum temperature difference and the
maximum velocity of the aseending flow in the mantle plume, and the heat transported by the
mantle plume to the lithosphere have all been estimated. - The results are found to be in
good accord with the available data from geophysical observations.

1. INTRODUCTION

The presende of hot spots on the earth’s surface has now attracted increasing
attention of most earth scientists™ *. Discrete, small areas of volcanie activity referred
to as ‘“hot spots’’ on the earth’s surface are so far known to exceed 100 in number. In
such regions there are, in general, high heat flow together with volcanism.- The hot
spots have the following features: (i) Hot spots are not neeessarily restricted to the
boundaries of the lithospherie plates, not a few occurring in their interior. (ii) The
voleanic lava at the hot spots are found to be mainly alkalic basalts indicating a
deep mantle origin. (iil) The hot spots are believed to be ‘‘anchored’’ at the earth’s
depths; they do not move together with the plate, often leaving the traces of extinct
volecanoes on the earth’s surface. ' |

According to these features, some have suggested that these hot spots may be the
surface expressions of the mantle plumes rising as cylindrical flow of hypothermal
material, probably from a depth of hundreds of kilemeters beneath the lithosphere™.
Most geophysieists believe that the natural convection of the mantle materials is respon-
sible for the upwelling mechanism: as the materials reach the lower surface of the
lithosphere by buoyancy, they spread out laterally and cool down, and finalky return
to the earth’s interior. Calder™ pointed out that if the solid rocks could move as a
very slow and viscous flow, then it is more difficult, if not impossible, to estimate its
movement. It appears that a plausible dynamic explanation for the ascending flow of
the mantle plume has not yet been given, though the idea of the mantle plume was
formulated many years ago.



No. 9 FLUID-DYNAMIC MODEL IN MANTLE PLUME 1071

An attempt has been made to estimate the flow in [2], with two problems left
untouched: (i) The ascending movement of a single hot sphere was analysed only; the
flow in the mantle plume was not considered in detail. (ii) A very important effect
in natural convection — effect of heat transfer on the movement — was not taken into
account. Although the cylindrical plume was examined in [6], the effeet of heat
transfer on the movement was again not considered. Therefore, the results of calcula-

. tion in [2] and [6] cannot be expected to be in good agreement with practical observa-
tion.

1I. Basic EQUATIONS OF THE ASCENDING FLOW IN THE MANTLE PLUME

The mantle flow satisfies general fluid-dynamic equations. 1In terms cf tensor
symbol, the equations can be written as

3;; + uy —g-;—, + 2 = - -g’i + %2 + %%, (2.1)
pop {2+ [gi ('STT)]} -2 (s %ﬁ) +H + n,-%‘ (2.2)
0Cous) _ (2.3)
Ozx;
The state equation can be written as
p = pl1 —a(T —To)], (2.4)

where p is the density, w; the ith component of velocity, T the temperature, ¢, the
specific heat at a constant pressure, ¥ the thermal conductivity, H the inner heat rate
generated by radioactive decay, 1, the shear tensor element, Q; the jth component of
the earth’s angular velocity, m the pressure, ¢ the thermal expansion coefficient,
(-g—i:) the adiabatic temperature gradient, and @ the gravitational potential in rotat-.

Zis ;
ing reference frame:

' @=(;+—;—[Q><r|=, (2.5)

where @ is the gravitational potential, Q@ the veetor of the earth’s angular velocity,
and r the position veetor..

Accepting the assumptions and analyses similar to those madegin sections 2 and
3 in [7], and by changing from two-dimensional into axisymmetric flow, we can
rewrite equations (2.1)—(2.3) as follows:

1.9 (,u- 61&) + pga(T — T'w) = 0, (2.6)
r or or
or orT 1 8 ( 61’)
OF 4,90 L. 9 (,98) 2.7
“ Oz v or r Or r Or 1

1 0 Ou
= = (yr +__()‘ 2.8
(w) 3 ; ( )

r
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where % and v are velocity components in z: and r-directions, respectively; (z, r)
coordinate are shown in Fig. 1; u is the viscosity,-g the gravitational acceleration, T,
the stationary surrounding temperature, and x/pc, the thermometric conductivity.

Moving directi
é Of the_pfa_te & I
xtinct  Extinct . 1. &
volcano volcano s ..o} 3
7N “H 3

Fig. 1. Ascending flow in the mantle plume.

If we assume that the viscosity is constant, Eq. (2.6) can be written as

li(,?&)_kﬁ(f._rm)mo, (2.9)
r Or or u

Egs. (2.7), (2.8) and (2.9) are the set of differential eqaations governing the parame-
ters of the ascending flow u, v and T respectively. Starting from the set of differential
equations, we shall solve in the next section the problem of the ascending flow in the
mantle plume,

I1I. SoLuTiON oF THE DIFFERENTIAL EQUATIONS OF THE ASCENDING FLOW

In analogy to Karman-Pohlhausen single parameter approximate method, we let

Y e =f'—==aa + ayn, + aml + al + amlh (3.1)
T — T - 2 3 4
0=—-2 = by + bl’h" + 53771' + ba’l'r + bﬂ}r; (3-2)
T, — T,

where the subscript w represents the parameter at the axis; oo is the surrounding
parameter; &, b:i(? =0, 1, 2, 3, 4) are constant, and

Ty = — (3.3)

2

P
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r
Ny = —, (3.4)
1T o
g =31 (3.5)
- 8“ -

where 4. and Or are the velocity radius and temperature radius of the ascending flow,
respectively. They depend only on z. Since the driving force of the ascending flow
is buoyancy, we have 0. > dr, 1e. e < 1.

From the boundary conditions on velocity, we obtain

@ =10, when 7, =1, (3.6)
and
Op
=1, =0, when 7, =0, (3.7)
0.
From the boundary conditions on temperature, we obtain
6 =0, when =1, (3.8)
and
0=1, 99 —0, when 7r=0. (3.9)
871’1

From Egs. (3.1) and (3.7) we obtain

@ =2 =1+ an+ ag + agh. (3.10)
Wy

”

By substituting Eq. (3.10) into Eq. (2.9), it follows that

B (40, + Yag1, + 16a7%) + 222 (T—T)=0. (3.11)

Differentiating Eq. (3.11) with respect to 1., we obtain

%(Qas + 32a,.) + ﬂﬁﬁ (T, — To) %gﬁ =0. (3.12)

nr

Taking the values at the point 1. = 7r = 0, Eq. (3.12) gives @&z = 0. In terms of Eq.
(3.6), Eq. (3.10) can be reduced to

@ = =1+ am — (1 + a)k. (3.13)
U
Similarly, we obtain
T — Tuu 2 4

By substituting Egs. (3.5), (3.14) and a: =0, a. = — (1 + &) into Eq. (3.11), it follows
that : ' S
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10, = — 0L =12) (3.15)
22

b; + 1 = O 3 . (3'16)

—4(1 + a)e? — ab, = 0. (3.17)

When 6: <r < 4., (T — T..) =0. From Eq. (2.9) we obtain

[—4(1 + a))6* + 20,6 IIne =1 + a8 — (1 + a,)et. (3.19

From Egs. (8.16), (3.17) and (3.19), we obtain the following solutions:

Thus 6. = 6r =6, 1w = Nr = 1. . Therefore, Eqs. (3.13) and (3.14) become

q,=_?_"_=1_.-‘_§_,;.2+_1_.,}4’ (3.20)
Uw 3 3
T— T
= — 2= =] — 02 3.21
T 7 . (3.21)
Eq. (3.15) becomes
16 Uy,

f e L — 3.22
3 pglTy — Ty (8.22)

Substituting Eq. (3.21) into Eq. (2.7), and taking the value at point r =0, we
obtain '

& = 4k(Tw _ Too) . (3-23)
ar,
Uy
dx
From Egs. (3.22) and (3.23), we have
gt O (3.24)
30ge (_ @_)
dzx
T 2
w2, = 3090k (Tw — Te) (3.25)
iu (— L)
dx

Using Egs. (2.7), (2.8) and the definitions of ¢ and 6, we easily obtain
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0 [ 1 (T, — T.) , 1 du,,] dT./dx
2 (e8) + =) gp 4 =l
655 ((p ) Tw'_' Tou dz +uw da; e —T.w'_' Tw(p
a(u ) 1 v, k 1 a[a(T—Tm')]
+ - (—8)+——6= ——|r—=———=%|. (3.26
or \u, U T U (T, — Tw) r Or ! or ( )

Substituting Egs. (3.20) and (3.21) into Eq. (3 26), and integrating r over the region
[0, 8], we obtain

160 1 do 160[ 1 (T, — Tm)+ 1 du,,,] .. 196 dT,/de

315 & dz 315 7, — T dx ‘%, Az 3157, —
_ 24 1ds_ 92 Vdu,_ _ tk
315 rl dez 315u, dz %,0%

By using Eqgs. (3.24) and (3.25), the above equation can be further written as

2 _ _ -
315 dTw/d.a: 315 T,— Tw dx 316 T, — Tw dz
Letting Z =T, — T w,% = —B =constant, we can rewrite the above equation as
z
68ZZ" + 872" — 2068Z" + 1198* =0, (3.28)

where primes represent the order of differentiation with respect to #. The boundary
conditions of Eq. (3.28) are

Z =0, when z=20 or ¢ = —1{, (3.29)
Letting z = 1%, Z = pl&, we have Z' = gZ’, and Eqs. (3.28) and (3.29) become

68Z7" + 812" — 2067 + 119 = 0,
} (3.30)

Z=0when F=0o0r 5=—1.

Eq. (3.30) is a boundary value problem of the second-order nonlinear ordinary dif-
ferential equation. And the following analytic solutions may be obtained:

2023

119 96

~ a - w) (——" —_ cﬁ) (
Z = —o<hH<l), (3.31)

B o (50 ) Has a=b

87 J—=

i m (119 o

_S—m (1 — &)®s (@,7— ~— -:TJ) @

z (o <a<l), (3.32)

[ a— e (L o) Hao

where @ = dZ/d%. As cited in [7], the above solutions are valid in the ascending flow
region, except for the small regions in the neighborhood of £ =0 and £ = —1.
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'Using Eqs. (3.31) and (3.32), we can obtain the dependence of Z and # on &.

IV. ResuLrs oF CALCULATION AND DISCUSSION

Their typical values are given in Table 1. Eqgs. (3.24) and (3.25) can further be written
in the following dimensionless form:

Table 1
The Dependence of Z and Z on @ (~o0 < &< 1)
& Z z & Z F
1 0 -1 0.1000 0.5332 —0.1690
0.9500 0.02889 —0.9970 0.0500 0.5345 —0.1515
0.9000 0.09073 _ —0.9902 0 0.5349 -0.1356
0.8500 0.1599 —0.8234 —0.0500 0.5345 —0.1210
0.8000 0.2253 —0.7441 ~0.1000 0.5335 -0.1075
0.7500 0.2833 —0.6694 ~0.1500 0.5320 —0.09513
0.7000 0.3329 -0.6011 —0.2000 0.5300 —0.08370
- 0.6500 0.3744 ~0.5397 —0.2500 0.5276 —0.07312
0.6000 0.4089 —0.4847 —0.3000 0.5250 ~0.06331
0.5500 0.4372 —0.4356 —0.3500 0.5220 —0.05420
0.5000 0.4602 —0.3917 =—0.4000 0.5188 —0.04573
0.4500 0.4789 —0.3526 —0.4500 0.5154 —0.03783
0.4000 0.4938 —0.8175 -0.5000 0.5119 —0.03045
0.8500 0.5056 —0.2861 ~0.5500 0.5083 ~0.02355
0.3000 0.5149 —0.2577 —0.6000 0.5046 —0.01710
0.2500 0.5219 -0.2322 —0.6500 0.5008 —~0.01104
0.2000 0.5271 —0.2091" —0.7000 0.4969 —0.005349
0.1500 0.5308 —0.1881 —00 0 0
[ 64kp 1
5=-=a/ = (—oo<a<), (4.1)
3pg9ef /1 —a
- ~
i, = u,,,/ BogakBll . Z _ (_w<a<1). (4.2)
4pe V11—

Using the values in Table 1, we readily find the dependence of Z, § and %, on Z.

The Z versus % curve is shown in Fig. 2. The negative values of £ indicate that
the ascending flow happens beneath the lithosphere (Fig. 1). When #=—1,7Z =0,
and the lava starts to ascend, therefore L is called the starting depth. Z increases with
the increase of # (its absolute value decreases). When # equals —0.1356 (which cor-
responds to @ =0), Z takes the maximum value (0.5349). When 7 increases further,
Z slowly decreases. But Z decreases suddenly near the point #=0. From Eq. (3.32)
one can see that when % =0, @ -—oo; there is a singular point. Therefore, when dis-
cussing the parameters at point # =0 below, we shall approximately use the paramet-
ters at point # = —0.0100 instead. Since the temperature change near point & =0 is
sharp, enormous heat may be transported by the mantle plume to the lithosphere. The
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Fig. 2. The dimensionless temperature differenco Z versus the
dimensionless depth 7,

mantle plume acts in a way similar to a ‘‘hot drill’’ steadily working its way into the
lithosphere. On penetrating through the lithospheric plate, the lava overflows in large
quantities to produce a voleano, The formation of the voleano will tend to change the
boundary conditions of Eq. (3.30) so that the heat transported to the plate will
decrease and the volecano will decline gradually to extinetion. A continuation of such
a process will eventually lead to a voleanic chain now seen on the earth’s surface
(see Fig. 1) as the plate slides part over it with time.

Fig. 3 shows the § versus # curve. When §=—1, d > 0. As # increases (its
absolute value decreases), § continuously decréises. When # = —0.0100, 5§ = 0.8811.

-
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Fig. 3. The dimensionless radins & versus the dimensionless depth Z.
Fig. 4 shows the i, versus & curve. At £=—1, #%,=0. As £ increases (its

absolute value decreases), i, increases until it reaches its maximum. Beyond the
maximum value, #, decreases with the inecrease of Z. When £=—0.0100, #,=0.3882.
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Fig. 4. The dimensionless velocity #. versms the dimensionless depth 7.

If the physical properties, p, @, ¥, u and B of the lava are known, we can obtain the
dependences of (T — T'»), 0 and . on z, using the dimensionless charts (ie. Figs. 2—
4). According to the discussion cited in [7], we now take p=3.3g/cm’, a =35 X
107%/deg, k = 2 X 107" em*/sec, and p = 10", 10" and 10® g/cm sec, and 8 = 1.0 and 1.5
deg/km, respectively. '

Fig. 5 shows the dependences of (T'» —7'x ) on the starting depth I. The value at
%= —0.1356(&» = 0) corresponds to the maximum value of (7. — T.,) and the value at
£ = —0.0100 (& = 0.6601) corresponds to that of (T, — T.) near the lower surface of
the lithosphere. When £ is constant, (7', — T'w) is directly proportional to gl.

800 Py ! /
¥=—0.,1356 /’1
——= ¥=—0.0100 _ i
600 i A -
ﬁ=l.5deg;/km e
g -~
P P =~
& 4 i A~
& 400 >
/ =
| - ~ -~
& z 1 = B=1.0deg./km
-~
200 B
=
A7
]
0 200 400 600 800 ©1000
1, km

Fig. 5. The temperature difference (7w — T'») versus the starting depth 1.

Fig. 6 shows the d versus p curves in logarithmic coordinates. In this figure four
curves are given: The Z-values are —0.1356 and —0.0100, and B-values are 1.0 and
1.5 deg/km, respectively; they are all found to be straight lines. From this figure one
can see that J varies over a small region. when p varies from 10" g/em sec to 10% g/cm
see, & varies from several kilometers to twenty kilometers or so. From Eq. (4.1) we
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find that when % is constant, 8 is directly proportional to (kp) %, and inversely propor-
tional to (pgaB)*
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Fig. 6. The radins & versus the viseosity K.

1—8 = 1.0deg/km, &= —0.1356; 2—8 = 1.0deg/km, T = —(.0100;
3—8 = 1.5 deg/km, &= —0.1356; 4—B8 =1.5deg/km, ¥ = —0.0100.

Fig. 7 shows u. as a function of the starting depth I. The Z-values of the eurves
in the figure are —0.1356 and —0.0100, their B-values are 1.0 and 1.5 deg/km, and their
p-values are 10*, 10* and 10™ g/cm see, respectively. From Eq. (4.2) one can see that
when % is constant, w. is directly proportional to I and to the square root of (pgakB),
and inversely proportional to the square root of p.
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Fig. 7. The velocity u. versus the starting depth 1.

{—8 =1.0deg/km, &= —0.1356; 2—@ = 1.0deg/km, = —0.01003
3—B =1.5deg/km, % = —0,1356; 4—8 = 1.0deg/km, Z= —0.0100.
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The heat Q transported by the mantle .plume to the lower surface of the litho-
sphere is the most interesting parameter for us. Since the point # =0 (i.e. the lower
surface of the lithosphere) is the singular point of the solution of the equations govern-
ing the ascending flow in the mantle plume, Q can not be obtained from the tempera-
ture gradient at this point. Thus, we can, to an approximation, substitute the section
plane at # = —0.0100 for the lower surface of the lithosphere. Using the relation
of energy balance, and expressing Q in terms of the difference of the convective heat
transfer, we obtain '

. P 7

" 2mrouc, (v — 1 yAr =12 5 2
Q P :-( )
0 9 1

pc kB2, (4.3)

— @

Here we have neglected the econductive heat due to the temperature gradient both at

section plane # = —0.0100 and at the side surface of the mantle plume, and assumed
that the temperature of the lateral flow of the mantle plume approximately equals
the surrounding temperature at section plane %= —0.0100.

Fig. 8 shows  as a function of the starting depth l; the solid curve for B =
1.0 deg/km, and the broken curve for 8 = 1.5 deg/km. From this figure it can be
clearly seen that @ is of the order of 10°cal/sec. For example, at a starting depth of
600 km, @ is approximately 3.7 X 10° cal/sec, assuming 8 = 1.0 deg/km.

10 T T ]
~——— p=1.0 deg /km /
8 —-—§=1.5dcg /'luu va
/ /
/ /]
g ° /
3 //
(=]
/|
/
/|
2 7
P /
e
- I _/
200 400 600 800 1000
1, km

Fig. 8. The heat flow @ versus the starting depth I.

It was pointed out in [8] that the energy released by the volecanoes of the entire
earth is about 2 X 10" cal/sec. Up to the present, no exact estimate of the ratio of the
heat released by the hot spot voleanoes to the above figure is available. The authors
believe, however, that it will not probably exceed one half. Thus, the heat released
by the volecanoes of all hot spots of the earth may approximately be considered as 1 X
10* cal/see. It was pointed out in [4] that there are 122 hot spots on the earth. It
follows that the heat released by volcanism per hot spot is about 1 X 10°cal/sec. In
addition, there is a high heat flow where hot spots occur. Practical measurements show
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that the heat flow in these regions is about 8 X 107* cal/em” sec. If a hot spot on the
earth’s surface is of the same size as the mantle plume on the lower surface of the
lithosphere, the radius of the high heat flow region on the earth’s surface will be from
several kilometers to 20 kilometers. If this radius is considered to be 20 km, the heat
flow per hot spot will be about 1 X 10°cal/sec. The sum of the two will be about
2 X 10* cal/sec. It agrees quite well with the results of calculation shown in Fig. 8 in

their order of magnitude.

The heat transported by a single mantle plume to the earth’s surface also was
given in [2], its value being about 1.8 X 10" cal/sec. If the number of hot spots of
the whole earth is 122, the total heat supplied by all mantles of the whole earth is
2.2 X 10"® cal/sec. This is three times as large as the total heat flow on the earth’s
surface, * Clearly this is unreasonable. This discrepancy may come from  ,an over-
estimate of the radius of the mantle plume (about 75km) and the ascending velocity of

the hot material (about 200 cm/yr) in [2].

Y. CoONCLUSION

In the present paper, the extent of the mantle plume beneath a hot spot, the
maximum ascending velocity and the maximum temperature difference in the mantle
plume, and the heat transported by the mantle plume to the lithosphere have all been
estimated. The results agree well with the available data from geophysical observa-
tions. This shows that the calculation presented in the present paper is valid and the
mantle plume hypothesis proposed by W. J. Morgan"~* seems plausible. However, an
overestimate by him of the extent of the mantle plume and the ascending velocity of
hot material has resulted in an exaggeration of the efficiency of the mantle plume.

The authors are grateful to Profs. Tan Haosheng (H. S. Tan i%%&54) and Fu
Chengyi (C. Y. Fu {2 %) for their advice and encouragement.
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