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ABSTRACT

The complex variable method is employed to analyse the energy release rate for combined
mode cracks. A functional integral equation, which econtains no singularity, is derived for a
branched crack problem by a functional transformation. The integrand ¢i”(2) is expanded in
eigenfunctions. The energy fracture criterion for the combined mode (K; and Kiu) eracks is
then derived when the propagation branch is made to approach zero. An energy fracture eri-
terion is also presented for the case that Ky is present. In addition, a new fracture eri-
terion for combined mode cracks based on the stress parameters is proposed.

I. INTRODUCTION

The linear elastic fracture mechanics (LEFM) has been successfully employed in
solving the problem of the unstable growth of the opening mode cracks. But in engi-
neering practice cracks are usually in a combined mode state of deformation in which
all K;, K;, and K,;;; are present. Crack branching will take place in cases where the
loading is unsymmetrical, or the erack is in an unsymmetrical position, or the material is
anisotropie, or the crack is propagating at a high velocity. Therefore, the investiga-
tion into the fracture criteria for the combined mode crack is of great significance in
respect of theoretical study and such a criterion has a wide application in practice as
well.

There are two kinds of criteria of the ecombined mode fracture: the energy release

rate eriteria” ™" and the stress parameter eriteria™*.

The problem of crack branching was analysed by Anderson™, who was among the

first to make an attempt to solve the problem by a complex variable method. Hussain
et al."™ gave a detailed analysis of the energy release rate criterion, but it appears to
the author that there are some points in his derivation remaining questionable.

The complex variable method is employed in this paper to analyse the energy release
rate for combined mode cracks. A functional integral equation, which contains no singu-
larity, is derived to solve the branched erack problem by a functional transformation.
The integrand @.’(z) is expanded in eigenfunctions. The energy fracture criterion for
the combined mode (K; and Ky ) cracks is then derived when the propagation branch is
made to approach zero. An energy fracture criterion is also presented for the case that
K. is present. In addition, a new fracture criterion for combined mode cracks based
on the stress parameters is proposed.
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II. FuNDAMENTAL EQUATION AND ITS TRANSFORMATION

A crack branch which makes an angle ¥ with the main crack is considered as shown
in Fig. 1. According to [3], we have the following formulas for the mapping function .
o(L):

cifs eity (&)

eiBy

Xp picg
T S main crack
¥p =
0 7
Fig. 1. Crack with branch. Fig. 2. L-plane.
@(§) = 4 (& = (g — e, (1
. h=0—=y/x), b=+ /), (2)
e hy + ok, = 2m,
A ct,g( ) + 2, ctg (“Lgﬁ) =0,
?vlctb( )+lctg( — &)\ _ f
: (3)
. (m_a) (et
r, = 4A(sin‘3‘"—_2nal) ](sm )
Denoting
w=f, s-ba @
2 2 .
we have,
— (A
6 =tg (-)-:ztg 8), )
b= (e — &) — (& + &)y /=, (5)

po=1(8—¢e)— (e + 8)y/x+ =
r, = 4A(cose)*( cosd)*,
r; = 4A(sin§)*(sing)h, g

In the limit as e approaches zero, r;, 8, and B; approach zero, @, @, and B. approach
m, and r, approaches 44. The boundary value problem of elasticity can be reduced to
the problem of finding @(£) and 9 (&),
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o0t oy = dRe{@ D/ @), )
7y = 02+ 2ity, = 2[00 DG/ DT + $DO/ D). (D

Being holomorphic in the exterior of a unit cirele, ¢ () and () satisfy the follow-
ing boundary conditions:

(o) + 2D T=Y + T (@) =0. o€l (8)
w'(a)
Denoting
(L) = (C — )& — e*)p(L), 9

we obtain, after some manipulation (Appendix 1),

do, €D~ (10)

r(2) = Gull) — MDY +GiD) + - [ & @) gx(@)

2ni (e —10)
where
Geu(8) = (L — eP)(L — e#)(TAL + Ao)
+ A4, (8 — 7, — ‘J’z) + 4,,
M (L) = I'de™PF /L,
Gi(0) = Tdeer=/L.

(11)

Eq. (10) is the fundamental equation after the transformation. The coefficients I,
Ir’, 4o, 4;, and A, are determined by the behaviour of functions ¢ (&) and ¥ (&) at the
infinity.

A further manipulation gives that

— o 1
0" (72) = p(72) + R
. _]_ 1— — f:’:_(?’z)(’}’z_')’l)—fo_(’fz)'l'fa'(’}’x) 12
{2 0 ('}’2) (72_71)2 }, ( )
where

¥, = €', 7= €',

po(L) = TAL + 4, — é—(—’_{ﬂ (13)
1 =2y =7 ~ «

fa(é-) = ( 2:,‘.: ) jh tpo.((:)_g g(;) do, (]4)

gx(a) = (o — ¢ )(o — ¢™1). (15)

In the limit as the length of the branch goes to zero, it can be shown (Appendix 2)
that

@ Cra) = @i(r2) — %u — ) O () (16)
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where
C* = OF + iCF, - an
ot = (2)" - {pa> + Lewraml,
x _ Q2() (A N\ P(t) — P(%,) s ! '
% : (iz) {Q(ltz) L zt — t}:)t dt — [L * L+z] (t — i;’P(t)
“tE Py(t) — Pyt 4
%j tt—*fg t | §[P1(tz+§)+P:(f'2_§)]
( 2 ( _ z)
~2_]§7[1P(1t:+ g)*_P(tzlf 5)] " 5(81 : b t } (1)

Functions Q(¢), P(¢), P(t), and P.(t) are given in Appendix 2. The result given
in [3] is equivalent to the case C* =1. The calculated values of C.* and C.*
are listed in Table 1. As the length of the branch approaches zero, the stress intensity

Table 1

Values of ¥ and CF

T 0° 5° 10° 15° 20°
ct 1.00 1.0003 1.0010 1.0023 1.0042
—C¥ 0 4.137X10°* | 8.297X10~* | 1.250%X10~* | 1.678X10~*
T 25° 30° 35° 40° 45°
cr 1.0066 1.0095 1.0131 1.0173 1.0222
~C¥ 2,116%107* | 2.566X10~* | 3.081X107% | 3.515X10™* | 4.022%X10°°
r 50° 55° 60° 65° 70°
c¥ 1.0279 1.0343 1.0417 1.0500 1.0594
—C¥ 4.555%107% | 5.118X10~* | 5.718X10™* | 6.361X10™° | 7.054%X107°
T 75° 80° 85° 90°
c¥ 1.0700 1.0821 1.0957 1.1110
—-C¥ 7.804X 107 | 8.624%10~F | 9.524% 107 0.1052

factors at the branch tip approach the following limiting values:

K; - 'iI(“' = -(alu—j-:;;ﬂL)’ (ng

where

o o . 7/2n
oy = (K; — ik )e” (%) 2 ) (20)
2
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fo= (e = 1) C, | (21)
and K: and Ku are the stress intensity factors of a crack which does not have a branch.

ITT. E~NERGY RELEASE RATE AND ENERGY FRACTURE CRITERION

In the vicinity of any crack tip, the stresses and the strains are determined by

o, = {K;(S — c080) eos% + K;,(3 cosO — l)sin-—g—},

1
2«/27:?‘

Ty =

(K1 + cos®) — K, - 3 sin ﬂ}cos%, (22)

2\/.3:11‘

{K;sin@ + K;(3cos6 — 1)} cos?

T
H = 2\/——

1 [y { [ 6 39] [ 6 . 36‘]}
U, = —— (2 — 1 ~ — pos 2= K Ve — 1 ~Z —3
12 oo ' ( K )cos 5 coS 5 ul 2k )sin 5 sin 5
(23)
Uy = ..1_ r { [ (Zﬁ + 1)5111—2 + Sln329] KH,>(2"" + ])003_2 3005328]}

4 \ 9

from which it can be seen that the displacements on the upper and the lower edges
are equal in magnitude and opposite in sign (apart from a uniform displacement of the
crack tip). When a branch of length », at an angle 6 to the main crack is developed from
the main crack, the energy released from the elastic system is equal to

1 ’z Q o ’r: a
G- r,= Y {ooug? + 2,ouV}dr — %—j {ooug’ + %,5uP}dr
0 2 Jo

-~

= J {Goug? + Z,0uVdr} = %ELL)?‘Z{K;)?I + Kufa).
Therefore, the energy release rate is
"" 1 > £ H
¢ = ZEL(Kf + Kufi}, (24)
[ 74

fo = {E.Q1 + cos®) — K, - 3sin6} cos—g-,

(25)
fo= {&,sin0 -+ Ku(3coso — 1)} eos%,

where the superscript o is used to denote the functions and the physical quantities of
the ecrack without a branch. The case of Fig. 1 is equivalent to the casc 8§ = — y.

According to the energy fracture criterion, the crack will propagate in the diree-
tion where the energy release rate is maximum, and the crack will start to propagate
when this maximum energy release rate Gu. reaches a eritical value. The caleulation of
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Fig. 3. Fracture angles for inclined erack under uniaxial tension.
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Fig. 4. Critieal Ky and Knu for inelined erack under uniaxial tension.

Eq. (24) leads to the following results: for a crack of the sliding mode, the fracture
angle is y = 76.2°, and K, =0.724 K, while according to the maximum ¢, criterion,
K. =0.87 K,. and the fracture angle is ¥ = 70.5°, and the criterion of the minimum
strain energy density gives Kp. = 0.96 K, and y = 82.3° (with v=0.3).

For the case of the uniaxial tension with an inclined crack, the fracture angles are
shown in Fig. 3, and the correlation curve of K; and Ku in the critical state is shown
in Fig. 4. Also shown in these figures are the experimental results available, which
scatter in a rather wide range.
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IV. ENErRGY FRACTURE CRITERION INCORPORATING K

As shown in Fig. 5, due to the combined action of the axial stress ¢ and the an-
tiplane shear stress 7 at the infinity, all K, Ku, and Ku are present and they are

K, = o'x/;c- sin? g,
Ky = ov/masinpgeosp, (26)
Iﬂfm = r\/; Sinﬁ.

Since the antiplane shear produces only the displacement w, in the direction perpen-
dicular to the plane, the in-plane displacements » and v are both equal to zero for the
case that K alone is present. As the axial traction is only responsible for the strains
in the plane, it has no contribution to the strains in the direction perpendicular to the
plane. When an infinitesimal branch is developed, the stress intensity factors at the
branch tip are

K — ik, = % — b 9

1 (7494 1__5030, 27
o 1 — m\™?

Ko = e (222 25

T I 1+m ( )

where m =y/n. Eq. (28) was derived in [9].

T

® @@T@ Q@

|
RGP
o
Fig. 5. Combined action of axial stress 0 and antiplane shear stress 7.

According to [7], the total potential energy released during the forma-
tion of the new crack surfaces C,’ and C;’ can be calculated by

2 Jelsc;

‘2

where 7T, are the tractions acted on the surfaces C, and C,’ before the crack has ex-
tended, and Au; are the additional displacements produced after the crack has extend-
ed. With the action of the antiplane shear, the stresses and the strains at the crack tip
are
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To — 1T, = K—&-(sin—a— — 1cos 2), | (30)
Qxr 2 :
w = ‘J‘:' 2_?' . K;”Silli " : . (31)
“\ x 2 _

Considering the propagation branch as shown in Fig. 1, the stresses along OB before
the crack extension are

Ty — 1Tz = ——I-f——_‘i{_ (sinl -+ 1cos —12:), (32)

and the additional displacements after the crack extension are

w = ii 2('?"2 - ‘?') K“,, (33)
K x

where Kur is the stress intensity factor at the tip of the propagation branch B after the
extension. Substituting Bgs. (32) and (33) into (29), the energy release rate is obtain-
ed:
(J" = Lim - (—4—1—1) = —:!HK;”K;“COS 1 (34)
r;>0 T2 22 2
Combining Eqs. (34) and (24), we obtain the energy release rate under the combined
action of K; Ku, and K,, as follows:

—_— qyd ° o o T o
G = (1E—v) {—lé— [K,f, + K;f,] + KK 005‘;)‘}- (35)

1
(a1 —w»)

According to the energy fracture criterion and Eq. (35), it follows that

Km: = ‘\/(1 - v)K,r,,. (36)
The correlation curves of K;, K;;, and K, in the critical state are shown in Fig. 6. The
0.8
0.6'_' i y=-0.3
0.4+
0.2}
Ka 90l ralizliol o8] 06| 0.4\0.2\\0
I‘:|' | 1 \
0 0.2 0.4 0.6 0.8 1.0 Ke

Fig. 6. Correlation curves of fE’:, 1%1: and }'%m.
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correlation eurve of K, and Kj; with K equal to zero is shown in Fig. 7. The curve
can be represented by the following equation:

(él)z + (_1"{,,, )z ~1. (37)
Kfc KHM

It can be seen from Fig. 7 that the theory is in fairly good agreement with the experi-
mental data'™,

0 0.2 0.4 0.6 0.8 1.0 Kine

=1

Thenlretical and experimental results of crack under the action
of K1 and K.

Fig.

V. STrRESS PARAMETER CRITERION FOR COMBINED MODE FRACTURE

Among the stress parameter criteria for the combined mode fracture, the maximum
0o criterion and the minimum strain-energy-density criterion are commonly used™.
Both are based on a comparison of the mechanical quantities on the circles with the
crack tip as their centre. This kind of comparison has a clear geometrical significance,
but 1t can be argued that the different points on the circle are not in the same mechan-
ical state (Fig. 8).

Fig. 8. Comparison on a circle, Fig. 9. Iso-W line.

Consider the strain energy density in the front of the crack

W= ~-1-"(aufffr + 2a,K, Ky + anKi), (38)
r

i 4
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where
a, = 1 {(1 + cos8)(x — cosB)},
164
a,; = 1 {2cos@ — (k — 1)} sin0, ' : (89)
164
Ay = #{(m + 1)(1 — cosB) + (1 + cos8)(3eosd — 1)},
u
and

(40)

3—v
1+v

{ 3 — 4y, (for plane strain)
x —

(for plane stress)

We choose the strain energy density W as a mechanical measure to characterize the
brittle fracture and consider the lines with equal strain-energy-densities (the iso-W
lines) (Fig. 9). For example, if W=a, on an iso-W line I, the points 4, B, and
Cs on the line will have the same strain-energy-demsity. Since the elements, with the
points Ao, B,, C, ete. as their centres, contain the same quantity of the strain energy,
these points can be compared with each other and along the direction of the point
where the circumferential stress gs is maximum and the fracture is most apt to oceur.
Thereby a new criterion is obtained to determine the direction along which the erack
will start to propagate, that is, the crack will start to grow in the direction where the
eircumferential stress g, is maximum on an iso-W line. Let the fracture angle be 6,
then

(Ua:)e:ao = max (o). (41)

W:ao

The load at which the erack will start to grow can be determined by

Lim o/ 2xr (06)pmo, = Kpe. (42)
r—=0
On the iso-W lines we have
W= ? — a, (43)

where S is the strain-energy-demsity factor given by
§ = = (ank} + 205K,y + azK3). (44)
T

In the front of the crack we have

1

9/ Oy

0y =

{K,(1 + cosB) — 3sinBK”}cos%. (45)

From Eq. (43) we have
=4 (46)



No. 4 ON COMBINED MODE CRACKS 467

Substituting Bq. (46) into Eq. (45), we obtain

‘\/an

. 6
gg =", —={K,(1 + cosf) — 3sin0K,,} cos—. 47
0 2\/2“8{ 1 ) i} 5 (47)
Eq. (47) gives the relationship between the circumferential stress o, and 6 on the iso-W
lines. Since a, is a positive constant, the fracture angle 6, can be determined by the
point where the following function f is maximum: .

1

v/ =8

The calculated results of the in-plane shear of a plate with a central crack are given
in Table 2. A fracture test is proposed in [3] on a 6-inch-wide by 16-inch-long panel
of a 0.002-inch-thick steel foil containing a circular crack, where a pure shear state
at the erack tip can be realised. The measured fracture angles have an average value
of —75.4°, which is in good agreement with the theory just described. The fracture
angles for the case of the uniaxial tension with an inclined erack are shown in Table 3
and they are in good agreement with the experimental data.

£(6) = (E(1 + cosB) — 3511191{”}(303%. (48)

Table 2
— 8, for In-Plane Shear (in degrees)
v 0 0.1 0.2 0.3 0.4
S—-eriterion 70.5 74.5 78.5 82.3 86.2
Present criterion 70.5 72.3 74.5 76.5 79.5
Table 3
Fracture Angles of Inclined Crack Under Uniaxial Tension (in degrees)
8 30 40 50 60 70 80
Max. 0g eriterion 60.2 55.7 50.2 43.2 33.2 19.3
S-criterion 63.5 56.7 49.5 41.5 31.8 18.3
Present eriterion 62.4 56.2 49.9 42 .4 32.6 18.7
Test regultst! 62.4 55.6 51.1 43.1 30.7 17.3
Appendix 1

@ (&) and ¢(&) are holomorphic functions in the exterior of a wunit circle in the
image plane and satisfy the following boundary condition:

o= (o) + -2L9)

w'(0)

(o) + ¢~ (6)=0. o€L (1)

According to [1], we have

w' (%) —_ (L — e*)(L — &™) 1 ) (2)
w(f) L& — et )& — ) Lg(d)
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By the mapping function w(£) a deflected crack in the physical plane is mapped onto
a unit eircle in the £-plane, as shown in Fig. 2, where the arcs L; and L. are the images
of the main erack and the propagation branch in the physical plane, respectively. Hence
we have

w(o) _
w' (o)

We locate the branch cut along a secant L. for the mapping function @(f), so
() and @’ (L) cross continuously the umit circle (apart from two points e* and
(2‘“2),

(3)

{ og(a), o€ L,
og(o)e i, c€ L,

Introducing a jump function h(g), as

1, gE L]
W(o) = { | )

e, o€ L,

and noting that g(g) = — ¢g(0), we can write Eq. (1) as
(o) — Si%‘i)- W(0)g=Co) + 3-Co) = 0. (5)
Let

fx(o) = (o0 — ¢h)(a — ¢':), - (6)
gx(0) = (0 — e)(o — &), (D
px(0) = fy(o)p(0), (8)

and multiply Eq. (5) by the function f, (o), we have
#3(0) = L2 1)) + ful )T = 0. o€L (9

Assuming that the function ¥ (&) has poles of order one at the points {=¢" and =
e'f2, it can be shown that the funetion f, ({) ¢ (1/C) is holomorphie in the interior of
the unit cirele, except for the origin. From Eq. (9), using the extended Cauchy’s in-
tegral formula, we obtain

— a0 + () — = P MDD =0 — y() =0, geD (10)
221 3 0o —§)

where (,(5) is the main part of the function ¢, ({) in the neighbourhood of £ = oo
and M,({) is the main part of the function f, (&) ¥(1/£) in the neighbourhood of £ =0.

Assume that in the infinity we have

@(§)=FA§+A0+-4;—‘+%2?+---, (11)

¢(§)=T’A§+Bo+%+%+~-. (12)
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From Eq. (10). we can obtain

Gy — oy A= D [ T 0 g
P8 = 6u0) = M) + (i) + TS | CLD 0D s, a3)

where G () is the main part of the function g*ég) @ (%) s ho]omorphié in the

interior of the unit circle, in the neighbourhood of §=0. From Egs. (11) and (12),
we have

Gw(g) = (g - Tl)(g - Tz)(rAg + A(l) + Al(g — 71 ?’2) + A, (14)

ML) =T"Ay.7./8, (15)
G(L) = T'Ao0,/L, (16)
where
vi =€, y,=¢b g = ¢ o= e,
Let
) = UL | B 0020, an

Eq. (13) becomes
'P*(C) = (L — ')’1)(§ - T:)(TAC + Ao) + (g i S 'J'z)Al + A,

A - = .
+ _é:- (o0, — Tler) + fa(g) (18)
In the limit as £ approaches y, and y. from outside of the unit circle, we have

— Ay + A+ A (ool — pid”) + f(p) =0,
71

A - = (19)
- Al?’: + Az + '; (UIUZT — rirdd ) + for(?’z) = 0;
2 .
from which we obtain
L= —A(T + ) — fi!_(’)’z) —_ fﬂ_(?'l)’
Cy2— 71)
and (20)
A,= ?’1fu_(‘)’1) _ Tzfu_(‘rz) )

(?’2 - ‘.I’L)

Substituting Eq. (20) into Eq. (18), after rearrangement, we have

. 1RO = £l LD — £l o
#(L) ‘P"@”(r;—m){ (=75 (L= 7 oo

where
9o(L) = TAL + A, — %(r + I, (22)

and
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Py — o 1 £ = ) — 70 + fily)
X ""’(D*(n——m{ (& — ra)

_ (L — 71) — fu(é:) + f;(?’l)}_ ' (23)
(_E - ‘)’t)2

Using Taylor’s formula with remainder, we have

LD = £oE) + FIOE — D) + ~;—f3’(§+9(€1-— NG —EP. LG eD (24)
As G goes to y2, we obtain

frlrs) = FolL) + FUD ra— D) + é—f::(g +0(r: = D)= 0P (25)

Substituting Eqs. (24) and (25) into Eq. (23) and let { go to y:, we obtain

() = 0 + L
. {% Fr=Crd) — fo Cr2)(r2 '-(1;2):::?)5 v2) + fo‘(rl)}_ .(26)
Appendix 2
Let
fpy = L= 5:'(5:_)_9’*;)")@. te D 27)

If the Goursat functions in the physical plane (z-plane) are ¢.(z) and y.(z), we have

?(8) = p(w(8)), @'(C) = @i(w(Z))w'(Z).

Liet the region between the are L, and the secant L. be denoted by T., as shown in Fig.
10, then the function ®(1/£) is holomorphic in 7, and takes the same values on L. as

‘. &

0\"-—/1
S

Fig. 10. Cirele on the &-plane. Fig. 11. s-plane.

the funection w(&)e™, sectionally holomorphic with the cut L.. Therefore in 7. we have
this identity :
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{1\ __ 2yi
@ (?) — w(D)e.  reT, (28)
Function ¢’ (1/Z) is also holomorphic in T, therefore, ‘
_A—e*) ( @ 1/0)gs(a)da _
¢ o s LeD (29)

where the integration path is already shifted to the secant IL.. We have the following

#(3)= ()= ()= (3)

—_ ;T iy 88 — )& — Tz)w 27i T, 30
Pi(w(C)e )(g—-al)(g—az) (e Le ( )

It is well known that the function @,(z) can be expanded into the following series:

@u(2) = D14,z — 22>, (31)
i(2) = D) v, d,(z — ), », = i;‘— (32)

in the neighbourhood of the propagation branch tip z = z.. Hence

)= Epn{oF) =)= Fpte = s

n=1

when £ e 7.. Substituting this expression into Eq. (29), we have

ppy =~ || ) = 1 )0 = 1) 375, 4 (0(0) — wly )y erindo
=1

2i D) :
= _.(1 — GUZ?‘f) Z v,,E.,f,,(ﬁ)ez’”"'ﬂ, (33)
where
ey = A @@= 2O = ) [ oy — wry sy
o =L, = [o™(@) = w1, (34)

and @~ (0) refers to the values of @(£) on the secant L. as § goes to L, from inside
of the region T.. Introduce the following linear transformation

=0, + (o, — a,), (35)

by which the exterior of the unit circle in the ¢-plane is mapped onto the exterior of the
c¢irele L* in the s-plane, and the secant ¢,0. onto the segment (0, 1) on the real axis.
Then

0(0) = Ae==ti (2= 02 g5y, (36)

a0y
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_ sh(d — st . 37
Qs (1 +es)’ ' (37)
and
¢ =0"0 ' (38)
T,

Substituting Eqgs. (36), (37), and (38) into Eq. (34), we obtain

(%) .‘= (Ae_""‘)”" (o, — 0,

A 2m

. j‘l g(_i)_(_t"'_ss) [0'1 — 71+ t(Uz - 01)][9(0 - -Q(sz)]p”_ldt- (39)
o (t—3s)

fa(E), f+/(£), and f.” (L) exist everywhere in the exterior of the unit circle and on the
unit cirele, including the point £ = y., except for the points ¢; and .. Using above ex-
pressions, we can easily show that for the case n > 2, f.(§), f/(£), and f.”(£) all
approach zero in the limit as the length of the propagation branch goes to zero“®.
Hence, in order to find fo(£) in the limiting case it is only necessary to calculate fi(£),
which is ‘

£() = (03— o) J A (OG- oyt Koy — o)l g,

o, Jo (t — )/ 2 () — 2(s,)
and
f(g) =2 \/ e j TG —wlo — vyt Koy — )l g, (40)
o Jo (t — s* /0~ (t) — 9(s;)

where s. is the image of y,:

8, = (T_z _ 0':2

(03— a,) .

On the other hand, sinee the numerator of the function Q7 () takes real values when
t varies on the interval [0, 1] of the real axis, Q(¢) can be extended analytically from
the lower half plane to the upper half plane through the interval [0, 1]. Therefore, the
function Q(s) can be expanded into a Taylor’s series in the neighbourhood of s =s.
with a circle of convergence including some part of the interval [0, 1]. Since @’ (y.) =
0 and Q'(s.) =0, we have

> — Q(¢) — Q(s,) — N _-Qiﬂ)(_c"'z_)_ — )2
Py(t) oy Z,; Ut (41)
in the interval. Denoting
P(t) = —i/Py(D), (42)
and
N1t —@(dat 4
Q) = - || L (43)

and integrating them by part, we obtain



No. 4 ON COMBINED MODE CRACKS 473

CQ(s) = { E P(?t — i)(s*)dt + P(s)In (_g;‘i)} 2%[

« at 1 (* [Pét)]” N ["1’%5],=
— a0 [ L + H S Ty f ey a1

- (b—s) [T-"Zlﬁ] b1 [?%7] N1 (44)
[P I T — s R A

where all the integrals are the Riemann integrals in the ordinary sense. In the limit
as the length of the propagation branch approaches zero, we have

[\.all-'

P

Lo Q@) > th(1 — Y, (45)

§;—> 1, = =
2

and

D= LimQ(s) — L0 [_L_[ PO =Py [(h [ ]

2%  LQ(t,) t—1t, n+& 1 (8 — ,)°P(%)
_1_ B+E P(t) — Pi(t;) 1 _
+ 52_5 = e — L (P65 + Pl — D)
1 1 1 P(t) . (1 —1)
+ 25 7T g) e oy R
(P
a( sl Lrw) (46)
where
1 Py(t) 1
P = = 47
SN ORTOL “n
1 3
P = — <P t ——P P -, 4
0 = {rorio - Lrorm] 2o (48)
and £ is an arbitrary positive number that satisfies the following condition:
2% < 2= min {4, 4,}. (49)
It is easily shown that"®
el <)l - e+ DH(E). a>3 (50)
0

Hence the following Taylor’s series exists:
J— ’ 'Q(ﬂ)(tﬂ) n =
O(t) = 0(,) + Q) —t,) + --- +—-’—(t-—t2) + .. (31)
n'

when &t — ! << & From Egs. (40) and (46), we have

ry_ . —xh,i _
Lim f;~(7,) = ~4 /A<D, (52)

g,
and

Lim fir(y) = 0. (53)
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From Eq. (26), we have

L P r 1 L
@ (v2) = @o(7v2) — 'Z fo=Cra), (54)
as ¢ - 0. Using Bq. (33), we can obtain
1 '.'-.( — 1 1 ’ _zr‘ r‘ Ly - )
Zfo 72) = “Z( )E 17 (r2
— h;;(l _ e—zy_f)ﬁl,\/zeyfe—xu,ﬂ) inyp (55)

It was shown in [1] that

A, =-L (x, — ,KH)__«Z_&M (56)

1
A et V2 Ve ()

Substituting Eq. (56) into Egs. (54) and (55), we have

() = @i — - (1= (), (57
where

C* =2 (%:-)m" Di = 0F +ic, (58)
cF = (-ij)m" {P(tg) + %Q(t;)P;(tz)}, (59)

or = £ (1) gt . PG f;("‘) -7+ e

+ BB =By~ Lipth 40 + P— 0 ] |
o [P(tzl+ 5~ = 5)} * ~g((::; ln <5 Z“)} ' (60)
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