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Physiological signals often are highly non-stationary (i.e., mean and variance change with
time) and multiscaled (i.e., dependent on the spatial or temporal interval lengths). They
may exhibit different behaviors, such as non-linearity, sensitive dependence on small dis-
turbances, long memory, and extreme variations. Such data have been accumulating in all
areas of health sciences and rapid analysis can serve quality testing, physician assessment,
and patient diagnosis.To support patient care, it is very desirable to characterize the different
signal behaviors on a wide range of scales simultaneously.The Scale-Dependent Lyapunov
Exponent (SDLE) is capable of such a fundamental task. In particular, SDLE can readily
characterize all known types of signal data, including deterministic chaos, noisy chaos, ran-
dom 1/f α processes, stochastic limit cycles, among others. SDLE also has some unique
capabilities that are not shared by other methods, such as detecting fractal structures from
non-stationary data and detecting intermittent chaos. In this article, we describe SDLE
in such a way that it can be readily understood and implemented by non-mathematically
oriented researchers, develop a SDLE-based consistent, unifying theory for the multiscale
analysis, and demonstrate the power of SDLE on analysis of heart-rate variability (HRV)
data to detect congestive heart failure and analysis of electroencephalography (EEG) data
to detect seizures.
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1. INTRODUCTION
Complex systems, such as physiological systems, usually are com-
prised of multiple subsystems that exhibit both highly non-linear
deterministic, as well as, random characteristics, and are regulated
hierarchically. These systems generate signals that exhibit complex
characteristics such as sensitive dependence on small disturbances,
long memory, extreme variations, and non-stationarity (i.e., mean
and variance change with time). Examples of such signals in phys-
iology are abundant (Bassingthwaighte et al., 1994). An example
of heart-rate variability (HRV) data for a normal young subject
(Physionet, 2011) is shown in Figure 1. Evidently, the signal is
highly non-stationary and multiscaled (i.e., dependent on the spa-
tial or temporal interval lengths), appearing oscillatory for some
period of time (Figures 1B,D), and then varying as a 1/f process
for another period of time (Figures 1C,E).

While the multiscale nature of signals such as shown in Figure 1
cannot be fully characterized by existing methods, the non-
stationarity of the data is even more troublesome, because it
prevents direct application of spectral analysis, or methods based
on chaos theory and random fractal theory. For example, in order
to reveal that the HRV data is of 1/f nature (Akselrod et al.,
1981; Kobayashi and Musha, 1982) with anti-persistent long-range
correlations (i.e., algebraically decaying autocorrelation function;

Peng et al., 1993; Ashkenazy et al., 2001) and multifractality (i.e.,
multiple power-law behavior; Ivanov et al., 1999), time series such
as shown in Figure 1A has to be pre-processed to remove compo-
nents (such as the oscillatory ones) that do not conform to fractal
scaling analysis. However, automated segmentation of complex
biological signals to remove undesired components is a significant
open problem, since it is closely related to the challenging task of
accurately detecting transitions from normal to abnormal states
in physiological data.

Rapid accumulation of complex data in all areas of natural and
health sciences has made it increasingly important to be able to
analyze multiscale and non-stationary data. Since multiscale sig-
nals behave differently, depending upon the temporal and spatial
scale at which the data are examined, it is of fundamental impor-
tance to develop measures that explicitly incorporate the concept
of scale so that different data behaviors on varying scales can be
simultaneously characterized.

Straightforward multiscale analysis include short-time Fourier
transform based time-frequency analysis, wavelet analysis (Strang
and Nguyen, 1997; Mallat, 2008), and time-domain adaptive fil-
tering (Gao et al., 2011b; Tung et al., 2011). Multiscale analysis can
also be based on chaos theory and random fractal theory (Gao
et al., 2007). In many instances, the latter two theories are more
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FIGURE 1 | Non-stationarity in HRV data: (A)The HRV data for a normal subject; (B,C) the segments of signals indicated as A and B in (A); (D,E) power

spectral density E (f ) vs. frequency f for the signals shown in (B,C).

appealing, since measures from chaos or fractal theories can be
associated with the complexity of the signal and the underlying
physiological system, and thus can stimulate researchers to ask
whether the complexity of the signal may change when certain
pathology of the physiological system progresses, and if so, how.
Indeed, they have been used extensively in physiology (Goldberger
and West, 1987; Kaplan and Goldberger, 1991; Garfinkel et al.,
1992; Peng et al., 1993; Bassingthwaighte et al., 1994; Fortrat et al.,
1997; Ivanov et al., 1999; Kaneko and Tsuda, 2000; Ashkenazy et al.,
2001; Gao et al., 2007, 2011b).

The key element of random fractal theory is scale-invariance,
i.e., the statistical behavior of the signal is independent of a spa-
tial or temporal interval length. With scale-invariance, only one
or a few parameters are sufficient to describe the complexity of
the signal across a wide range of scales where the fractal scal-
ing laws hold. Because of the small number of parameters, fractal
analyses are among the most parsimonious multiscale approaches.
Chaos theory also provides a few multiscale approaches, including
ε-entropy (Gaspard and Wang, 1993; where entropy is a way of
measuring uncertainty), the finite size Lyapunov exponent (FSLE;
Torcini et al., 1995; Aurell et al., 1996, 1997), multiscale entropy
(MSE; Costa et al., 2005), and the scale-dependent Lyapunov expo-
nent (SDLE; Gao et al., 2006b, 2007). FSLE and SDLE are in
fact closely related – conceptually SDLE is partially inspired by
FSLE. The algorithm for computing SDLE, which is derived from
that for computing time-dependent exponent curves and will be
defined shortly (Gao and Zheng,1993,1994a,b; Gao,1997), is com-
pletely different from that for computing FSLE. This leads to a few
important differences between FSLE and SDLE: (1) FSLE assumes

the underlying dynamics to be divergent, and thus is positive;
SDLE, however, is assumption-free, and therefore, can assume any
value. Consequentially, SDLE possesses a unique scale separation
property, i.e., different types of dynamics manifesting themselves
on different scales. This allows SDLE to readily detect intermittent
chaos and detect fractal structures from non-stationary signals,
while FSLE does not. (2) It is much easier to analytically derive
and numerically verify scaling laws for SDLE than for FSLE for
various types of processes.

In this article, we aim to present SDLE in such a way that it can
be readily understood and implemented by non-mathematically
oriented researchers1. We shall focus on its capabilities that are not
shared by other popular chaos or fractal analysis methods, such
as detecting intermittent chaos, detecting fractal structures from
non-stationary data, and characterizing fractal scaling laws for sto-
chastic limit cycles. We shall also consider detection of epileptic
seizures from electroencephalography (EEG) and certain cardiac
disease from heart-rate variability (HRV) data, for the purposes
of (1) shedding new light on the interpretation of complexity of
physiological data, and (2) illustrating SDLE’s clinical relevance.

The remainder of the paper is organized as follows. In Section
2, we first define SDLE, then apply it to characterize low-
dimensional chaos, noisy chaos, and random 1/fα processes, and
show how SDLE can readily detect intermittent chaos and deal
with non-stationarity. As real world applications, in Section 3,
we apply SDLE to characterize EEG and HRV data for detecting

1Implementation includes two files, sdle.m and lamda.m.
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epileptic seizures and certain cardiac disease. Finally, in Section 4,
we make a few concluding remarks, including a discussion of best
practices for experimental data analysis using the SDLE approach.

2. SDLE: DEFINITIONS AND FUNDAMENTAL PROPERTIES
Chaos theory is a mathematical analysis of irregular behaviors of
complex systems generated by non-linear deterministic (i.e., future
behavior described by the initial conditions) interactions of only a
few degrees of freedom without concern of noise or intrinsic ran-
domness. Random fractal theory, on the other hand, assumes that
the dynamics of the system are inherently random. One of the most
important classes of random fractals is 1/fα processes with long-
range correlations, where 1 < α < 3. Therefore, the foundations
of chaos theory and random fractal theory are entirely different.
Consequentially, different conclusions may be drawn depending
upon which theory is utilized to analyze a data set. In fact, much of
the research in the past has been devoted to determining whether a
complex time series is generated by a chaotic or a random system
(Grassberger and Procaccia, 1983a,b; Wolf et al., 1985; Sugihara
and May, 1990; Kaplan and Glass, 1992; Gao and Zheng, 1994a,b;
Pei and Moss, 1996; Gaspard et al., 1998; Dettmann and Cohen,
2000; Poon and Barahona, 2001; Hu et al., 2005). From past
research, 1/fα processes have distinguished themselves as providing
counter examples that invalidate commonly used tests for chaos
(Osborne and Provenzale, 1989; Provenzale and Osborne, 1991;
Hu et al., 2005). In fact, the two research communities, one favor-
ing chaos theory, the other random fractal theory, often assume
two polar positions, either rarely communicating or constantly
debating with each other as to the applicability of their theories2.
While this classic issue, distinguishing chaos from noise, is still

2This statement is a little over-simplified; singular measure based multifractal theory
can be applied to both deterministic chaos and random processes.

important, the authors believe that chaos and random fractal the-
ories should be used synergistically in order to comprehensively
characterize the behaviors of signals over a wide range of scales.
Based on this belief, we aim to develop a complexity measure that
cannot only effectively distinguish chaos from noise, but also aptly
extract the crucial or the defining parameters of a process gener-
ating the data, be it chaotic or random. SDLE is a measure that has
these capabilities.

SDLE stems from two important concepts, the time-dependent
exponent curves (Gao and Zheng, 1993, 1994a,b; Gao, 1997) and
the finite size Lyapunov exponent (Torcini et al., 1995; Aurell et al.,
1996, 1997). SDLE was first introduced by (Gao et al., 2006b, 2007),
and has been further developed in (Gao et al., 2009, in press) and
applied to characterize EEG (Gao et al., 2011a), HRV (Hu et al.,
2009a, 2010), Earth’s geodynamo (Ryan and Sarson, 2008), and
non-autonomous Boolean chaos (Blakely et al., under review). To
better understand SDLE, it is beneficial to consider an ensemble
forecasting framework. An example is shown in Figure 2, where
we observe that 2500 close by initial conditions rapidly evolve to
fill the entire attractor. A fundamental question is, how do we
characterize such evolutions?

SDLE is a concept derived from a high-dimensional phase
space. Assume that all that is known is a scalar time series
x[n] = x(1), x(2), . . ., x(n). How can we obtain a phase space? This
can be achieved by the time delay embedding technique (Packard
et al., 1980; Takens, 1981; Sauer et al., 1991). This technique is per-
haps the most significant contribution of chaos theory to practical
data analysis, since non-trivial dynamical systems usually involve
many state variables, and therefore, have to be described by a high-
dimensional state (or phase) space. The embedding technique
consists of creating vectors of the form:

Vi = [x(i), x(i + L), . . . , x(i + (m − 1)L)] ,

i = 1, . . . , Np (1)

FIGURE 2 | Error growth in the chaotic Lorenz system (Lorenz, 1963)

illustrated using an ensemble forecasting framework, where 2500 initial

conditions, initially represented by the pink color, evolve to those

represented by the red, green, and blue colors at t = 2, 4, and 6 units.
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where Np = n − (m− 1)L is the total number of reconstructed vec-
tors, and the embedding dimension m and the delay time L are
chosen according to certain optimization criteria (Gao et al., 2007).
Specifically, L alone may be determined by computing the first
zero of the autocorrelation or the first minimal point of mutual
information (Fraser and Swinney, 1986), while joint determina-
tion of m and L may be achieved using false nearest neighbor
method (Liebert et al., 1991; Kennel et al., 1992), which is a static
geometrical method, or time-dependent exponent method (Gao
and Zheng, 1993, 1994b), which is a dynamical method. Note that
when the time series is random, the embedding procedure trans-
forms the self-affine (i.e., x and t have to be stretched differently
in order to make the curve look “similar,” since the units for x and
t are different) stochastic process into a self-similar (i.e., part of
the curve in the high-dimensional space looks similar to another
part or the whole when it is magnified or shrinked, since all the
axes have the same unit) process in phase space. In this case, the
specific value of m is not important, so long as m > 1.

After a proper phase space is re-constructed, we consider an
ensemble of trajectories. We denote the initial separation between
two nearby trajectories by ε0, and their average separation at time
t and t + Δt by εt and εt + Δt, respectively. The trajectory separa-
tion is schematically shown in Figure 3. We can then examine the
relation between εt and εt + Δt, where Δt is small. When Δt → 0,
we have,

εt+Δt = εt eλ(εt )Δt , (2)

where λ(εt) is the SDLE given by

λ (εt ) = ln εt+Δt − ln εt

Δt
. (3)

Equivalently, we can express this as,

dεt

dt
= λ (εt ) εt . (4)

Given a time series data, the smallest Δt possible is the sampling
time τ.

FIGURE 3 | A schematic showing 2 arbitrary trajectories in a general

high-dimensional space, with the distance between them at time 0, t,

and t + δt being ε0, εt, and εt + δt, respectively.

Note that the classic algorithm of computing the Lyapunov
exponent λ1 (Wolf et al., 1985) amounts to assuming εt ∼ ε0eλ1t

and estimating λ1 by (ln εt − ε0)/t. Depending on ε0, this may
not be the case even for truly chaotic systems, such as shown in
Figure 2. This is emphasized in the schematic of Figure 3 – εt + δt

could in fact be smaller than εt. A greater difficulty with such an
assumption is that for any type of noise, λ1 can always be greater
than 0, leading to misclassifying noise as chaos. This is because
εt will be closer to the most probable separation so long as ε0 is
small (for a more quantitative discussion of this issue, see Gao
and Zheng, 1994b). On the other hand, Eq. 2 does not involve any
assumptions, except that Δt is small. As we will see, chaos amounts
to λ(ε) being almost constant over a range of ε.

To compute SDLE, we check whether pairs of vectors (Vi, Vi)
defined by Eq. 1 satisfy the following Inequality,

εk �
∥∥Vi − Vj

∥∥ � εk + Δεk , k = 1, 2, 3, . . . , (5)

where εk and Δεk are arbitrarily chosen small distances, and

∥∥Vi − Vj
∥∥ =

√√√√
m∑

w=1

(
xi+(w−1)L − xj+(w−1)L

)2
(6)

Geometrically, Inequality (5) defines a high-dimensional shell
(which reduces to a ball with radius Δεk when εk = 0; in a 2-
D plane, a ball is a circle described by (x − a)2 + (y − b)2 = r2,
where (a, b) is the center of the circle, and r is the radius). We
then monitor the evolution of all such vector pairs (Vi, Vj) within
a shell and take the ensemble average over indices i, j. Since we are
most interested in exponential or power-law functions, we assume
that taking logarithm and averaging can be exchanged, then Eq. 3
can be written as

λ (εt ) =
〈
ln

∥∥Vi+t+Δt − Vj+t+Δt
∥∥ − ln

∥∥Vi+t − Vj+t
∥∥〉

Δt
(7)

where t and Δt are integers in units of the sampling time, the angle
brackets denote the average over indices i, j within a shell, and

εt = ∥∥Vi+t − Vj+t
∥∥ =

√√√√
m∑

w=1

(
xi+(w−1)L+t − xj+(w−1)L+t

)2
(8)

Note that the initial set of shells for computing SDLE serve as ini-
tial values of the scales; through evolution of the dynamics, the
scales will automatically converge to the range of inherent scales –
which are the scales that define Eqs 3 and 4. This point will be
clearer after we introduce the notion of characteristic scale below.

Also note that when analyzing chaotic time series, the condition

∣∣j − i
∣∣ � tuncorrelated (9)

needs to be imposed when finding pairs of vectors within a shell,
where tuncorrelated denotes a time scale beyond which the two vec-
tors Vi and Vj are no longer along the tangential motions (i.e.,
close orbital motions similar to two cars driving in the same
lane, one following the other closely) of the same trajectory (Gao
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and Zheng, 1994b). Often tuncorrelated > (m − 1)L is sufficient to
ensure the elimination of the effects of tangential motions and the
convergence of initial scales to the inherent scales (Gao et al., 2007).

Finally, we note that

Λ(t ) = 〈
ln

∥∥Vi+t − Vj+t
∥∥ − ln

∥∥Vi − Vj
∥∥〉

(10)

is called the time-dependent exponent curves by Gao and Zheng
(1993, 1994a,b). Since Λ(t ) = ln εt − ln ε0, we immediately see
that SDLE amounts to the local slopes of such curves vs.

εt = ε0eΛ(t ). (11)

With this realization, the algorithm for computing SDLE can
be summarized by the following pseudo code (the actual For-
tran, C, and Matlab codes are available from the authors, or at
http://www.gao.ece.ufl.edu/GCTH_Wileybook/programs/lambda_
k_curves/):

(1) (More or less arbitrarily) choose the scale parameters εk, Δεk,
k = 1, 2, 3, . . .; properly choose m and L to reconstruct a suit-
able phase space from a scalar time series using Eq. 1; also
choose t uncorrelated . These are the basic parameters needed for
lambda.m in step (2).

(2) Compute the time-dependent exponent Λ(t ) curves:
for i = 1:Np − tuncorrelated – Tmax

for j = i + tuncorrelated:NP – Tmax

check Inequality (5); if valid,
save Λ(t ) = ln

∣∣∣∣Vi + t −Vj + t
∣∣∣∣, t = 0, 1, . . ., Tmax

end
end

(3) Estimate SDLE as the local slopes of Λ(k). Specifically, at time
t = kδt, where δt is the sampling time, the scale parameter
εt is given by Eq. 11, while the local slope of Λ(k) may be
estimated by

(Λ(k + 1) − Λ(k − 1))/2kδt .

Equivalently, the local slope may be estimated based on ln εt, where
εt is given by Eq. 11. To improve estimation of the local slope of
Λ(k), filtering may be used to suppress local variations.

2.1. SCALING LAWS FOR SDLE
SDLE has distinctive scaling laws for chaotic signals and 1/fα

processes. First we analyze the chaotic Lorenz system (shown in
Figure 2) with stochastic forcing:

dx/dt = −16(x − y) + Dη1(t ),

dy/dt = −xz + 45.92x − y + Dη2(t ),

dz/dt = xy − 4z + Dη3(t ).

(12)

where ηi(t ), i = 1, 2, 3 are independent Gaussian noise forcing
terms with zero mean and unit variance. When D = 0, the sys-
tem is clean. Figure 4 (top) shows a few Λ(t ) curves for the clean
Lorenz system; the bottom of the Figure shows five SDLE curves,
for the cases with D = 0, 1, 2, 3, 4. The computations are done
with 10000 points and m = 4, L = 2. We observe the following
interesting features:

FIGURE 4 |Top: Λ(t ) curves for the clean Lorenz system; bottom: SDLE

λ(ε) curves for clean and noisy Lorenz systems.

(1) For the clean chaotic signal, λ(ε) fluctuates slightly around
a constant. As is expected, this constant is the very largest
positive Lyapunov exponent, λ1,

λ(ε) = λ1. (13)

The small fluctuation in λ(ε) is due to the fact that the
divergence (i.e., expansion) rate on the Lorenz attractor is not
uniform (i.e., varies from one region to another). This non-
uniform divergence is the origin of multifractality in chaotic
systems.

(2) When there is stochastic forcing, λ(ε) is no longer a constant
when ε is small, but diverges to infinity as ε → 0 according the
following scaling law,

λ(ε) ∼ −γ ln ε, (14)

where γ is a coefficient controlling the speed of loss of infor-
mation (i.e., defined as the measure of uncertainty involved
in predicting the value of a random variable). This feature
suggests that entropy generation is infinite when the scale ε

approaches zero.
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(3) When the noise is increased, the part of the curve with
λ(ε) ∼ − γ ln ε shifts to the right. In fact, the plateau (i.e.,
the chaotic signature) can no longer be identified when D is
increased beyond 3.

To facilitate practical applications, we emphasize that there are two
features that are important in real data analysis: (i) the location of
the −γ ln ε curve; this includes the slope and the position of the
“transition” point from −γ ln ε curve to the plateau scaling; and
(ii) the width of the plateau.

Note that similar results to those shown in Figure 4 have been
observed in other model chaotic systems, such as the Mackey-Glass
delay differential equation with multiple positive Lyapunov expo-
nents (Mackey and Glass, 1977). Also note that Eq. 14 characterizes
various types of noise, including independent identically dis-
tributed random variables, or noise with correlations (including
long-range correlation) for time scale up to the embedding win-
dow, (m − 1)L. This means SDLE is close to zero if Inequality (9)
is imposed when it is computed.

At this point, it is beneficial to introduce a concept, character-
istic scale, or limiting scale, ε∞, which is defined as the scale where
SDLE is close to 0. In terms of the Λ(t ) curves, this amounts to
where the curves are flat, as shown in the top plot of Figure 4. If one
starts from ε0 � ε∞, then, regardless of whether the data is deter-
ministically chaotic or simply random, εt will initially increase
with time and gradually settle around ε∞. Consequentially, λ(εt)
will be positive before εt reaches ε∞. On the other hand, if one
starts from ε0 � ε∞, then εt will simply decrease, yielding negative
λ(εt), again regardless of whether the data are chaotic or random.
When ε0 ∼ ε∞, then λ(εt) will stay around 0. For stationary noise
processes, the only scale available after t > (m − 1)L would be this
limiting scale, since SDLE will always close to 0. In other words,
for noise, the only scale resolvable is ε∞. Note however, for some
dynamical systems, ε∞ may not be a single point, but a function
of time, such as a periodic function of time. When this is the case,
the motion can be said to have large scale coherent motions. This
is often the case for physiological data.

Next we consider 1/fα processes. Such type of processes is
ubiquitous in science and engineering (see Gao et al., 2007 and
references therein). Two important prototypical models for such
processes are fractional Brownian motion (fBm) process (Mandel-
brot, 1982) and ON/OFF intermittency with power-law distrib-
uted ON and OFF periods (Gao et al., 2006a). For convenience,
we introduce the Hurst parameter 0 < H < 1 through a simple
equation,

α = 2H + 1. (15)

Depending on whether H is smaller than, equal to, or larger than
1/2, the process is said to have anti-persistent correlation, short-
range correlation, and persistent long-range correlation (Gao
et al., 2006a). Note that D = 1/H is the fractal dimension of such
processes, and Kolmogorov’s 5/3 law for the energy spectrum of
fully developed turbulence (Frisch, 1995) corresponds to H = 1/3.

It is well-known that the variance of such stochastic processes
increases with t as t 2H. Translating this into the average distance
between nearby trajectories, we immediately have

εt = ε0t H . (16)

To obtain SDLE from Eq. 16, we can use the defining Eq. 3 to
obtain λ(εt) ∼ H /t. Expressing t by εt, we obtain

λ (εt ) ∼ Hε
−1/H
t (17)

Equation 17 can be readily verified by calculating λ(εt) from such
processes. Therefore, SDLE offers a new means of estimating H. In
fact, SDLE improves analysis over commonly used fractal analysis
methods in two important situations: (i) in some non-stationary
environments where commonly used fractal analysis methods fail
to detect fractal structures from the data, SDLE may still be able
to; this will be shown shortly; and (ii) Eq. 17 also characterizes
stochastic limit cycles. This is true for many model systems (Gao
et al., 1999a,b, 2006b; Hwang et al., 2000), as well as essential and
Parkinsonian tremors (Gao and Tung, 2002).

SDLE also has distinct scaling laws for random Levy processes,
and complex motions with multiple scaling laws on different scale
ranges. For the details, we refer to Gao et al. (2006b, 2007).

2.2. DETECTING INTERMITTENT CHAOS BY SDLE
Intermittent chaos is a type of complex motion where regular (i.e.,
periodic) and chaotic motions alternate. It is a crucial ingredient
of the intermittent route to chaos, one of the most famous and
universal routes to chaos (Gao et al., 2007). One can envision that
intermittent chaos may be associated with the physiological tran-
sitions from normal to abnormal states, and vice versa. Therefore,
studying intermittent chaos can be very important for physiology
in general and pathology in particular. Since intermittent chaos is
a universal phenomena to many dynamical systems, without loss
of generality and to ease repeatability, we examine the logistic map

xn+1 = axn (1 − xn) , (18)

with a = 3.8284. An example of the time series is shown in
Figure 5A. We observe that time intervals exhibiting chaos are
very short compared with those exhibiting periodic motions. Tra-
ditional methods for computing Lyapunov exponent, being based
on global average, is unable to quantify chaos in such intermit-
tent situations, since the laminar phase dominates. Neither can
FSLE, since it requires that divergence dominates most of the
time. Interestingly, the SDLE curve shown in Figure 5B clearly
indicates existence of chaotic motions, since the plateau region
extends almost one decade in the scale (see arrow A in the
Figure).

One might wonder why Figure 5B is more complicated than
Figure 4 (bottom), even though the model system is a simpler
logistic map. The reason is that the motion now is intermittent.
Realizing intermittent transitions, we can readily understand all
the features in Figure 5B: the scale regions indicated by arrows
B and C in Figure 5B are due to the transitions from periodic
to chaotic motions, and vice versa. To understand the transition,
consider two very close trajectories in the laminar region. So far
as they stay in the laminar region, ε will remain small. When both
trajectories enter the chaotic region, the distance between them
will become greater – this divergence becomes stronger when the
trajectories get deeper into the chaotic region, till it stabilizes at
the plateau region, after it is fully within the chaotic region. This
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FIGURE 5 | (A) An intermittent time series generated by the logistic map
with a = 3.8284. (B) The SDLE curve for a time series of 10000 points, with
m = 4, L = 1, and a shell size of (2−13.5, 2−13). A plateau, indicated by arrow A,
is clearly visible. Regions indicated by arrows B and C are due to transitions
between periodic and chaotic motions, and arrow D indicates the region of
oscillatory motions.

argument is equally valid when the motion gets out of the chaotic
region.

The discussion above can be readily extended to understand
the circular structure, indicated as arrow D, in Figure 5B. This
structure is caused by the large scale laminar flows (i.e., oscillatory
motions). Region D is an example of a limiting scale being not a
constant. Such a feature can often arise in physiological data, as we
will see shortly in Section 4.

In summary, we conclude that the oscillatory part of the data
only affects the scale range where λ(ε) ∼ 0. It cannot affect the
positive portion of λ(ε). Therefore, SDLE has a unique scale sep-
aration property such that different motions are manifested on
different scales.

2.3. DETECTING FRACTAL STRUCTURE FROM NON-STATIONARITY
DATA

The HRV data shown in Figure 1A motivates us to consider com-
plicated processes generated by the following two scenarios. One
is to randomly concatenate 1/f 2H + 1 and oscillatory components.
Another is to superimpose oscillatory components on 1/f 2H + 1

processes at randomly chosen time intervals. Either scenario gen-
erates signals that appear quite similar to that shown in Figure 1A.
The λ(ε) curves for such processes are shown in Figure 6, for a
wide range of the H parameter instances. We observe well-defined
power-law relations, consistent with Eq. 17, when λ(ε) > 0.02.
Figure 6 clearly shows that oscillatory components in the signals
can only affect the SDLE where λ(ε) is close to 0. The effects of
oscillatory components on SDLE observed in these scenarios is
another manifestation of SDLE’s scale separation property. It is
most important to emphasize that none of other commonly used

FIGURE 6 | SDLE λ(ε) vs. ε curves for the simulation data. Eight
different H values are considered. To put all the curves on one plot, the
curves for different H values (except the smallest one considered here) are
arbitrarily shifted rightward.

fractal analysis methods are able to detect fractal structure from
such non-stationary data.

Now, let us ask: when we perturb chaotic data by similar pro-
cedures, will we still be able to detect chaos? The answer is yes. In
fact, the intermittent chaos discussed above may be viewed as an
example of such a procedure.

We are now ready to fully understand why the SDLE can
deal with the types of non-stationary data constructed here. One
type of non-stationarity causes shifts of the trajectory in phase
space – the greater the non-stationarity, the larger the shifts. SDLE,
however, cannot be significantly affected by trajectory shifts, espe-
cially large ones, since it is based on the co-evolution of pairs of
vectors within chosen small shells. The other type is related to
oscillatory components. The oscillatory components only affect
SDLE where it is close to zero, therefore, will not alter the distinct
scaling for chaos and fractal processes.

3. APPLICATIONS: BIOLOGICAL DATA ANALYSIS
As we have mentioned, the popularity of chaos and fractal the-
ories in modeling physiology is closely related to the desire of
learning whether a healthy brain, heart, etc., may be associated
with greater complexity, greater chaoticity, or greater adaptabil-
ity due to properties such as long-range correlations. While such
complexity interpretations are very appealing, one has to envision
that the reality is more difficult, since disease diagnosis is compli-
cated by many factors where the cause is unknown. For example,
as man-made chemicals are designed and used, it has yet to know
how they affect the body. To (1) shed new light on the interpreta-
tion of complexity of physiological data, and (2) illustrate SDLE’s
clinical relevance, in this section, we apply SDLE to examine two
types of physiological data, HRV and EEG. As we shall see, the
most relevant scaling law for these data is Eq. 14, which cannot
be obtained by standard chaos or conventional random fractal
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analysis. Due to space limitations, we shall only briefly describe a
complexity measure, when it is used for comparison with SDLE.

3.1. EEG ANALYSIS
EEG signals provide a wealth of information about brain dynam-
ics, especially related to cognitive processes and pathologies of
the brain such as epileptic seizures. To understand the nature
of brain dynamics as well as to develop novel methods for the
diagnosis of brain pathologies, a number of complexity measures
have been used in the analysis of EEG data. These include the
Lempel-Ziv (LZ) complexity (Lempel and Ziv, 1976), the permu-
tation entropy (Cao et al., 2004), the Lyapunov exponent (LE; Wolf
et al., 1985), the Kolmogorov entropy (Grassberger and Procaccia,
1983b), the correlation dimension D2 (Grassberger and Procac-
cia, 1983a; Martinerie et al., 1998), and the Hurst parameter (Peng
et al., 1994; Hwa and Ferree, 2002; Robinson, 2003). Since foun-
dations of information theory, chaos theory, and random fractal
theory are different, and brain dynamics are complicated, involv-
ing multiple spatial-temporal scales, it is natural and important
for us to ask whether there exist relations among these complexity
measures, and if so, how to understand those relations.

The EEG signals analyzed here were measured intracranially
by the Shands hospital at the University of Florida (Gao et al.,
2011a). Such EEG data are also called depth EEG and are con-
sidered cleaner and more free of artifacts than scalp (or surface)
EEG. Altogether, we have analyzed 7 patients’ multiple channel
EEG data, each with a duration of a few hours, with a sampling
frequency of 200 Hz. When analyzing EEG for epileptic seizure
prediction/detection, it is customary to partition a long EEG sig-
nal into short windows of length W points, and calculate the
measure of interest for each window. The criterion for choosing
W is such that the EEG signal in each window is fairly station-
ary, is long enough to reliably estimate the measure of interest,
and is short enough to accurately resolve localized activities such
as seizures. Since seizure activities usually last about 1–2 min, in
practice, one often chooses W to be about 10 sec. When applying
methods from random fractal theory such as detrended fluctua-
tion analysis (DFA) (Peng et al., 1994), it is most convenient when
the length of a sequence is a power of 2. Therefore, we have cho-
sen W = 2 × 1024 = 2048 when calculating various measures. We
have found, however, that the variations of these measures with
time are largely independent of the window size W. The relations
among the measures studied here are the same for all the 7 patients’
EEG data, so we illustrate the results based on only one patient’s
EEG signals.

We have examined the variation of λ(ε) with ε is for each seg-
ment of the EEG data. Two representative examples for seizure
and non-seizure segments are shown in Figure 7. We observe that
on a specific scale ε∗, the two curves cross. Loosely, we may term
any ε < ε∗ as small scale, while any ε > ε∗ as large scale. Therefore,
on small scales, λ(ε) is smaller for seizure than for non-seizure
EEG, while on large scales, the opposite is true. The variations
of λsmall − ε and λlarge − ε with time for this patient’s data, where
small − ε and large − ε stand for (more or less arbitrarily) chosen
fixed small and large scales, are shown in Figures 8A,B, respec-
tively. We observe two interesting features: (i) the pattern of vari-
ation of λsmall − ε(t ) is reciprocal of that of λlarge − ε(t ). This result

FIGURE 7 | Representative SDLE λ(ε) (per second) vs. ε for a seizure

and non-seizure EEG segment.

can be expected from Figure 7. (ii) The variations in λsmall − ε(t )
and λlarge − ε(t ) clearly indicate the two seizure events. Therefore,
either λsmall − ε(t ) or λlarge − ε(t ) can be used to accurately detect
epileptic seizures.

We now compare the SDLE with three commonly used mea-
sures from chaos theory, the largest positive Lyapunov exponent
(LE), which we have discussed earlier; the correlation entropy
(Grassberger and Procaccia, 1983b), and the correlation dimen-
sion (Grassberger and Procaccia, 1983a). We also choose one
measure from random fractal theory, the Hurst parameter. We
discuss the three measures from chaos theory first.

As we have discussed, LE is a dynamic quantity, character-
izing the exponential growth of an infinitesimal line segment,
εt ∼ ε0eλ1t , ε0 → 0. For truly chaotic signals, 1/λ1 gives the
prediction time scale of the dynamics. Also, it is well-known that
the sum of all the positive Lyapunov exponents in a chaotic system
equals the Kolmogorov-Sinai (KS) entropy. The KS entropy char-
acterizes the rate of creation of new information (or loss of prior
knowledge) in a system. It is zero, positive, and infinite for regular,
chaotic, and random motions, respectively. However, it is diffi-
cult to compute. Therefore, one usually computes the correlation
entropy K 2, which is a tight lower bound of the KS entropy. Simi-
larly, the box-counting dimension, which is a geometrical quantity
characterizing the minimal number of variables that are needed
to fully describe the dynamics of a motion, is difficult to compute,
and one often calculates the correlation dimension D2 instead.
Again, D2 is a tight lower bound of the box-counting dimension.
For in-depth discussions of K 2 and D2, we refer to Gao et al.
(2012).

From the above brief descriptions, one would expect that λ1(t )
and K 2(t ) are similar, while D2(t ) has little to do with either λ1(t )
or K 2(t ). Surprisingly, from Figures 8C,D,E, we observe that this
is not the case: λ1(t ) is similar to D2(t ), but reciprocal of K 2(t ).
In a moment, we shall explain how these puzzling relations may
be understood based on λsmall − ε(t ) and λlarge − ε(t ).
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FIGURE 8 |The variation of (A) λsmall − ε, (B) λlarge − ε, (C) the LE, (D) the K 2 entropy, (E) the D2, and (F) the Hurst parameter with time for EEG signals of a

patient. The vertical dashed lines in (A–F) indicate seizure occurrence times determined by medical experts.

Next we consider the calculation of the Hurst parameter H. As
pointed out earlier, H characterizes the long-term correlations in a
time series. There are many different ways to estimate H. We have

chosen DFA (Peng et al., 1994), since it is more reliable (Gao et al.,
2006a), and has been used to study EEG data (Hwa and Ferree,
2002; Robinson, 2003).
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Figure 8F shows H (t ) for our EEG data. We observe that the
pattern of H (t ) is very similar to that of λ1(t ), but reciprocal
to K 2(t ) and D2(t ). Such relations cannot be readily understood
intuitively, since the foundations for chaos theory and random
fractal theory are entirely different.

Let us now resolve all of the curious relations observed between
λ1(t ), K 2(t ), D2(t ), and H (t ).

(1) Generally, entropy measures the randomness of a dataset. This
pertains to small scale. Therefore, K 2(t ) should be similar to
λsmall − ε(t ). This is indeed the case. We should point out that
we have also calculated other entropy-related measures, such
as the Lempel-Ziv complexity (Lempel and Ziv,1976),which is
closely related to the Shannon entropy, and the permutation
entropy (Cao et al., 2004), and observed similar variations.
Therefore, we can conclude that the variation of the entropy
is represented by λsmall − ε(t ), regardless of how entropy is
defined.

(2) To understand why λ1(t ) calculated by the algorithm of Wolf
et al. (1985) corresponds to λlarge − ε(t ), we note that the algo-
rithm of Wolf et al. (1985) involves a scale parameter that
whenever the divergence between a reference and a perturbed
trajectory exceeds this chosen scale, a renormalization proce-
dure is performed. When the algorithm of Wolf et al. (1985)
is applied to a time series with only a few thousand points, in
order to obtain a well-defined LE, a fairly large scale parameter
has to be chosen. This is the reason that the LE and λlarge − ε

are similar. In fact, the scale we have chosen to calculate λ1(t )
is even larger than that for calculating λlarge − ε(t ). This is the
reason that the value of λ1(t ) shown in Figure 8C is smaller
than that of λlarge − ε(t ) shown in Figure 8B.

(3) It is easy to see that if one fits the λ(ε) curves shown in Figure 7
by a straight line, then the variation of the slope with time
should be similar to λsmall − ε(t ) but reciprocal of λlarge − ε(t ).
Such a pattern will be preserved even if one takes the loga-
rithm of λ(ε) first and then does the fitting. Such a discussion
makes it clear that even if EEG is not ideally of the 1/f2H + 1

type, qualitatively, the relation λ(ε) ∼ ε−1/H holds. This in
turn implies D2 ∼ 1/H. With these arguments, it is clear that
the seemingly puzzling relations among the measures consid-
ered here can be readily understood by the λ(ε) curves. More
importantly, we have established that commonly used com-
plexity measures can be related to the values of the SDLE at
specific scales.

As we have pointed out, around the characteristic scale ε∞, λ(ε) is
always close to 0. The pattern of λ(ε) around ε∞ is governed by the
structured components in the data, such as the α, γ, β, and δ brain
waves. From Figure 7, we observe that the patterns for seizure
and non-seizure EEG segments are very different. In particular,
the pattern of the limiting scale for seizure EEG resembles that of
the intermittent chaos indicated by arrow D in Figure 5. Since the
brain dynamics on this scale are different from those on smaller
scales, such information is clearly helpful in preliminary detec-
tion or prediction of seizures. However, we shall not pursue this
issue further here, as further use of the SDLE methods for seizure
forewarning would require coordination with clinical verification.

3.2. HRV ANALYSIS
HRV is an important dynamical variable of the cardiovascular
function. Its most salient feature is the spontaneous fluctuation,
even when the environmental parameters are maintained constant
and no perturbing influences can be identified. Since the observa-
tion that HRV is related to various cardiovascular disorders (Hon
and Lee, 1965), a number of methods have been proposed to ana-
lyze HRV data. They include methods based on simple statistics
from time and frequency domain analyses (see Malik, 1996 and
references therein), as well as those derived from chaos theory
and random fractal theory (Kobayashi and Musha, 1982; Gold-
berger and West, 1987; Babyloyantz and Destexhe, 1988; Kaplan
and Goldberger, 1991; Pincus and Viscarello, 1992; Bigger et al.,
1996; Ho et al., 1997). We shall now show that the SDLE can read-
ily characterize the hidden differences in the HRV under healthy
and diseased conditions, and shed new light on the dynamics of
the cardiovascular system.

We examine two types of HRV data, one for healthy subjects,
and another for subjects with the congestive heart failure (CHF),
a life-threatening disease. The data were downloaded from the
(Physionet, 2011). There are 18 healthy subjects and 15 subjects
with CHF. Part of these datasets were analyzed by random frac-
tal theory. In particular, 12 of the 15 CHF datasets were analyzed
by wavelet based multifractal analysis (Ivanov et al., 1999), for the
purpose of distinguishing healthy subjects from CHF patients. For
ease of comparison, we take the first 3 × 104 points of both groups
of HRV data for analysis. In Figures 9A,B, we have shown two
typical λ(ε) vs. ε curves, one for a healthy subject, and another for
a patient with CHF. We observe that for the healthy subject, λ(ε)
linearly decreases with ln ε before λ reaches around 0, or, before ε

settles around the characteristic scale, ε∞. Recall that this is a char-
acteristic of noisy dynamics (Figure 4). For the CHF case plotted
in Figure 9B, we observe that the λ(ε) is oscillatory, with its value
always close to 0, and hence, the only scale resolvable is around
ε∞. Since the length of the time series used in our analysis for the
healthy and the CHF subjects is the same, the inability of resolv-
ing the λ(ε) behavior on scales much smaller than ε∞ for patients
with CHF strongly suggests that the dimension of the dynamics of
the cardiovascular system for CHF patients is considerably higher
than that for healthy subjects.

We now discuss how to distinguish between healthy subjects
and patients with CHF from HRV analysis. We have devised two
simple measures, or features. The first feature characterizes how
well the linear relation between λ(ε) and ln ε can be defined.
We have quantified this by calculating the error between a fitted
straight line and the actual λ(ε) vs. ln ε plots of Figures 9A,B. The
second feature is to characterize how well the characteristic scale
ε∞ is defined. This is quantified by the ratio between two scale
ranges, one is from the 2nd to the 6th point of the λ(ε) curves,
and another is from the 7th to the 11th point of the λ(ε) curves.
Now each subject’s data can be represented as a point in the feature
plane, as shown in Figure 10. We observe that for healthy subjects,
feature 1 is generally very small, but feature 2 is large, indicating
that the dynamics of the cardiovascular system is like a non-linear
system with stochasticity, (i.e., with resolvable small scale behav-
iors and well-defined characteristic scale ε∞). The opposite is true
for the patients with CHF: feature 1 is large, but feature 2 is small,
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FIGURE 9 | λ(ε) (per beat) vs. ε (in semi-log scale) for HRV data of (A) a healthy subject and (B) a subject with CHF.

FIGURE 10 | Feature plane separating normal subjects from subjects

with CHF, where Feature 1 quantifies the goodness-of-fit of Eq. 14 to

the actual SDLE curve, and Feature 2 is related to how well the

characteristic scale ε∞ is defined.

indicating that not only small scale behaviors of the λ(ε) curves
cannot be resolved, but also that the characteristic scale ε∞ is not
well-defined. Very interestingly, these two simple features sepa-
rate completely the normal subjects from patients with CHF. The
results show that no formal methods of statistical clustering are
needed and that presentation of the feature space can be read-
ily usable for diagnostics. In fact, each feature alone can almost
perfectly separate the two groups of subjects studied here.

It is interesting to note that for the purpose of distinguishing
normal HRV from CHF HRV, the features derived from SDLE are
much more effective than other metrics including the Hurst para-
meter, the sample entropy, and multiscale entropy. For the details
of the comparisons, we refer to Hu et al. (2010).

Finally, we emphasize that the results presented here should not
be interpreted as 100% accurate in distinguishing normal from

CHF patients, since only 18 normal and 15 CHF HRV data sets
were available to us and analyzed here. It merits noting, however,
that other approaches, such as wavelet based multifractal analysis
(Ivanov et al., 1999), are not able to achieve the classification rate
of SDLE, when all these data were used. The preliminary analysis
demonstrates that SDLE could be used over collected HRV data as
a first indication of possible non-healthy cardiovascular issues. The
use of SDLE could provide valuable complementary information
in patient testing.

4. CONCLUDING REMARKS
In this paper, we have discussed a multiscale complexity measure,
the SDLE. We have shown that it can readily (1) characterize low-
dimensional chaos, random 1/f α processes, and stochastic limit
cycles, (2) detect intermittent chaos, and (3) conveniently deal with
non-stationarity, especially to detect fractal from non-stationary
data. Furthermore, we have shown that SDLE can accurately detect
epileptic seizures from EEG and distinguish healthy subjects from
patients with CHF from HRV. More importantly, we have estab-
lished that commonly used complexity measures for EEG can be
related to the value of the SDLE at specific scales, and that the
pattern of the SDLE around the characteristic scale ε∞ contains
a lot of useful information on the structured components of the
data that may greatly help detect significant patterns. Because of
the ubiquity of chaos-like motions and 1/fα-type processes and
the complexity of HRV and EEG data, our analyses strongly sug-
gest that the SDLE is potentially important for clinical practice,
and provides a comprehensive characterization of complex data
arising from a wide range of fields in science and engineering.

Our analyses have a number of important implications.

(1) To comprehensively characterize the complexity of compli-
cated data such as HRV or EEG data, a wide range of scales
has to be considered, since the complexity may be different
on different scales. For this purpose, the entire λ(ε) curve,
where ε is such that λ(ε) is positive, provides a good solution.
Using the entire λ(ε) curve is particularly important when one
wishes to compare the complexity between two signals – the
complexity for one signal may be higher on some scales, but
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lower on other scales. The situation shown in Figure 7 may be
considered one of the simplest.

(2) For detecting important events such as epileptic seizures,
λsmall − ε and λlarge − ε appear to provide better defined fea-
tures than other commonly used complexity measures. This
may be due to the fact that λsmall − ε and λlarge − ε are evaluated
at fixed scales, while other measures are not. In other words,
scale mixing may blur the features for events being detected,
such as seizures.

(3) In recent years, there has been much effort in searching for
cardiac chaos (Goldberger and West, 1987; Babyloyantz and
Destexhe, 1988; Kaplan and Goldberger, 1991; Garfinkel et al.,
1992; Fortrat et al., 1997; Kaneko and Tsuda, 2000). Due to
the inability of unambiguously distinguishing deterministic
chaos from noise by calculating the largest positive Lyapunov
exponent and the correlation dimension, it is still unclear
whether the control mechanism of cardiovascular system is
truly chaotic or not. Our analysis here highly suggests that
if cardiac chaos does exist, it is more likely to be identi-
fied in healthy subjects than in pathological groups. This is
because the dimension of the dynamics of the cardiovascular
system appears to be lower for healthy than for patholog-
ical subjects. Intuitively, such an implication makes sense,
because a healthy cardiovascular system is a tightly cou-
pled system with coherent functions, while components in

a malfunctioning cardiovascular system are somewhat loosely
coupled and function incoherently.

As example applications, we have focused on the analyses of HRV
and EEG data here. It is evident that SDLE will be useful for other
kinds of physiological data analyses. While much of the past as well
as current research has been focused on determining whether some
experimental data are chaotic or not, the scaling laws of SDLE sug-
gest that it is often feasible to obtain the defining parameters of the
data under study, without a focus on assessing the chaotic nature
of the data. While in principle, SDLE is able to do so without
pre-processing of the data under study, suitable detrending and
denoising may help. A particularly simple and versatile procedure
is the smooth adaptive filter developed by the authors, which has
been successfully applied to recover chaos in an extremely noisy
environment (Hu et al., 2009b; Gao et al., 2010, 2011b; Tung et al.,
2011).
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