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a b s t r a c t

In this paper the contact problem of a rigid sphere against an elasticeplastic sphere and a spherical
elasticeplastic cavity is studied by means of finite element simulation for a wide range of radius ratios.
Our results indicate that the deformation range naturally divides into two regimes, i.e. a one parameter
regime (covering the elastic, small elasticeplastic and similarity deformation) and a two parameter
regime (covering the finite deformation). In these two regimes average contact pressures (as well as
contact area) versus indentation depth can be described respectively by the single parameter, i.e.
indentation depth h/Re, and the two parameters, i.e. h/Re and radius ratio R1/R2. Moreover, the variation
trends of average contact pressure with the increase of indentation depth differ markedly in different
deformation regimes. The numerical evolution of pressure distribution indicates that with increase of
indentation depth the pressure distribution becomes more peaked at the center of the contact area
meanwhile the maximum contact pressure, limited by the flow stress, increases slightly. Therefore in the
two parameter regime, the average pressure would stop growing and get lower rather than continuously
higher as it does in the one parameter regime.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Contact between deformable bodies is a fundamental problem
in solid mechanics. And contact problems between spheres have
applications in diverse practical problems related to material and
surface sciences fields such as tribology, indentation, compaction of
granular materials, powder composites, thermal and electrical
contacts. For example, instrumented nano-indentations such as
spherical indentation have provided valuable information on the
mechanical property of materials in very small size in bulk or as
thin films and coatings. The insightful understanding of variation of
hardness (average pressure) during all indentation process and the
influence of contact geometric factors (tip roundness and specimen
surface roughness) on hardness behavior are important for
obtaining correct mechanical property of materials. For other
examples, the cold pressing of metallic powders into a near net
shape parts is by the plastic indentation of deformable particles,
and predictions of the compaction behavior are based on the
knowledge of the location indentation response between particles.
ax: þ86 010 82338527.
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The powder composites, such as carbide particle mixed with
aluminium alloy powder, have been regarded as a promising
material. There is a need to develop accurate prediction models of
compaction in order to optimize tooling design and to eliminate
manufacturing defects. Therefore, study on the evolution of contact
pressure/area and the influence parameter provides a base for
resolutions of these material and surface sciences problems.

The problem of elastic contact between two spheres was first
solved by Hertz (summarized by Johnson [1]). His work was
seminal and initiated a series of studies on problems associated
with elastic contact and led to many interesting new solutions
[2e4]. Later development extends the work to contact problems
between elasticeplastic and visco-elasticeplastic bodies [5e11].
More recently numerical methods have been applied to solve
contact problems between spheres for finite deformation [12e14].

The contact deformation can be characterized by the relative
displacement h of the centers of the spheres. In the context of
indentation this displacement is also known as the depth of inden-
tation. For a fixed h the deformation can be resolved into two distinct
components. The first part is a rigid body displacement of one sphere
relative to the other, Fig.1. The second part consists of deformation of
the two spheres such that the surface displacements u1 and u2 meet
to form the contact surface. The projection of this surface in the

mailto:wmchen@imech.ac.cn
www.sciencedirect.com/science/journal/0042207X
http://www.elsevier.com/locate/vacuum
http://dx.doi.org/10.1016/j.vacuum.2011.01.007
http://dx.doi.org/10.1016/j.vacuum.2011.01.007
http://dx.doi.org/10.1016/j.vacuum.2011.01.007


Fig. 1. Geometry of contact between two spheres.
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direction of the symmetry axis is the projected contact area. The
radius of this area will be denoted by a.

Hertz made the important observation that when h/R1 and h/R2
are sufficiently small u1 and u2 become parallel to the symmetry
axis so that these two vectors can be approximated by axial
displacements u1(r) and u2(r) for r� a. Obviously at a¼ 0, u1(0)þ
u2(0)¼ h. For the same approximation the spherical surfaces can be
replaced by equivalent paraboloidal surfaces so that

u1ðrÞ þ u2ðrÞ ¼ h� r2

2

�
1
R1

þ 1
R2

�
for r � a (1)

Hence Hertz concludes that for sufficiently small h/R1 and h/R2 the
contact problem can be reduced to two semi infinite space prob-
lems subjected to surface compressive stress sz(r) for r� a and zero
surface stress elsewhere. In the case of elastic contact both the
surface stress sz(r) and radius of the projected area a can be found
by solving elasticity problems of the half infinite space subjected to
the constraint provided by Eq. (1). This was the way the Hertz
solution was obtained.

As radii of the spheres appear only in the combination (1/R1)þ
(1/R2) in the formulation of the contact problem, it can be replaced
by a single parameter (1/Re)¼ (1/R1)þ (1/R2). Re is known as the
effective radius [1,15]. Since the Hertz assumption is essentially
a geometrical one his method is applicable even when the spheres
are not elastic.

Hill et al. [16,17] and Storaker et al. [18] developed similarity
solution for the visco-plastic contact between two spheres for
power lawmaterials. Like Hertz theory it is also a small deformation
theory so that a single parameter Re representation suffices.
Mesarovic and Fleck [19] examined the small deformation
(including the elastic, elasticeplastic and similarity solution defor-
mation) and the finite deformation of spherical indentation. From
their numerical results (Figs. 4 and 5 of Ref. [19]) it can be observed
thatwith the increase of indentation depth (from small deformation
to the finite deformation) the contact pressure behaves differently
for different values of radius ratios, though only three special values
of radius ratios, i.e. R1/R2¼N, 1, 0 were considered there.

In this paper spherical contact problem is examined for a broader
range of R1 and R2, i.e. a sphere indenting an elasticeplastic sphere
or spherical cavity. And both the small and finite deformation
regimes are considered. Section 2 gives the general remarks of
spherical contact based on dimensional analysis. Section 3 presents
the finite element model and its verification. In Section 4, the
numerical results including the evolutions of contact pressure (as
well as the contact area) are presented and used to observe the
deformation regimes and to explore the variation mechanism of
contact pressure especially in the two parameter regime. Conclu-
sions are given in the final section.

2. General remarks

In the general case the elasticeplastic property of each indenter
material can be characterized by the Young’s modulus Ea, Poison
ratio ya, the yield stress Ya and hardening index na. Hence the
contact force P and radius of the contact area a can be expressed as
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In the case of small deformation characterized by sufficiently small
h/R1 and h/R2 we can invoke the Hertz assumption and write
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In the case of two spheres Re� R1 and R2. Hence the conditions
h/R1�1 and h/R2�1 are implied by the single condition h/
Re� 1. No such simplification is possible in the case of spher-
eespherical cavity contact where radius of the spherical cavity is
negative.

3. The finite element model of elasticeplastic spherical
contact

The present simulation utilizes the commercial program
ABQUAS. There exist three contact situations, namely between two
spheres, between a sphere and a spherical cavity and between
a sphere and a half space (see Fig. 2). The present simulation will
focus on the first two cases, because the third case is a limiting case
of them. The finite element models are shown in Fig. 3a and b. Tri-
angular three node elements are used. Finer meshes are employed
near the region of contact in order to achieve required accuracy. The
radius of the contact area is determined by finding the location of
the last activated contact element. As the indentation depth
increases, successive surface nodes come into contact so that the
contact size increases in discrete steps. So in some loading interval
the indentation depth h increases by Dh but the contact radius
a remains constant (because the number of contact nodes remains
constant). On a plot of average contact pressure versus indentation
depth h/Re, the data points would show up as steps. By checking the
finite element results against the Hertz solution it was found that
a satisfactory fit is achieved by joining the mid-points of the finite
element simulation. These results are shown in Fig. 4.



Fig. 2. Three situations of spheres contact.
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The radius R2 of the deformable sphere and cavity is taken to be
þ50 nm and �50 nm respectively. For the sphereesphere contact,
radius R1 of the rigid sphere ranges from 10, 20, 40, 62.5, 125,
250 nm. For the sphereespherical cavity contact R1 equals to 10, 20,
40 nm. An elastic perfect plastic material is chosen to be our model
material. The Young’s modulus, Poisson ratio and yield strength are
respectively equal to 70 GPa, 0.3 and 200 MPa.

Finite element simulation is carried out for two regimes. For the
first regime the deformation is sufficiently small (either h/Re� 1 or
h/jR2j �1 as the casemay be) so that a one parameter representation
is valid. This regime covers both elastic and elasticeplastic defor-
mation. The second regime is for large deformation where a two
parameter representation is necessary. We call the first regime
a single parameter regime and the second a two parameter regime.

4. The numerical results and discussions

Results of finite element simulation for elasticeplastic contact
including two regimes are shown in Fig. 5. Fig. 5a is a plot of typical
average contact pressure P/pa2 versus the non-dimensional
Fig. 3. The finite el
penetration depth h/Re. For clarity only six curves are shown,
namely those for radius ratios R1/R2¼ 40/(�50), 20/(�50), 10/
(�50), 10/50, 40/50 and 250/50. These curves are continuations of
the elastic curves shown in Fig. 4. Fig. 5b is a plot of typical non-
dimensional contact area pa2/2hRe against the non-dimensional
penetration depth h/Re.

Fig. 5a demonstrates that at sufficiently small indentation depth
(approximately for h/Re< 3.0�10�3) curveswith different values of
R1/R2 almost collapse into a single curveand that the average contact
pressure continues to grow with increasing penetration depth h/Re,
though in a way distinct from the Hertz solution (compared with
curves in Fig. 4). The former fact confirms the assertion that for
sufficiently small values of the indentation depth a single geometric
parameter representation (Eq. (3)) suffices no matter what consti-
tutive relation is used and irrespective of whether it is a spheree-
sphere contact or a sphereespherical cavity contact.

As h/Re continues to increase the contact enters the two
geometric parameter regime and the curves (Fig. 5a) with different
values of R1/R2 begin to separate and diverge reaching their separate
peaks at different depths h/Re. It is also observed that for the
ement model.



Fig. 4. Finite element simulations for elastic contact.

Fig. 5. Finite element simulations for elasticeplastic contact.
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sphereesphere contact, the sharper the relative radius of the
indenter is (smaller values of R1/R2) the greater the peak average
contact pressure is. Additionally, within the two parameter regime,
the average pressure diminishes fast with increasing indention
depth for large value of R1/R2, and slow for small value of R1/R2. This
was also observed in experiments and other numerical results for
two limit cases (R1/R2¼N and R1/R2¼ 0). The opposite is true in the
case of the sphereespherical cavity contact: the sharper the relative
radius (smaller values of R1/jR2j) the smaller the peak average
pressure. Because the larger value of relative radius R1/jR2jmeans the
stronger lateral constraint of the indented cavity, the average pres-
sure becomes greater with the increase of relative radius R1/jR2j.

It is also shown that when the radius of the deformable cavity is
equal to that of a deformable sphere while using a same rigid
indenter, the average contact pressure is higher in the case of
sphereespherical cavity contact than in the case of sphereesphere
contact (see the curves for R1/R2¼10/(�50) and R1/R2¼10/50 in
Fig. 5a). This is because in the former case lateral constraint to
deformation is stronger. Again from the physical point of view, in
the limit of the half space (namely R1/R2 or R1/jR2j/ 0) these two
sets of peak values must converge. This requires that the peak
average pressure increases as R1/R2 decreasing in the case of
sphereesphere contact and decreases as R1/jR2j decreasing in the
case of sphereespherical cavity contact, and reaches to the same
limit value as the radius ratios approaching zero (R1/R2 or R1/
jR2j/ 0).

Contact area pa2/2hRe plotted against the indentation depth h/Re
in Fig. 5b also demonstrates a one parameter regime for small
indentation depth (approximately for h/Re< 3.0�10�3) and a two
parameter regime for large indentation depth. Additionally, it is
noted that effect of radius ratio R1/R2 on the maximum contact area
is no longermonotonic. As thevalues ofR1/R2 increase from�0.8 (R1/
R2¼ 40/(�50)) up to þ50 (R1/R2¼ 250/50), the maximum contact
area first gets larger and then gets smaller.

Fig. 6a shows that the indentation depth, where the peak value
((P/E2Re2)max) of the average contact pressure occurs, monotonically
becomes smaller with the increase of radius ratio R1/R2. Because the
smaller values of radius ratio means the sharper indenter for
sphereesphere contact and stronger lateral constraint for spher-
eespherical cavity respectively, the average pressure becomes
higher. Moreover, for sphereesphere contact as the indentation
depth increases, the influence of free boundary of the deformable
body becomes more pronounced, so the average pressure drops.
Thus, the drop in the average pressure occurs at a lower value of
indentation depth for case of the relative size of the deformable
body being smaller, i.e. R1/R2 being larger. However the indentation
depth, where the peak value ((pa2/2hRe)max) of contact area occurs,
first increases till the radius ratio near to 1.0 and then drops with
the increase of radius ratio R1/R2, as shown in Fig 6b. In other words,
a change of behavior is observed around a radius ratio of 1.0 where
the radius of the indenting rigid sphere changes from being smaller
to larger than the indented sphere. In two parameter regime, for
the case of R1/R2<1 (the limit is a rigid sphere indenting into
a deformable flat, R1/R2¼ 0), the increase of contact area is mainly
provided by more local deformation of material extruded away by
the rigid indenter. Thus, the normalized contact area pa2/2hRe
approaches its peak early, i.e. at a lower value of indentation depth,
for case of the relative size of the deformable body being larger (R1/
R2 being smaller) due to stronger boundary constraint. While for
the case of R1/R2>1 (the limit is a rigid flat contacting against
a deformable sphere, R1/R2¼N), the increase of contact area is
mainly provided by more totally pressed deformation of the
deformable body. Thus, the normalized contact area pa2/2hRe
approaches its peak easily, or at a lower value of indentation depth,
for case of the relative size of the deformable body being smaller,



Fig. 7. Pressure distribution at typical indentation depth in the two parameter regime,
R1/R2¼10/50.

Fig. 6. Indentation depth where peak value of pressure (or area) occurs with radius
ratio R1/R2 ranging from R1/R2¼ 40/(�50) to 250/50. Fig. 8. Results of finite element simulation for R1/R2¼10/50.
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i.e. R1/R2 being larger. Additionally, the pile-up around indentation
would be obstructed strongly by larger indenter, so the increase of
contact area becomes more difficult for larger value of R1/R2.

It is noted in Fig. 5a that in the two geometric parameter regime
as the indentation depth increases further, the average contact
pressure becomes lower. Fig. 7 presents the evolutions of contact
pressure distributions as depth h/Re increasing from 8.12e�4 to
4.34e�1 for radius R1/R2¼10/50. Two interesting phenomena are
noted. One is that as the indentation depth increasing the distri-
bution shape of the contact pressure becomes more and more
peaked mainly due to drop of stress around the outer edge of
contact area. With the increase of indentation depth, the pile-up
around the indentation becomes pronounced, which have rela-
tively little stress because of the lack of lateral constraint. Thus
there is a significant drop of stress around the area of pile-up (the
outer edge of contact area). Another is that the peak value of
the contact pressure increases slightly due to the assumption that
the examined material is none work hardening. These two evolu-
tion phenomena are mainly responsible for the drop of the average
contact pressure at large depth. Additionally, Fig. 8a shows the
variation of total contact force F against indentation depth for
radius R1/R2¼10/50 and Fig. 8b shows the shape of the deformed
sphere at the maximum depth h/Re¼ 0.58 . It is seen that overall
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indentation depth the contact force F increases continuously with
the increase of depth h/Re, as we know normally.

5. Conclusions

By means of finite element simulation the frictionless normal
contact of a rigid sphere against an elasticeplastic sphere or
a spherical elasticeplastic cavity is examined for a wide range of
radius ratios. According to the depth of indentation the deforma-
tion naturally divides into two regimes, i.e. the one parameter
regime and the two parameter regime. For the cases examined in
this paper, further conclusions are as follows:

1. The one parameter regime covers the elastic, the small elas-
ticeplastic and the similarity deformation. In this regime the
average contact pressure versus indentation depth is fully
described by the single parameter h/Re, and the pressure
increases monotonically with h/Re. The demarcation of the
elasticeplastic regime is marked by the departure from the
Hertz solution of elastic contact.

2. As indentation depth continues to increase the single curve
describing the average contact pressure versus depth h/Re
begins to branch out in accordance with the values of radius
ratio R1/R2 so that one enters the two parameter regime where
as the depth increasing different branches initially increase
until reaching their respective peaks and then begin to drop.
This pressure drop is mainly due to the fact that the maximum
contact pressure is limited by the flow stress while the distri-
bution of the contact pressure becomes more peaked.

3. Compared with the average contact the contact area pa2/2hRe
against h/Re behaves in a similar way with one exception,
namely the peak value of the contact area is no longer
a monotonic function of R1/R2.
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