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Direct numerical simulation of turbulent channel flows between isothermal walls have been carried out
using discontinuous Galerkin method. Three Mach numbers are considered (0.2, 0.7, and 1.5) at a fixed
Reynolds number �2800, based on the bulk velocity, bulk density, half channel width, and dynamic vis-
cosity at the wall. Power law and log-law with the scaling of the mean streamwise velocity are considered
to study their performance on compressible flows and their dependence on Mach numbers. It indicates
that power law seems slightly better and less dependent on Mach number than the log-law in the overlap
region. Mach number effects on the second-order (velocity, pressure, density, temperature, shear stress,
and vorticity fluctuations) and higher-order (skewness and flatness of velocity, pressure, density, and
temperature fluctuations) statistics are explored and discussed. Both inner (that is wall variables) and
outer (that is global) scalings (with Mach number) are considered. It is found that for some second-order
statistics (i.e. velocity, density, and temperature), the outer scaling collapses better than the inner scaling.
It is also found that near-wall large-scale motions are affected by Mach number. The near-wall spanwise
streak spacing increases with increasing Mach number. Iso-surfaces of the second invariant of the veloc-
ity gradient tensor are more sparsely distributed and elongated as Mach number increases, which is sim-
ilar to the distribution of near-wall low speed streaks.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Wall bounded turbulent flows are important because they are
wildly used in practical engineering applications, such as the exter-
nal flow around airplanes, ships, and buildings, the internal flow
through turbine blades, pipes, and channels. It has been demon-
strated that incompressible turbulent channel flow is extremely
useful for the study of wall-bounded turbulence [17]. Direct
numerical simulation (DNS) of wall-bounded compressible turbu-
lent flow is equally useful because it provides 3D and time-depen-
dent data that are very difficult or even impossible to obtain
experimentally [19]. These earlier investigators used spectral,
finite volume-type solvers; here, the discontinuous Galerkin meth-
od (DGM) is used for the DNS to assess the method and to study the
effects of Mach number and compressibility effects on turbulence
statistics, turbulence structures, and related turbulence physics.

DGM is a finite element based method that uses numerical
fluxes on element boundaries, which draws from the finite volume
method, so that it can accommodate discontinuous solutions on
element boundaries. It has many attractive features including: high
order accuracy, highly parallelizable, well suited for complex
ll rights reserved.

).
geometries, local conservation, etc. [6]. The first DGM was intro-
duced by Reed and Hill [25]. It is only recently that DGM has been
made suitable for computational fluid dynamics related applica-
tions [6,14], see [33] for details. The first application of DGM to
DNS of turbulent flows was performed by [9], who applied the
DGM to a low-Reynolds-number DNS of compressible turbulent
channel flow with isothermal walls. The Reynolds number based
on the friction velocity (Res) was 100. The center-line Mach num-
ber (Mac) was 0.3. Mean and RMS velocity profiles were obtained
and compared with the incompressible cases. To the best of the
author’s knowledge, this is the only application of DGM to DNS
of turbulent flows.

There are two types of compressibility effects. One is caused by
variations of the mean properties such as density and viscosity, and
the other the fluctuation of thermodynamic quantities [19]. Lele
[16] has reviewed compressibility effects on turbulence. He sum-
marized many facets of compressibility effects on turbulence and
discussed several homogeneous and inhomogeneous compressible
flows. He argued that the density gradient in a compressible turbu-
lent boundary layer is mainly responsible for a decreased skin-fric-
tion coefficient, smaller turbulence intensity, viscous effects, and
for modifications to the incompressible law of the wall. Smits
[29] also argued that a single Reynolds number is not sufficient
to characterize the flow with large gradients of fluid properties.

http://dx.doi.org/10.1016/j.compfluid.2011.02.015
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Nomenclature

CKM Coleman, Kim, and Moser [8]
DGM Discontinuous Galerkin method
DNS Direct Numerical Simulation
KMM Kim, Moin, and Moser [15]
MKM Moser, Kim, and Mansour [23]
RMS Root-Mean-Square
TKE Turbulent Kinetic Energy
A Jacobian matrix
Ak Advection term
cp Specific heat for constant pressure
cv Specific heat for constant volume
Ck Compressibility term
Dk Diffusion term
D Diagonal matrix of the eigenvalues
E Total energy per unit volume
F Flatness factor
FB Body force terms
FI Inviscid flux
FV Viscous fluxbFI Numerical boundary flux for convectionbf V Numerical boundary flux for diffusion
h Half channel width
k Turbulence kinetic energy
L Left eigenvector
Ma Mach number
p Pressure
Pk Production term
P Polynomial order Negative dilatation �@ui/@ xi

Q Second invariant of the velocity gradient tensor
R Specific gas constant
R Right eigenvector
Re Reynolds number
Res Friction Reynolds number qush/l
Rij 0.5(@ui/@xj � @uj/@xi)
Sij 0.5(@ui/@xj + @uj/@xi)
S Skewness factor
s Source term
T Temperature

t Time
U Variables [q,qu,qv,qw,E]t

Um Mean bulk velocity
U+ External value at element boundary
U� Internal value at element boundary
u+ u+ = u/us
us Friction velocity
W Weighting function
y+ y+ = y/(m/us)
b Power law coefficient
dij Kronecker delta
dv Viscous length scale m/us
�k Dissipation term
c Log-law coefficient Ratio of specific heats cp/cv
j Thermal conductivity Von Kármán constant
l Dynamic viscosity
lref Reference dynamic viscosity
m Kinematic viscosity Variable coefficient
X The whole computational domain
x Vorticity
xx Streamwise vorticity
xy Wall normal vorticity
xz Spanwise vorticity
Xe The e-th element
@X The boundary of the domain
q Density
s, sij Shear stress
swav Shear stress averaged on both walls
hi Reynolds average, i.e. h/i
{} Favre average {/} = hq/i/hqi
()0 Fluctuation /0 = / � h/i
()00 Favre fluctuation /00 = / � {/}
()� Nondimensionalized variable
()m Bulk Variable
()rms RMS of a quantity
()t Time derivative of a variable
()w Variable value at the wall
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The first DNS of incompressible turbulent plane channel flow
was performed by Kim et al. [15], referred to hereafter as KMM.
The Reynolds number based on friction velocity was around 180
(Res � 180). A large number of turbulence statistics including tur-
bulence intensities, Reynolds shear stress, vorticity, high order sta-
tistics, etc., were compared with experimental data with good
agreement.

New simulations of the KMM Res � 180 case were performed by
Moser et al. [23], referred to hereafter as MKM. A comprehensive
database was provided including mean profiles, Reynolds stress,
skewness, and flatness profiles, etc. Besides this, two higher Rey-
nolds number (Res � 395 and Res � 590) for fully developed turbu-
lent channel flow simulations were conducted [23], in which fewer
low Reynolds number effects were observed than the Res � 180
case. For example, near-wall scaling of mean streamwise velocity
profile for the case Res � 180 has a larger intercept in the log-law
region than for higher Reynolds number flows.

DNS of turbulent compressible plane channel flow between
isothermal walls was performed by Coleman et al. [8]. The Mach
numbers based on the bulk velocity and sound speed at the walls
were 1.5 (referred to henceforth as CKM) and 3. The Reynolds num-
bers were 3000 (Res = 222) and 4880 (Res = 451) respectively,
based on the bulk velocity and channel half-width. They found that
the mean density and temperature gradients caused enhanced
streamwise coherence of near-wall streaks. The density-weighted
Van Driest transformation [31] of mean streamwise velocity
generated curves with similar slopes. It was also claimed that the
compressibility effects caused by the mean property variations
were dominant, compared with those caused by thermodynamic
fluctuations.

Huang et al. [13] analyzed the DNS results of fully developed
supersonic isothermal wall channel flow and found that the differ-
ence between Reynolds and Favre averages was small and any dif-
ference mainly existed in the region close to the wall. Their DNS
results did not support the ‘‘strong Reynolds analogy’’ that links
temperature and streamwise velocity fluctuations, as proposed
by Morkovin [20]. Instead, they proposed a new Reynolds analogy
that had good agreement with their DNS data.

Morinishi et al. [19] performed a DNS of a compressible turbu-
lent channel flow between adiabatic and isothermal walls. The
main difference between the results obtained when adiabatic and
isothermal walls were employed was explained. The energy trans-
fer was analyzed. It was found that Morkovin’s hypothesis [20],
which generally claimed that the compressible shear flow dynam-
ics should follow what is observed in incompressible flow, was not
applicable to the near-wall asymptotic behavior of the wall-normal
turbulence intensity.

Foysi et al. [10] used DNS to study Reynolds shear stress scaling
in turbulent supersonic channel flow with isothermal walls. It was
found that the outer scaling (scaling with global variables) of Rey-
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nolds stresses worked well in the region far away from the wall,
but inner scaling (scaling with wall variables) failed. An effective
density was proposed based on an integral of local mean density
over the vertical extent of a turbulent eddy. They claimed that
the local-mean-density-based turbulence inner scaling law failed
because of the difference between the effective and local mean
density.

In this paper the effects of Mach number on compressible chan-
nel flow are explored with reference to mean profiles, second-or-
der and higher-order statistics of velocity and thermodynamic
properties as well as the turbulent kinetic energy budget and their
dependence on inner/outer scaling variables. The near-wall turbu-
lence structures educed using the ‘‘Q’’ criteria are also considered.

2. Computational details

2.1. Numerical methods

DNS of fully developed turbulent flow between two isothermal
parallel plates at different Mach numbers is considered. The fluid is
assumed to be an ideal gas with constant specific heats (cp = cR/
(c � 1), cv = R/(c � 1); c = 1.4, R is the gas constant) and Prandtl
number (Pr).

The nondimensionalized conservative form of continuity,
momentum, and energy equations with an addition of a driving
force can be written as:

@q�

@t�
þ
@q�u�j
@x�j

¼ 0; ð1Þ

@q�u�i
@t�

þ
@ q�u�i u�j þ p�dij

� �
@x�j

¼ 1
Re

@s�ij
@x�j
þ q�f �i ; ð2Þ

@E�

@t�
þ
@ðE� þ p�Þu�j

@x�j
¼ 1

Re

@ s�iju�i þ
c�j�

Pr
@T�

@x�
j

� �
@x�j

þ q�f �i u�i ; ð3Þ

where all the variables with superscript ‘‘⁄’’ are nondimensionalized
by the reference variables (half channel width h, mean bulk density
qm, mean bulk velocity Um, dynamic viscosity at wall lw, thermal
conductivity at wall jw, specific heat at constant volume cv) in
the following way: x�i ¼ xi=h; q� ¼ q=qm; u�i ¼ ui=Um; E� ¼
E=ðqmU2

mÞ; p� ¼ p=ðqmU2
mÞ; l� ¼ l=lw; j� ¼ j=jw; T� ¼ T=ðU2

m=

cvÞ; t� ¼ t=ðh=UmÞ; f �i ¼ fi=ðU2
m=hÞ; where fi ¼ swav di1=ðhqmÞ.

The ideal gas law then becomes,

p� ¼ q�ðc� 1ÞT�: ð4Þ

Re is the reference Reynolds number: Re = qmUmh/lw; dij is Kroneck-
er’s delta: dij = 1 if i = j; dij = 0 if i – j; s�ij is the viscous stress tensor:

s�ij ¼ l�
@u�i
@x�j
þ
@u�j
@x�i

 !
� 2

3
l�dij

@u�k
@x�k

; ð5Þ

f �i is the driving force: f �i ¼ 0:5ðhs�12ijx�2¼0 � hs�12ijx�2¼2Þdi1=Re; the an-

gle brackets hi denote the average over time (t) and streamwise
(x1) and spanwise (x3) directions for channel flow; E is the total en-
ergy: E� ¼ q�T� þ 1=2q�u�i u�i ¼ p�=ðc� 1Þ þ 1=2q�u�i u�i .

The relation between the bulk Mach number and the nondi-
mensionalized wall temperature is

Ma ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1ÞT�w

p : ð6Þ

Prandtl number is defined as:

Pr ¼ cplw

jw
¼ cpl

j
: ð7Þ

Pr and cp are constants by assumption. It follows:
j� ¼ l�: ð8Þ

The calculation of dynamic viscosity was based on Sutherland’s the-
ory of viscosity, for which interpolation formula can be written as
[27]:

l� ¼ l
lw
¼ T

Tw

� �3
2 Tw þ S1

T þ S1
¼ T�

T�w

� �3
2 T�w þ S�1

T� þ S�1
; ð9Þ

where lw denotes the reference dynamics viscosity at the reference
wall temperature Tw, S1 is a constant with a value of S1 = 110K for
air, and S�1 ¼ S1=ðU2

m=cvÞ.
The Navier–Stokes equations (1)–(3) can be rewritten in a com-

pact form as:

Ut þr � FI ¼ 1
Re
r � FV þ FB; ð10Þ

where the vector U = [q�,q�u�,q�v�,q�w�,E�]t denotes the conserved
variables; Ut denotes time derivative of the vector U: @U/@t�; The
inviscid flux FI = FI(U) and the viscous flux FV ¼ FV ðU;rUÞ; FB ¼
0;q�f �x ;q�f �y ;q�f �z ;q� f �x u� þ f �y v� þ f �z w�

� �h it
represents the body

force terms.
The Adams–Bashforth scheme was employed for time integra-

tion. DGM was employed for convection and diffusion terms in
Eq. (10), but DGM treats these terms differently. The treatment
of the convection/inviscid flux term (r � FI) will be considered first.
The contribution of diffusion/viscous fluxes and body force terms
will be treated as an correction. The formulation and implementa-
tion of DGM discussed in the following are mainly based on the
method developed by [14,32].

The convection part of the Eq. (10) is:

Ut þr � FI ¼ 0: ð11Þ

Let X denote the whole computational domain and oX the bound-
ary. The whole domain X is divided into N subdomains (or ele-
ments). Xe(e = 1,2, . . . ,N) represents the e-th element with
boundary oXe. Elements are only overlapping on element interfaces.
Let W be the weighting function, which is continuous in Xe and zero
outside.

DGM treats each element separately. After multiplying the
weighting function W and integrating over the element Xe, Eq.
(11) becomes,Z

Xe
WUtdxþ

Z
Xe

Wr � FIdx ¼ 0: ð12Þ

After a series of arrangements, it gives,Z
Xe

WUtdxþ
Z

Xe
Wr � FIdxþ

Z
@Xe

Wn̂ � bFI � FI
� �

ds ¼ 0; ð13Þ

where the numerical boundary flux bFI can be written as bFIðU�;UþÞ,
where U� and U+ are internal and external values of U at the bound-
ary of element Xe. The numerical boundary flux can be computed in
many ways such as upwind flux, Roe splitting flux, Lax-Friedriches
flux (check [14] for a thorough review). Here upwind flux was
employed:

bFIðU�;UþÞ ¼ FIðRDþLU� þ RD�LUþÞ; ð14Þ

where A = RDL is the Jacobian matrix of FI;

A ¼ RDL ¼ @FI

@U
; ð15Þ

where R and L are its right and left eigenvectors; D is the diagonal
matrix of its eigenvalues and D� ¼ 1

2 ðD� jDjÞ.
Similarly, the diffusion part of the Eq. (10) is:

Ut ¼
1
Re
r � FV þ FB; ð16Þ
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where FV = FV(U,rU) is the viscous flux.
The treatment of diffusion contribution can be demonstrated by

considering the following problem:

ut ¼ r � ðmruÞ þ s; ð17Þ

where m is a variable coefficient m = m(x, t); The field variable u is a
scalar u = u(x, t); and s is the source term.

A flux variable is introduced:

fV ¼ mru: ð18Þ

Then the Eq. (17) can be rewritten as:

ut ¼ r � fV þ s; ð19Þ
1
m

fV ¼ ru: ð20Þ

Weighting functions w and v is introduced, so that, for the element
Xe, it hasZ

Xe
vutdx ¼

Z
Xe

vr � fV dxþ
Z

Xe
vsdx; ð21ÞZ

Xe

1
m

w � fV dx ¼
Z

Xe
w � rudx: ð22Þ

After a series of arrangements, it follows:Z
Xe

vutdx ¼
Z

Xe
vr � fV dxþ

Z
Xe

vsdxþ
Z
@Xe

vn̂ � f̂V � fV
� �

ds; ð23Þ

Z
Xe

1
m

w � fV dx ¼
Z

Xe
w � rudxþ

Z
@Xe

w � n̂ðû� uÞds; ð24Þ

where f̂V ; û denotes the numerical viscous boundary fluxes.
There are also many methods available for computing the

numerical viscous boundary fluxes, such as, Bassi–Rebay method
[3], local discontinuous Galerkin method [7], Baumann–Oden
method [4], etc. Here Bassi–Rebay method was employed:

f̂V ¼ 1
2

fV
þ þ fV

�

� �
; ð25Þ

û ¼ 1
2
ðuþ þ u�Þ: ð26Þ
2.2. Physical and numerical parameters

Three DNS cases with Mach numbers Ma = 0.2, Ma = 0.7, and
Ma = 1.5 (referred to as Ma02, Ma07, and Ma15 hereafter) based
on the bulk velocity Um are considered. The Reynolds number
was � 2800 based on the mean bulk density qm, mean bulk veloc-
ity Um, the dynamic viscosity at wall lw and the channel half-width
h (180, 186, and 208 based upon the wall shear velocity us and h
for Ma = 0.2, 0.7, and 1.5, respectively). A summary of the physical
parameters of the current simulations and the two reference dat-
abases (MKM, CKM) is given in the Table 1. Although there is a
slight difference in some of the parameters (such as Reynolds
and Prandtl numbers) between the case CKM and the current cases,
these differences are minor. The domain size was about the same
as MKM and CKM, except in the spanwise direction, where the cur-
Table 1
Physical and numerical parameters.

Case Ma Re Res Pr Lx

MKM 0 2800 178 – 4ph

CKM 1.5 3000 222 0.7 4ph

Ma02 0.2 2772 180 0.72 12h
Ma07 0.7 2795 186 0.72 12h
Ma15 1.5 2811 208 0.72 12h
rent domain is about 50% wider. The flow was assumed to be peri-
odic in the streamwise and spanwise directions.

Uniform grid elements were employed in the streamwise and
spanwise directions. A hyperbolic tangent function was used to
distribute grids in the wall-normal direction. The number of grid
elements are 24 � 15 � 12, in x, y, z directions respectively.

The initial field of the current simulations consisted of a uniform
density profile (hq�i = 1), a laminar parabolic velocity profile with a
superimposition of random fluctuations (hu�i = 1.5(1 � (1 � y�)2),
hv� i = 0, hw�i = 0), and a total energy profile that makes the mean
fluid temperature field uniform ðhT�i ¼ T�wÞ. The simulation started
with a polynomial expansion order of P = 5th per element and over-
integration was applied to avoid aliasing errors; that is,
10 � 10 � 10 quadrature was used in each element; then the simu-
lation was restarted using a p = 10th order expansion with over-
integration (20 � 20 � 20 quadrature in each element) to collect
the flow statistics. The numerical parameters for the current cases
are shown in Table 1 and are based on p = 10th order. As noted
above, a second-order Adams–Bashforth scheme was used for time
discretization. Grid resolutions were fine enough to capture the
smallest length scales in the flow, which can be verified by the anal-
ysis of Kolmogorov microscales as well as the one dimensional en-
ergy spectra and correlations, see [33] for details.

The statistics for all three cases Ma02, Ma07, and Ma15 were
obtained by an average over 120 nondimensional time units
(t� = t/(h/Um)), or �8t/(h/us).
3. Presentation and discussion of results

3.1. Mean profiles of velocity, density and temperature

The mean streamwise velocity, density and temperature pro-
files for Ma02 and Ma15 are compared with the incompressible
case MKM [23] and the compressible case CKM [8] respectively
in Fig. 1. The velocity, density and temperature are nondimension-
alized by the bulk velocity, bulk density, and the wall temperature,
respectively. The wall-normal coordinate y denotes the nondimen-
sionalized variable y/h for convenience. The agreement between
the current simulations and those of MKM and CKM is observed
to be excellent.

A comparison of the mean density and temperature profiles for
Ma02, Ma07 and Ma15 is presented in Fig. 2. It can be seen that the
mean density and temperature profiles are sensitive to Mach num-
ber. The isothermal wall temperature is lower than the fluid tem-
perature, the maximum of which occurs at the channel center. The
larger the Mach number, the higher the temperature gradient close
to the wall, and the higher the temperature difference between the
wall and the channel center.

The mean velocity profile for the Ma02 case was generated and
it is in good agreement with the incompressible case of MKM.
However, both cases do not collapse onto the log-law, which is
due to the low Reynolds number effect, as discussed in [23].

Wall bounded flows maybe plotted using the traditional log-law
or a power law:

uþ ¼ aðyþÞb; ð27Þ
Ly Lz Dx+ Dyþmin=Dyþmax D z+

2h 4
3 ph 17.7 0.1/4.4 5.9

2h 4
3 ph 19 0.1/5.9 12

2h 6h 4.74 0.19/2.81 4.74
2h 6h 4.89 0.19/2.89 4.89
2h 6h 5.42 0.22/3.24 5.42
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which has been proposed by, for example, George and Castillo [11]
and Barenblatt et al. [2]. Barenblatt and coworkers claimed a
power law for the intermediate region of both boundary layer
and wall-bounded flows; however, George and coworkers sug-
gested that a power law was only applicable for boundary layers
and the log-law should be used for wall-bounded flows like chan-
nel and pipe flows [35,23]. The scientific discussion arising from
new observations from pipe, channel, and boundary layer flows,
reinforce the uncertainty as to what best describes these flows
[18]. Note, too, that here, Res � 200 and that the effects of viscosity
outside the viscous sublayer ought to be better captured by a
power law, rather than a log-law, the appearance of which requires
Res > Oð1000Þ, see for example Zagarola et al. [37], Morrison et al.
[22].

The power and log-laws are considered here to ascertain their
performance when applied to compressible flows and to determine
their dependence on Mach number. Two quantities are often used
to compare the performance of power law and log-law to decide
which one is more suitable for the scaling. They are defined as fol-
lows [23]:

b ¼ yþ

uþ
duþ

dyþ
; ð28Þ

c ¼ yþ
duþ

dyþ
: ð29Þ
bis supposed to be a constant (that is, b in Eq. (27)) in the region
where a power law applies. c should be 1/j in the region where
log-law applies. b and c for Ma02, Ma07, and Ma15 are shown in
Fig. 3. It can be seen that the power law displays a more consistent
variation with y+ than the log-law, and remains constant over a
wider region, say, 50 < y+ < 150 (i.e. overlap region). Moser et al.
[23] performed a similar study for the scaling of mean velocities
with Reynolds number and found that neither the power law nor
the log-law was obeyed exactly although b increased more slowly
with y+ than c for the high Reynolds number cases. Similarly, the
data in the figure suggests that the power law seems to be better
than the log-law for the scaling of the mean streamwise velocity
with Mach number.

The mean pressure, nondimensionalized by the wall pressure, is
presented in Fig. 4. It is observed that the position of the minimum
pressure shifts from y � 0.3 for the case Ma02 to y � 0.4 for the
case Ma15, which is the same as the shift of positions of the max-
imum root-mean-square wall-normal velocity fluctuations, as will
be discussed in the next section. The value of the minimum pres-
sure decreases with increasing Mach number.

3.2. Second-order statistics

The root-mean-square (RMS) profiles for Ma02 match almost
perfectly with the incompressible case MKM [23]. The RMS profiles
for Ma15 match well with the CKM case [8]. The inner scaling of



y

<
ρ>

/ρ
m

, <
T

>
/T

w

0 0.5 1 1.5 2

1

1.1

1.2

1.3

1.4

1.5

<ρ>/ρm (Ma=0.2)
<T>/Tw (Ma=0.2)
<ρ>/ρm (Ma=0.7)
<T>/Tw (Ma=0.7)
<ρ>/ρm (Ma=1.5)
<T>/Tw (Ma=1.5)

Fig. 2. Profiles of mean density normalized by the bulk density and the mean temperature normalized by wall temperature (right) for the cases Ma02, Ma07, and Ma15 in
global coordinates.

y+

β

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

β (Ma=0.2)
β (Ma=0.7)
β (Ma=1.5)

y+

γ

0 50 100 150 200
0

1

2

3

4

5

6

7

8

γ (Ma=0.2)
γ (Ma=0.7)
γ (Ma=1.5)

(a)

(b)

Fig. 3. (a) A power law quantity (b) for Ma02, Ma07, and Ma15 in wall coordinates. (b) A log-law quantity (c) for Ma02, Ma07, and Ma15 in wall coordinates.

90 L. Wei, A. Pollard / Computers & Fluids 47 (2011) 85–100



L. Wei, A. Pollard / Computers & Fluids 47 (2011) 85–100 91
the RMS velocity fluctuations (normalized by the wall variables us,
m/us) shows that the maximum is increased and its location is
shifted away from the wall, with increasing Mach number. Similar
trends are observed for the RMS wall-normal and spanwise veloc-
ity fluctuations. The outer scaling (normalized by global variables
um, h) shows a good collapse in the region around y > 0.5 for all
components of RMS velocity fluctuations. Details can be found at
[33].

The current cases consider a single Reynolds number but differ-
ent Mach numbers and, as will be shown later, the Mach number
does affect the large-scale motions near the wall. It is possible that
this effect causes an inner scaling dependence with Mach number,
which in some sense agrees with Morrison’s arguments about the
influence of large-scale motions [22,21].

The RMS density and temperature fluctuations normalized by
local mean density hqi and local mean temperature hT i respec-
tively for Ma02, Ma07, and Ma15 are illustrated in Fig. 5 (top) in
wall units. RMS density and temperature fluctuations share a sim-
ilar trend, including the location of their maxima y+ � 10. The max-
imum turbulence kinetic energy production usually occurs at
y+ � 15, which can also be seen in the turbulence kinetic energy
budget section, see Section 3.4. It is interesting to see that the Pra-
ndtl number (Pr = 0.72) corresponds approximately to the ratio of
these two values. There is a slight shift in y+ of the maximum posi-
tion in these quantities with Mach number. The shift is not as sig-
nificant as that associated with the RMS velocity fluctuations;
however, the maximum value of RMS density and temperature in-
creases more significantly with increasing Mach number.

Fig. 5 (bottom) displays the RMS density and temperature fluc-
tuations normalized by the mean bulk density qm and the mean
bulk velocity square over specific heat at constant volume U2

m=cv

respectively scaled in global coordinates. The results show a better
collapse in the region y P 0.5 than the top figure.

The agreement between the present distribution of the RMS
vorticity fluctuations, normalized by the mean shear at the wall
sw/lw for Ma02, with data from the incompressible case of MKM
is good, see Wei [33]. The collapse of the wall-parallel components
of the RMS vorticity fluctuations (xx)rms (streamwise) and (xz)rms

(spanwise) is a little better than the collapse of the RMS wall-nor-
mal vorticity fluctuation (xy)rms, in the region around y+ � 25;
although all three components of RMS vorticity fluctuations for
the case Ma02 are slightly smaller than the case MKM. We attri-
bute these minor differences to improved grid resolution in the
current simulations.
<
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Fig. 4. Mean pressure profile for the
Among the three components of the RMS vorticity fluctuations,
the wall-normal component is the only one that is independent of
Reynolds number when scaled using wall variables for incompress-
ible channel flows [1,23]. For compressible flows, the RMS wall-
normal and total vorticity fluctuations become smaller in the
near-wall region with increase of Mach number when inner scaling
is used, as shown in Fig. 19 of Coleman et al. [8].

Three components of the RMS vorticity fluctuations, normalized
by sw/lw, are compared in Fig. 6 in wall coordinates. The figure
shows that (xx)rms and (xz)rms in the near-wall region y+ < 30 de-
creases with increase in the Mach number. The local minimum of
(xx)rms close to the wall changes from y+ � 5 for Ma = 0.2 to
y+ � 7 for Ma = 1.5. The local maximum of (xx)rms shifts from
y+ � 20 for Ma = 0.2 to y+ � 36 for Ma = 1.5. As the local maximum
of (xx)rms denotes the averaged center of the streamwise vortices
and local minimum correspond to the averaged edge of the vortex
[24,15], Fig. 6 indicates that the averaged streamwise eddy size in-
creases with increase in the Mach number, but its strength de-
creases with increasing Mach number. In other words, near-wall
large-scale motions are affected by Mach number. It is interesting
to note that all components roughly collapse onto one line in the
region y+ > 80, which indicates in this region, Mach number effects
are minimal.

The RMS pressure fluctuations normalized by qwu2
s and qmU2

m in
wall and global coordinates respectively are presented in Fig. 7.
The top figure shows that with increase of Mach number the
RMS pressure fluctuations decrease in the region close to the wall,
but increase in the region close to the center of the channel, and
the position of the maximum shifts away from the wall. Outer var-
iable scaling, shown in the bottom figure, indicates high sensitivity
to Mach number.

Decomposition of the shear stresses and several different forms
of turbulence stresses (hqihu0v0i, hq u0v0i, hqih u00v00i, where

00
denotes

fluctuations based on Favre average, defined as {/} = hq /i/hqi)
normalized by the wall shear stress sw for Ma02 indicates excellent
agreement with MKM, Wei [33]. The turbulence stresses, calcu-
lated according to Reynolds and Favre-type averaging, display little
difference for Ma02 and Ma07. For Ma15, however, the profile of h
qu0v0i is slightly higher than hqihu0v0i in the region where the max-
imum turbulence stress is located. Almost no difference between
hqihu0v0i and hqihu00v00i is observed for the current cases, as one
would probably expect, particularly for Ma < 1.

The comparison of the turbulence and viscous shear stresses is
illustrated in Fig. 8 in wall coordinates. The increase of turbulence
y
1 1.5 2

<p>/pw (Ma=0.2)
<p>/pw (Ma=0.7)
<p>/pw (Ma=1.5)

cases Ma02, Ma07, and Ma15.
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Fig. 5. Top: RMS density and temperature fluctuations normalized by local mean density hqi and local mean temperature hTi respectively in wall coordinates. Bottom: RMS
density and temperature fluctuations normalized by the mean bulk density qm and the mean bulk velocity square over specific heat at constant volume U2

m=cv respectively in
global coordinates.
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stress with Mach number is limited to approximately y+ < 70. In
wall coordinates, Mach number influences on the turbulence stres-
ses is evident.

3.3. Higher-order statistics

Higher-order statistics considered here are the skewness and
kurtosis (flatness) factors. The skewness (S) and flatness (F) factors
of, for example, the velocity fluctuation u0, are defined as:

Sðu0Þ ¼ hðu
0Þ3i

hu0u0i3=2 ¼
hðu� huiÞ3i
hðu� huiÞ2i3=2 ; ð30Þ

Fðu0Þ ¼ hðu
0Þ4i

hu0u0i2
¼ hðu� huiÞ

4i
hðu� huiÞ2i2

; ð31Þ

where hi denotes an average over time t and x, z directions.
The calculation of higher-order statistics usually requires more

data than that acquired to calculate the second-order statistics. As
indicated in Kim et al. [15], oscillations and asymmetry in the
skewness and flatness profiles suggest that the sample size used
for the computation may not be adequate, and the skewness of
spanwise velocity S(w0) should be zero due to the reflection sym-
metry of the solutions of Navier–Stokes equations. In other words,
the oscillation, symmetry, and S(w0) may be used as the indicators
of the quality of the statistics. Note, too, that the skewness statis-
tics normally converge more slowly than those for flatness.

The skewness and flatness factors for velocity and pressure fluc-
tuations for the case Ma02 in wall coordinates, compared with the
case MKM, is given in Fig. 9. As can be seen from Fig. 9, there are
few oscillations observed and the skewness of w0 is essentially zero
for Ma02. Although there seems to be a big difference in the sam-
ple size used here for the case Ma02 and those of MKM, the col-
lapse of the profiles of S(u0) is good for almost the whole region,
and S(v0) collapses well except for a small region close to the wall
(y+ < 15). In other words, when compared with S(v0), S(w0), and
S(p0), S(u0) is less affected by the sample size. The figure also shows
that the sample size has a great effect on S(p0).

The general agreement between the current simulations and
those for MKM for the skewness is good. It is shown that flatness
factors of velocities collapse in the central region of the channel
(y+ > 50); that is, it displays an almost Gaussian distribution. Flat-
ness of pressure F(p0) is much larger than that of velocities in this
region, which indicates that pressure fluctuations are more
intermittent.

The skewness of velocities and pressure fluctuations for the
cases Ma02, Ma07, and Ma15 are compared in Fig. 10 in wall coor-
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Fig. 6. RMS vorticity fluctuations normalized by the mean shear at the wall sw/lw for Ma02, Ma07, and Ma15 in wall coordinates.
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dinates. Generally speaking, the influence of Mach number on the
profiles is not significant in the current Mach number range
(0.2 < Ma < 1.5).
The skewness of density and temperature fluctuations are given
in Fig. 11. The profile of the skewness of temperature S(T0) is sim-
ilar to S(u0) but with a lower magnitude. This can be explained by
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the high correlations between velocity and temperature, as will be
discussed in the next section. It is noted that close to the wall, Ma
number effects on S(q0) and S(T0) are negligible. It is also interesting
to note that the location of the local minimum of S(q0) close to the
wall and the local maximum of S(q0) is similar to the RMS stream-
wise vorticity fluctuation (xx)rms shown in Fig. 6.
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The effect of Mach number on the scaling of the flatness factors
of velocity, pressure fluctuations is displayed in Fig. 12. It seems
that F(u0) and F(p0) are not affected significantly by Mach number,
whereas the profile of F(v0) near the wall for the case Ma15 behaves
differently. The F(v0) profile for Ma15 first increases until y+ � 2.6
and then drops suddenly as it moves from the center of the channel
to the wall, an effect also observed by [30]. They argued that it was
due to the low Reynolds number and the effects of compressibility.
As this phenomenon is not observed for the cases Ma02 and Ma07,
it is suggested here that it is possibly due to effects of high gradi-
ents in the near-wall viscosity.

The flatness factors of density and temperature fluctuations are
illustrated in Figs. 13. The flatness of density F(q0) and temperature
F(T0) show similar trends. The scaling with Mach number is very
good close to the wall. The higher value in the central region of
the channel indicates highly intermittent fluctuations.
3.4. Turbulent kinetic energy budget

The turbulent kinetic energy (TKE, k ¼ 0:5hqifu00i u00i g) equation
for compressible flows can be written as [13]:
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This form is a little different from the traditional Favre-averaged
TKE equation [16,12] as the Favre-averaging process was only used
on the convective terms in the compressible Navier–Stokes equa-
tions. However, this form of the TKE equation is equivalent to the
traditional (Reynolds averaged) TKE form, as the different terms
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Fig. 16. Left Column: Correlations of streamwise velocity fluctuations at different y locations for the cases Ma02 (top), Ma07 (middle) and Ma15 (bottom). Right Column: A
snapshot of streamwise velocity fluctuations at y = 0.03 (y+ � 5) for the case Ma02 (top), Ma07 (middle), and Ma15 (bottom) respectively.
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Fig. 15. Compressibility terms of TKE equation (Eq. (38)) normalized by wall variables swus/dv in wall coordinates.
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The streamwise (x1) and spanwise (x3) directions may be aver-
aged so that Eq. (32) can be simplified to,

Ak ¼ Pk þ Dk þ �k þ Ck; ð33Þ

Where the terms in the TKE Eq. (33) are denoted as,
Advection:
Fig. 17. Iso-surfaces of second invariant of the velocity gradient tensor (Q = 0.5) in the b
Ma02, Ma07 and Ma15. The coloring is based on the local streamwise velocity.
Ak ¼
@ 1

2 hqi u00i u00i
� �

fu2g
@x2

; ð34Þ

Production:

Pk ¼ �hqi u00i u002
� � @fuig

@x2
; ð35Þ
ottom half channel (structures in the top half channel are removed for clarity) for
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Diffusion:

Dk ¼ �
@ 1

2 hqi u00i u00i u002
� �

� u0is0i2
� �

þ u02p0
� �
 �

@x2
; ð36Þ

Dissipation:

�k ¼ s00ij
@u0i
@xj

	 

; ð37Þ

Compressibility:

Ck ¼ �Ck1 þ Ck2 þ Ck3; ð38Þ

where Ck1 ¼ u002
� �

@hpi=@x2; Ck2 ¼ u00i
� �

@hsi2i=@x2; Ck3 ¼ p0@u0j=@xj

D E
is the pressure-dilatation correlation term.

The TKE budget normalized by wall variables swus/dv (viscous
length scale dv = m/us) for all three cases Ma02, Ma07, and Ma15
is given in the top of the Fig. 14. The advection terms should be
and are zero for all cases. The maximum turbulence production de-
creases with increasing Ma number and with distance from the
wall. A similar trend is observed for the turbulence dissipation
and diffusion terms. On the contrary, the magnitude of compress-
ibility terms increase as Mach number increases. However, the
influence of compressibility terms is small and mainly contained
in the near-wall region. Further discussion of compressibility terms
will be dealt with shortly. It can also be seen that there is an obvi-
ous Ma number effect in the near-wall region.

We now return to compressibility effects. Fig. 15 provides a plot
for the three compressibility terms: Ck1, Ck2, Ck3 for three Mach
numbers where inner scaling is used, as was presented for the term
Ck in Fig. 14. It shows that the compressibility term Ck in the TKE
equation is mainly affected by the term Ck2. This was addressed
by Morinishi et al. [19]. The magnitude of the term Ck2 increases
significantly near the wall and its maximum moves farther away
from the wall, as the Mach number increases.
3.5. Near-wall turbulence structures

Near-wall streaks, which are characteristic of wall-bounded tur-
bulent flows [26], are referred to as narrow regions of near-wall
low speed fluid stretched in the streamwise direction [28]. [28]
studied characteristics of near-wall streaks in a turbulent bound-
ary layer for a Reynolds number range of 740 < Reh < 5830 and
found that the near-wall low speed streaks had a mean spanwise
spacing of Dz+ � 100 in wall units, which was independent of Rey-
nolds number; however, the spanwise streak spacing was found to
increase with increasing distance from the wall. Numerical results
of Kim et al. [15] confirmed these findings by considering spanwise
autocorrelations of streamwise velocity fluctuations. Morinishi
et al. [19] reported that the spanwise streak spacing is around
100 in semi-local wall units ðdv� ¼ hli=ðhqius� Þ;us� ¼ ðsw=hqiÞ0:5Þ
for compressible channel flow.

The spanwise correlations of streamwise velocities at different y
locations for all three cases Ma02, Ma07, and Ma15 are given in
Fig. 16 in wall units. It can be seen that the location of the mini-
mum of the correlations increases as the distance from the wall in-
creases for all cases. The minimum is significant in the near-wall
region (y+ < 30). Comparison for three cases shows that the loca-
tion of the minimum of the correlation in the near-wall region in-
creases as Mach number increases, which corresponds to increased
streak spacing. It is found that the near-wall low speed streak spac-
ings (twice of the location Dz+ of minimum correlation of stream-
wise velocity fluctuations) for the case Ma = 0.2 increases from
around 100 wall units at y+ � 5 to around 140 at y+ � 27, which
agrees well with the incompressible experimental and numerical
results reported by Kim et al. [15], Smith and Metzler [28]. It is also
found that the spacing at y+ � 5 increases from around 100 wall
units for the case Ma = 0.2 to around 150 for the case Ma = 1.5.

The visualization of the streaks is also indicated in Fig. 16,
which is taken from a snapshot of streamwise velocity fluctuations
at y/h = 0.03 (y+ � 5) for the case Ma02 (top), Ma07 (middle), and
Ma15 (bottom) respectively. The streaks lengthen in the stream-
wise direction and become wider in the spanwise direction as
the Mach number increases. In other words, the mean spanwise
streak spacing increases with increasing Mach number, which con-
firms the previous predictions based on spanwise correlations of
streamwise velocities. Additional discussion of near-wall streaks
of density, temperature, vorticity and their interactions can be
found in Wei and Pollard [34].

The second invariant of the velocity gradient tensor (denoted as
Q) is usually used for the visualization of turbulent coherent struc-
tures. It is defined as [5]

Q ¼ 1
2
ðP2 � SijSji � RijRjiÞ; ð39Þ

where P = �@ui/@xi is zero for incompressible flows, Sij = 0.5(@ui/
@xj + ouj/@xi), and Rij = 0.5(@ui/oxj � @uj/@xi).

Iso-surfaces of Q = 0.5 (nondimensionalized by bulk velocity
and half channel width) in the bottom half channel (structures in
the top half channel are removed for clarity) for the cases Ma02,
Ma07, and Ma15 are presented in Fig. 17. The coloring of the iso-
surfaces is based on the local streamwise velocity, which is similar
to Wu and Moin [36]. It can be seen here that the structures are
more sparsely distributed and elongated as Mach number in-
creases, which is similar to the distribution of near-wall low speed
streaks. The inclined hairpin-like structures with both one leg and
two legs are observed, but only a few have two legs with heads, i.e.
a full hairpin structure.
4. Concluding remarks

DNS of fully developed, isothermal wall, turbulent channel flow
at Mach numbers Ma = 0.2, Ma = 0.7, and Ma = 1.5 and Reynolds
number Re � 2800 has been performed. The agreement between
the current simulation results obtained using DGM and the corre-
sponding incompressible DNS data of MKM and compressible DNS
data of CKM is satisfactory, thereby demonstrating the utility of the
DGM for DNS.

Compared with the log-law, a power law seems to slightly bet-
ter represent the scaling of mean streamwise velocity with Mach
number for the current cases, although the mean velocity profiles
of the current cases do not exactly obey power law either all of
which is likely the effects of the low Reynolds number used in
the simulations.

Second-order and higher-order statistics scalings have been dis-
cussed. It is found that the inner scaling of second-order statistics,
such as velocity, density, temperature, shear stress and vorticity
fluctuations, is dependent of Mach number; but outer scaling with
Mach number (i.e. density, temperature fluctuations) shows a bet-
ter collapse. Near-wall large-scale motions are affected by Mach
number.

The TKE budget has been reported. The related scaling and anal-
ysis of compressibility terms have been analyzed. The result shows
that the inner scaling of TKE budget does not collapse well in the
near-wall region. The influence of compressibility terms on the
TKE budget is negligible.

Near-wall streaks, indicated by the spanwise correlation of
streamwise velocity fluctuations and by the snapshot of stream-
wise velocity fluctuations close to the wall, have been analyzed.
The agreement of spanwise streak spacing between the case
Ma02 and the incompressible data [15] is good. The spanwise
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streak spacing, while it is generally known to be independent of
Reynolds numbers, increases with increasing Mach number and
this was confirmed by the snapshot of near-wall streak contours.
Iso-surfaces of second invariant of the velocity gradient tensor
are more sparsely distributed and elongated as Mach number in-
creases, which is similar to the distribution of near-wall low speed
streaks.
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