Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method

Liang Wei, Andrew Pollard *

Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, Canada K7L 3N6

Abstract

Direct numerical simulation of turbulent channel flows between isothermal walls have been carried out using discontinuous Galerkin method. Three Mach numbers are considered (0.2, 0.7, and 1.5) at a fixed Reynolds number \(Re = 2800 \), based on the bulk velocity, bulk density, half channel width, and dynamic viscosity at the wall. Power-law and log-law with the scaling of the mean streamwise velocity are considered to study their performance on compressible flows and their dependence on Mach numbers. It indicates that power law seems slightly better and less dependent on Mach number than the log-law in the overlap region. Mach number effects on the second-order (velocity, pressure, density, temperature, shear stress, and vorticity fluctuations) and higher-order (skewness and flatness of velocity, pressure, density, and temperature fluctuations) statistics are explored and discussed. Both inner (that is wall variables) and outer (that is global) scalings (with Mach number) are considered. It is found that for some second-order statistics (i.e. velocity, density, and temperature), the outer scaling collapses better than the inner scaling. It is also found that near-wall large-scale motions are affected by Mach number. The near-wall spanwise streak spacing increases with increasing Mach number. Iso-surfaces of the second invariant of the velocity gradient tensor are more sparsely distributed and elongated as Mach number increases, which is similar to the distribution of near-wall low speed streaks.

1. Introduction

Wall bounded turbulent flows are important because they are widely used in practical engineering applications, such as the external flow around airplanes, ships, and buildings, the internal flow through turbine blades, pipes, and channels. It has been demonstrated that incompressible turbulent channel flow is extremely useful for the study of wall-bounded turbulence [17]. Direct numerical simulation (DNS) of wall-bounded compressible turbulent flow is equally useful because it provides 3D and time-dependent data that are very difficult or even impossible to obtain experimentally [19]. These earlier investigators used spectral, finite volume-type solvers; here, the discontinuous Galerkin method (DGM) is used for the DNS to assess the method and to study the effects of Mach number and compressibility effects on turbulence statistics, turbulence structures, and related turbulence physics.

DGM is a finite element based method that uses numerical fluxes on element boundaries, which draws from the finite volume method, so that it can accommodate discontinuous solutions on element boundaries. It has many attractive features including: high order accuracy, highly parallelizable, well suited for complex geometries, local conservation, etc. [6]. The first DGM was introduced by Reed and Hill [25]. It is only recently that DGM has been made suitable for computational fluid dynamics related applications [6,14], see [33] for details. The first application of DGM to DNS of turbulent flows was performed by [9], who applied the DGM to a low-Reynolds-number DNS of compressible turbulent channel flow with isothermal walls. The Reynolds number based on the friction velocity \(\left(Re_f \right) \) was 100. The center-line Mach number \(\left(Ma_c \right) \) was 0.3. Mean and RMS velocity profiles were obtained and compared with the incompressible cases. To the best of the author’s knowledge, this is the only application of DGM to DNS of turbulent flows.

There are two types of compressibility effects. One is caused by variations of the mean properties such as density and viscosity, and the other the fluctuation of thermodynamic quantities [19]. Lele [16] has reviewed compressibility effects on turbulence. He summarized many facets of compressibility effects on turbulence and discussed several homogeneous and inhomogeneous compressible flows. He argued that the density gradient in a compressible turbulent boundary layer is mainly responsible for a decreased skin-friction coefficient, smaller turbulence intensity, viscous effects, and for modifications to the incompressible law of the wall. Smits [29] also argued that a single Reynolds number is not sufficient to characterize the flow with large gradients of fluid properties.

* Corresponding author.
E-mail address: pollard@me.queensu.ca (A. Pollard).

0045-7930/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
The first DNS of incompressible turbulent plane channel flow was performed by Kim et al. [15], referred to hereafter as KMM. The Reynolds number based on friction velocity was around 180 ($Re_s \approx 180$). A large number of turbulence statistics including turbulence intensities, Reynolds shear stress, vorticity, high order statistics, etc., were compared with experimental data with good agreement.

New simulations of the KMM $Re_s \approx 180$ case were performed by Moser et al. [23], referred to hereafter as MKM. A comprehensive database was provided including mean profiles, Reynolds stress, skewness, and flatness profiles, etc. Besides this, two higher Reynolds number ($Re_x \approx 395$ and $Re_x \approx 590$) for fully developed turbulent channel flow simulations were conducted [23], in which fewer low Reynolds number effects were observed than the $Re_x \approx 180$ case. For example, near-wall scaling of mean streamwise velocity profile for the case $Re_x \approx 180$ has a larger intercept in the log-law region than for higher Reynolds number flows.

DNS of turbulent compressible plane channel flow between isothermal walls was performed by Coleman et al. [8]. The Reynolds number based on the bulk velocity and sound speed at the walls were 3000 ($Re_x = 222$) and 4880 ($Re_x = 451$), respectively, based on the bulk velocity and channel half-width. They found that the mean density and temperature gradients caused enhanced streamwise coherence of near-wall streaks. The density-weighted Van Driest transformation [31] of mean streamwise velocity generated curves with similar slopes. It was also claimed that the compressibility effects caused by the mean property variations were dominant, compared with those caused by thermodynamic fluctuations.

Huang et al. [13] analyzed the DNS results of fully developed supersonic isothermal wall channel flow and found that the difference between Reynolds and Favre averages was small and any difference mainly existed in the region close to the wall. Their DNS results did not support the “strong Reynolds analogy” that links temperature and streamwise velocity fluctuations, as proposed by Morkovin [20]. Instead, they proposed a new Reynolds analogy that had good agreement with their DNS data.

Morinishi et al. [19] performed a DNS of a compressible turbulent channel flow between adiabatic and isothermal walls. The main difference between the results obtained when adiabatic and isothermal walls were employed was explained. The energy transfer was analyzed. It was found that Morkovin’s hypothesis [20], which generally claimed that the compressible shear flow dynamics should follow what is observed in incompressible flow, was not applicable to the near-wall asymptotic behavior of the wall-normal turbulence intensity.

Fosyi et al. [10] used DNS to study Reynolds shear stress scaling in turbulent supersonic channel flow with isothermal walls. It was found that the outer scaling (scaling with global variables) of Rey-
nolds stresses worked well in the region far away from the wall, but inner scaling (scaling with wall variables) failed. An effective density was proposed based on an integral of local mean density over the vertical extent of a turbulent eddy. They claimed that the local-mean-density-based turbulence inner scaling law failed because of the difference between the effective and local mean density.

In this paper the effects of Mach number on compressible channel flow are explored with reference to mean profiles, second-order and higher-order statistics of velocity and thermodynamic properties as well as the turbulent kinetic energy budget and their dependence on inner/outter scaling variables. The near-wall turbulence structures educed using the “Q” criteria and Prandtl number (Pr).

2. Computational details

2.1. Numerical methods

DNS of fully developed turbulent flow between two isothermal parallel plates at different Mach numbers is considered. The fluid is assumed to be an ideal gas with constant specific heats ($c_P = \gamma R$) ($\gamma = 1$), $c_P = R(\gamma - 1)$; $\gamma = 1.4$, R is the gas constant) and Prandtl number (Pr).

The nondimensionalized conservative form of continuity, momentum, and energy equations with an addition of a driving force can be written as:

\[
\frac{\partial \rho^*}{\partial t^*} + \frac{\partial \rho^* u_i^*}{\partial x_i} = 0, \tag{1}
\]

\[
\frac{\partial \rho^* u_i^*}{\partial t^*} + \frac{\partial (\rho^* u_i^* u_j^* + \rho^* \delta_{ij})}{\partial x_j} = \frac{1}{Re} \frac{\partial \tau_{ij}^*}{\partial x_j} + \rho^* f_i^*, \tag{2}
\]

\[
\frac{\partial E^*}{\partial t^*} + \frac{\partial (E^* u_i^*)}{\partial x_i} = \frac{1}{Re} \frac{\partial (\tau_i u_i^* + \frac{\tau_{ij}^* u_j^*}{2})}{\partial x_j} + \rho^* f_i^* u_i^*, \tag{3}
\]

where all the variables with superscript “*” are nondimensionalized by the reference variables (half channel width L, mean bulk density ρ_m, mean bulk velocity U_m, dynamic viscosity at wall μ_w, thermal conductivity at wall κ_w, specific heat at constant volume c_p) in the following way:

\[
X_i = x_i/L, \quad \rho = \rho/\rho_m, \quad u_i = u_i/U_m, \quad E = E/(\rho_m U_m^2), \quad p = p/(\rho_m U_m^2), \quad \mu^* = \mu/\mu_w, \quad \kappa^* = \kappa/\kappa_w, \quad T^* = T/(U_m^2/c_p), \quad f_i^* = f_i/(U_m^2/h); \tag{4}
\]

The ideal gas law then becomes:

\[
p^* = \rho^*(\gamma - 1) T^*. \tag{5}
\]

Re is the reference Reynolds number: $Re = \rho_m U_m h/\mu_w$; δ_{ij} is Kronecker’s delta; $\delta_{ij} = 1$ if $i = j$, $\delta_{ij} = 0$ if $i \neq j$; τ_{ij}^* is the viscous stress tensor:

\[
\tau_{ij}^* = \mu^* \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu^* \delta_{ij} \frac{\partial u_i}{\partial x_i}; \tag{6}
\]

\[
f_i^* = \text{the driving force: } f_i^* = 0.5(\langle \tau_{12} \rangle_{\tau_{12} = 0} - \langle \tau_{12} \rangle_{\tau_{12} > 0}) \delta_{i1}/Re; \tag{7}
\]

The relation between the bulk Mach number and the nondimensionalized wall temperature is:

\[
M_m = \frac{1}{\sqrt{\gamma (\gamma - 1) T_w}}. \tag{8}
\]

Prandtl number is defined as:

\[
Pr = \frac{c_p \mu_w}{\kappa_w}; \tag{9}
\]

Pr and c_p are constants by assumption. It follows:

\[
\kappa^* = \mu^*. \tag{10}
\]

The calculation of dynamic viscosity was based on Sutherland’s theory of viscosity, for which interpolation formula can be written as [27]:

\[
\mu^* = \frac{\mu}{\mu_w} = \left(\frac{T}{T_w} \right)^{1/2} \left(1 + \frac{T_w}{T} \right)^{1/2} S_1 \left(1 + \frac{T_w}{T} \right)^{-1}, \tag{11}
\]

where μ_w denotes the reference dynamics viscosity at the reference wall temperature T_w, S_1 is a constant with a value of $S_1 = 110 K$ for air, and $S_1 = S_1/(U_m^2/c_p)$.

The Navier–Stokes equations (1)–(3) can be rewritten in a compact form as:

\[
U_i + \nabla \cdot F^* = 0, \tag{12}
\]

where the vector $U = [\rho^*, \rho^* u_i^*, \rho^* w_i^*, E^*]$, the viscous flux $F_i^* = F_i^* U / (\mathbf{U} \cdot \mathbf{U})$, $F_i^* = \left[0, \rho^* f_1^*, \rho^* f_2^*, \rho^* (f_3^* U_j^* + f_3^* w_j^* + f_3^* w_j^*) \right]$, represents the body force terms.

The Adams–Bashforth scheme was employed for time integration. DGM was employed for convection and diffusion terms in Eq. (10), but DGM treats these terms differently. The treatment of the convection/inviscid flux term ($\nabla \cdot F^*$) will be considered first. The contribution of diffusion/viscous fluxes and body force terms will be treated as an correction. The formulation and implementation of DGM discussed in the following are mainly based on the method developed by [14,32].

The convection part of the Eq. (10) is:

\[
\int_{\Omega^*} \nabla \cdot F^* \, dx = 0. \tag{13}
\]

After a series of arrangements, it gives,

\[
\int_{\Omega^*} U_i \, dx + \int_{\Omega^*} \nabla \cdot F^* \, dx = 0. \tag{14}
\]

where the numerical boundary flux \hat{F}^* can be written as $\hat{F}^* (U_0 \cdot U_0)$, $\Omega^* = \Omega (\mathbf{u} = 0)$, \mathbf{U} is the conserved vector, \mathbf{U} is continuous in $\Omega^* \quad \Omega^*$ is an only overlapping on element interfaces. Let \mathbf{W} be the weighting function, which is continuous in Ω^* and zero outside.

The convection part of the Eq. (10) is treated separately. After multiplying the weighting function \mathbf{W} and integrating over the element Ω^*, Eq. (11) becomes:

\[
\int_{\Omega^*} \mathbf{U} \mathbf{W} \, dx + \int_{\Omega^*} \nabla \cdot \hat{F}^* \, dx = 0. \tag{15}
\]

After a series of arrangements, it gives,

\[
\int_{\Omega^*} \mathbf{U} \mathbf{W} \, dx + \int_{\Omega^*} \nabla \cdot \hat{F}^* \, dx + \int_{\Omega^*} \mathbf{W} \cdot (\hat{F}^* - F^*) \, dx = 0. \tag{16}
\]

where $\mathbf{A} = \mathbf{RDL}$ is the Jacobian matrix of \mathbf{F}.

\[
\mathbf{A} = \mathbf{RDL} = \frac{\partial \mathbf{F}^*}{\partial \mathbf{U}}. \tag{17}
\]

where \mathbf{R} and \mathbf{L} are its right and left eigenvectors; \mathbf{D} is the diagonal matrix of its eigenvalues and $\mathbf{D} = \frac{1}{2} (\mathbf{D} \pm \mathbf{D}^2)$.

Similarly, the diffusion part of the Eq. (10) is:

\[
U_i = \frac{1}{Re} \nabla \cdot F_i^* + F_i^*. \tag{18}
\]
where $F^v = F^v(U, \nabla U)$ is the viscous flux.

The treatment of diffusion contribution can be demonstrated by considering the following problem:

$$u_t = \nabla \cdot (v \nabla u) + s,$$

where v is a variable coefficient $v = v(x,t)$; The field variable u is a scalar $u = u(x,t)$; and s is the source term.

A flux variable is introduced:

$$f^v = v \nabla u.$$

Then the Eq. (17) can be rewritten as:

$$u_t = \nabla \cdot f^v + s,$$

$$\frac{1}{v} f^v = \nabla u.$$

Weighting functions w and v is introduced, so that, for the element S^e, it has

$$\int_{S^e} v u_t d x = \int_{S^e} v \nabla \cdot f^v d x + \int_{S^e} v s d x,$$

$$\int_{S^e} \frac{1}{v} w \cdot f^v d x = \int_{S^e} w \cdot \nabla u d x.$$

After a series of arrangements, it follows:

$$\int_{S^e} v u_t d x = \int_{S^e} v \nabla \cdot f^v d x + \int_{S^e} v s d x + \int_{S^e} \frac{1}{v} n \cdot \left(f^v - \tilde{f}^v \right) d s,$$

$$\int_{S^e} \frac{1}{v} w \cdot f^v d x = \int_{S^e} w \cdot \nabla u d x + \int_{S^e} w \cdot \tilde{n} (\tilde{u} - u) d s,$$

where f^v, \tilde{u} denotes the numerical viscous boundary fluxes.

There are also many methods available for computing the numerical viscous boundary fluxes, such as, Bassi–Rebay method [3], local discontinuous Galerkin method [7], Baumann–Oden numerical viscous boundary fluxes, such as, Bassi–Rebay method [4], etc. Here Bassi–Rebay method was employed:

$$\tilde{f}^v = \frac{1}{2} \left(f^v + \tilde{f}^V \right),$$

$$\tilde{u} = \frac{1}{2} (u_i + u_j).$$

2.2. Physical and numerical parameters

Three DNS cases with Mach numbers $Ma = 0.2$, $Ma = 0.7$, and $Ma = 1.5$ (referred to as Ma02, Ma07, and Ma15 hereafter) based on the bulk velocity U_m are considered. The Reynolds number was ≈ 2800 based on the mean bulk density ρ_m, mean bulk velocity U_m, the dynamic viscosity at wall μ_w, and the channel half-width h (180, 186, and 208 based upon the wall shear velocity u_* and h for $Ma = 0.2, 0.7,$ and 1.5, respectively). A summary of the physical parameters of the current simulations and the two reference databases (MKM, CKM) is given in the Table 1. Although there is a slight difference in some of the parameters (such as Reynolds and Prandtl numbers) between the case CKM and the current cases, these differences are minor. The domain size was about the same as MKM and CKM, except in the spanwise direction, where the current domain is about 50% wider. The flow was assumed to be periodic in the streamwise and spanwise directions.

Uniform grid elements were employed in the streamwise and spanwise directions. A hyperbolic tangent function was used to distribute grids in the wall-normal direction. The number of grid elements are $24 \times 15 \times 12$, in x, y, z directions respectively.

The initial field of the current simulations consisted of a uniform density profile $\langle \rho^v \rangle = 1$, a laminar parabolic velocity profile with a superimposition of random fluctuations $\langle u^v \rangle = 1.5(1 - (1 - y^2)^2)$, $\langle u^v \rangle = 0$, $\langle w^v \rangle = 0$, and a total energy profile that makes the mean fluid temperature field uniform $\langle T^v \rangle = T_m$. The simulation started with a polynomial expansion order of $P = 5$th per element and over-integration was applied to avoid aliasing errors; that is, $10 \times 10 \times 10$ quadrature was used in each element; then the simulation was restarted using a $p = 10$th order expansion with over-integration ($20 \times 20 \times 20$ quadrature in each element) to collect the flow statistics. The numerical parameters for the current cases are shown in Table 1 and are based on $p = 10$th order. As noted above, a second-order Adams–Bashforth scheme was used for time discretization. Grid resolutions were fine enough to capture the smallest length scales in the flow, which can be verified by the analysis of Kolmogorov microscales as well as the one dimensional energy spectra and correlations, see [33] for details.

The statistics for all three cases Ma02, Ma07, and Ma15 were obtained by an average over 120 nondimensional time units ($t^* = \eta U_m / h$), or $\approx 8t/\eta U_m$.

3. Presentation and discussion of results

3.1. Mean profiles of velocity, density and temperature

The mean streamwise velocity, density and temperature profiles for Ma02 and Ma15 are compared with the incompressible case MKM [23] and the compressible case CKM [8] respectively in Fig. 1. The velocity, density and temperature are non-dimensionalized by the bulk velocity, bulk density, and the wall temperature, respectively. The wall–normal coordinate y is in good agreement with the incompressible case of MKM. However, both cases do not collapse onto the log-law, which is due to the low Reynolds number effect, as discussed in [23].

Wall bounded flows may be plotted using the traditional log-law or a power law:

$$u^* = a(y^*)^b.$$ (27)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Physical and numerical parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Ma</td>
</tr>
<tr>
<td>MKM</td>
<td>0.0</td>
</tr>
<tr>
<td>CKM</td>
<td>1.5</td>
</tr>
<tr>
<td>Ma02</td>
<td>0.2</td>
</tr>
<tr>
<td>Ma07</td>
<td>0.7</td>
</tr>
<tr>
<td>Ma15</td>
<td>1.5</td>
</tr>
</tbody>
</table>
which has been proposed by, for example, George and Castillo [11] and Barenblatt et al. [2]. Barenblatt and coworkers claimed a power law for the intermediate region of both boundary layer and wall-bounded flows; however, George and coworkers suggested that a power law was only applicable for boundary layers and the log-law should be used for wall-bounded flows like channel and pipe flows [35,23]. The scientific discussion arising from new observations from pipe, channel, and boundary layer flows, reinforce the uncertainty as to what best describes these flows [18]. Note, too, that here, \(\text{Re}_c > 1000 \) and that the effects of viscosity outside the viscous sublayer ought to be better captured by a power law, rather than a log-law, the appearance of which requires \(\text{Re}_c > \epsilon(1000) \), see for example Zagarola et al. [37], Morrison et al. [22].

The power and log-laws are considered here to ascertain their performance when applied to compressible flows and to determine their dependence on Mach number. Two quantities are often used to compare the performance of power law and log-law to decide which one is more suitable for the scaling. They are defined as follows [23]:

\[
\beta = \frac{y^+ du^+}{d y^+},
\]

\[
\gamma = \frac{y^+ du^+}{d y^+}.
\]

The root-mean-square (RMS) profiles for Ma02 match almost perfectly with the incompressible case MKM [23]. The RMS profiles for Ma15 match well with the CKM case [8]. The inner scaling of

\[\text{Fig. 1. Mean streamwise velocity, density and temperature profiles for the case Ma02 and Ma15 versus the case MKM [23] and CKM [8] respectively.}\]
Fig. 2. Profiles of mean density normalized by the bulk density and the mean temperature normalized by wall temperature (right) for the cases Ma02, Ma07, and Ma15 in global coordinates.

Fig. 3. (a) A power law quantity (β) for Ma02, Ma07, and Ma15 in wall coordinates. (b) A log-law quantity (γ) for Ma02, Ma07, and Ma15 in wall coordinates.
the RMS velocity fluctuations (normalized by the wall variables u_r, v/u_r) shows that the maximum is increased and its location is shifted away from the wall, with increasing Mach number. Similar trends are observed for the RMS wall-normal and spanwise velocity fluctuations. The outer scaling (by global variables u_m, h) shows a good collapse in the region around $y > 0.5$ for all components of RMS velocity fluctuations. Details can be found at [33].

The current cases consider a single Reynolds number but different Mach numbers and, as will be shown later, the Mach number does affect the large-scale motions near the wall. It is possible that this effect causes an inner scaling dependence with Mach number, which in some sense agrees with Morrison’s arguments about the influence of large-scale motions [22,21].

The RMS density and temperature fluctuations normalized by local mean density ρ_i and local mean temperature T_i respectively for Ma02, Ma07, and Ma15 are illustrated in Fig. 5 (top) in wall units. RMS density and temperature fluctuations share a similar trend, including the location of their maxima $y' \approx 10$. The maximum turbulence kinetic energy production usually occurs at $y' \approx 15$, which can also be seen in the turbulence kinetic energy budget section, see Section 3.4. It is interesting to see that the Prandtl number ($Pr = 0.72$) corresponds approximately to the ratio of these two values. There is a slight shift in y' of the maximum position in these quantities with Mach number. The shift is not as significant as that associated with the RMS velocity fluctuations; however, the maximum value of RMS density and temperature increases more significantly with increasing Mach number.

Fig. 5 (bottom) displays the RMS density and temperature fluctuations normalized by the mean bulk density ρ_m and the mean bulk velocity square over specific heat at constant volume U_m^2/C_v, respectively scaled in global coordinates. The results show a better collapse in the region $y > 0.5$ than the top figure.

The agreement between the present distribution of the RMS vorticity fluctuations, normalized by the mean shear at the wall τ_{w}/f_{w} for Ma02, with data from the incompressible case of MKM is good, see Wei [33]. The collapse of the wall-parallel components of the RMS vorticity fluctuations ω_{i}^{rms} (streamwise) and ω_{i}^{rms} (spanwise) is a little better than the collapse of the RMS wall-normal vorticity fluctuation ω_{i}^{rms}. In the region around $y' = 25$; although all three components of RMS vorticity fluctuations for the case Ma02 are slightly smaller than the case MKM. We attribute these minor differences to improved grid resolution in the current simulations.

Among the three components of the RMS vorticity fluctuations, the wall-normal component is the only one that is independent of Reynolds number when scaled using wall variables for incompressible channel flows [1,23]. For compressible flows, the RMS wall-normal and total vorticity fluctuations become smaller in the near-wall region with increase of Mach number when inner scaling is used, as shown in Fig. 19 of Coleman et al. [8].

Three components of the RMS vorticity fluctuations, normalized by τ_{w}/f_{w}, are compared in Fig. 6 in wall coordinates. The figure shows that ω_{i}^{rms} and ω_{i}^{rms} in the near-wall region $y' < 30$ decreases with increase in the Mach number. The local minimum of ω_{i}^{rms} close to the wall changes from $y' \approx 5$ for $Ma = 0.2$ to $y' \approx 7$ for $Ma = 1.5$. The local maximum of ω_{i}^{rms} shifts from $y' \approx 20$ for $Ma = 0.2$ to $y' \approx 36$ for $Ma = 1.5$. As the local maximum of ω_{i}^{rms} denotes the averaged center of the streamwise vortices and local minimum correspond to the averaged edge of the vortex [24,15]. Fig. 6 indicates that the averaged streamwise eddy size increase with increase in the Mach number, but its strength decreases with increasing Mach number. In other words, near-wall large-scale motions are affected by Mach number. It is interesting to note that all components roughly collapse onto one line in the region $y' > 80$, which indicates in this region, Mach number effects are minimal.

The RMS pressure fluctuations normalized by $\rho_m U_m^2$ and $\rho_m U_m^2$ in wall and global coordinates respectively are presented in Fig. 7. The top figure shows that with increase of Mach number the RMS pressure fluctuations decrease in the region close to the wall, but increase in the region close to the center of the channel, and the position of the maximum shifts away from the wall. Outer variable scaling, shown in the bottom figure, indicates high sensitivity to Mach number.

Decomposition of the shear stresses and several different forms of turbulence stresses $\langle (\rho) (u'v') \rangle$, $\langle (\rho) u'v' \rangle$, and $\langle (\rho) (u')^2 \rangle$, where $\langle \rangle$ denotes fluctuations based on Favre average, defined as $\langle \phi \rangle = \langle \rho \phi \rangle / \langle \rho \rangle$ normalized by the wall shear stress τ_{w} for Ma02 indicates excellent agreement with MKM, Wei [33]. The turbulence stresses, calculated according to Reynolds and Favre-type averaging, display little difference for Ma02 and Ma07. For Ma15, however, the profile of $\langle \rho w' v' \rangle$ is slightly higher than $\langle \rho (u'v') \rangle$ in the region where the maximum turbulence stress is located. Almost no difference between $\langle \rho (u'v') \rangle$ and $\langle (\rho) (u')^2 \rangle$ is observed for the current cases, as one would probably expect, particularly for $Ma < 1$.

The comparison of the turbulence and viscous shear stresses is illustrated in Fig. 8 in wall coordinates. The increase of turbulence...
stress with Mach number is limited to approximately \(y^+ < 70 \). In wall coordinates, Mach number influences on the turbulence stresses is evident.

3.3. Higher-order statistics

Higher-order statistics considered here are the skewness and kurtosis (flatness) factors. The skewness \(S \) and flatness \(F \) factors of, for example, the velocity fluctuation \(u' \), are defined as:

\[
S(u') = \frac{\langle (u')^3 \rangle}{\langle (u')^2 \rangle^{3/2}} = \frac{\langle (u - \langle u \rangle)^3 \rangle}{\langle (u - \langle u \rangle)^2 \rangle^{3/2}},
\]

\[
F(u') = \frac{\langle (u')^4 \rangle}{\langle (u')^2 \rangle^2} = \frac{\langle (u - \langle u \rangle)^4 \rangle}{\langle (u - \langle u \rangle)^2 \rangle^2},
\]

where \(\langle \cdot \rangle \) denotes an average over time \(t \) and \(x, z \) directions.

The calculation of higher-order statistics usually requires more data than that acquired to calculate the second-order statistics. As indicated in Kim et al. [15], oscillations and asymmetry in the skewness and flatness profiles suggest that the sample size used for the computation may not be adequate, and the skewness of spanwise velocity \(S(w') \) should be zero due to the reflection symmetry of the solutions of Navier–Stokes equations. In other words, the oscillation, symmetry, and \(S(w') \) may be used as the indicators of the quality of the statistics. Note, too, that the skewness statistics normally converge more slowly than those for flatness.

The skewness and flatness factors for velocity and pressure fluctuations for the case Ma02 in wall coordinates, compared with the case MKM, is given in Fig. 9. As can be seen from Fig. 9, there are few oscillations observed and the skewness of \(w' \) is essentially zero for Ma02. Although there seems to be a big difference in the sample size used here for the case Ma02 and those of MKM, the collapse of the profiles of \(S(u') \) is good for almost the whole region, and \(S(u') \) collapses well except for a small region close to the wall \((y^+ < 15) \). In other words, when compared with \(S(u') \), \(S(w') \), and \(S(p') \), \(S(u') \) is less affected by the sample size. The figure also shows that the sample size has a great effect on \(S(p') \).

The general agreement between the current simulations and those for MKM for the skewness is good. It is shown that flatness factors of velocities collapse in the central region of the channel \((y^+ > 50) \); that is, it displays an almost Gaussian distribution. Flatness of pressure \(F(p') \) is much larger than that of velocities in this region, which indicates that pressure fluctuations are more intermittent.

The skewness of velocities and pressure fluctuations for the cases Ma02, Ma07, and Ma15 are compared in Fig. 10 in wall coor-
Generally speaking, the influence of Mach number on the profiles is not significant in the current Mach number range \(0.2 < \text{Ma} < 1.5\).

The skewness of density and temperature fluctuations are given in Fig. 11. The profile of the skewness of temperature \(S(T)\) is similar to \(S(u')\) but with a lower magnitude. This can be explained by...
the high correlations between velocity and temperature, as will be discussed in the next section. It is noted that close to the wall, Mach number effects on $S(q_0)$ and $S(T_0)$ are negligible. It is also interesting to note that the location of the local minimum of $S(q')$ close to the wall and the local maximum of $S(p')$ is similar to the RMS streamwise vorticity fluctuation $(\omega_x)_\text{rms}$ shown in Fig. 6.

Fig. 8. Turbulence and viscous shear stresses normalized by the wall shear stress τ_w shear stresses for all three cases Ma02, Ma07, and Ma15 in wall coordinates.

Fig. 9. Skewness (top) and flatness (bottom) factors of velocity and pressure fluctuations for the case Ma02 in wall coordinates versus the case MKM.
Fig. 10. Skewness factors of velocity and pressure fluctuations for all three cases in wall coordinates.

Fig. 11. Skewness factors of density and temperature fluctuations for all three cases in wall coordinates.

Fig. 12. Flatness factors of velocity and pressure fluctuations for all three cases in wall coordinates. Note the diminution in $F(v')$ for $y^+ < 3$ for the case $Ma = 1.5$.
The effect of Mach number on the scaling of the flatness factors of velocity, pressure fluctuations is displayed in Fig. 12. It seems that \(F(u') \) and \(F(p') \) are not affected significantly by Mach number, whereas the profile of \(F(v') \) near the wall for the case \(Ma_{15} \) behaves differently. The \(F(v') \) profile for \(Ma_{15} \) first increases until \(y^+ \approx 2.6 \) and then drops suddenly as it moves from the center of the channel to the wall, an effect also observed by [30]. They argued that it was due to the low Reynolds number and the effects of compressibility. As this phenomenon is not observed for the cases \(Ma_{02} \) and \(Ma_{07} \), it is suggested here that it is possibly due to effects of high gradients in the near-wall viscosity.

The flatness factors of density and temperature fluctuations are illustrated in Figs. 13. The flatness of density \(F(\rho') \) and temperature \(F(T') \) show similar trends. The scaling with Mach number is very good close to the wall. The higher value in the central region of the channel indicates highly intermittent fluctuations.

3.4. Turbulent kinetic energy budget

The turbulent kinetic energy (TKE, \(k = 0.5 \rho |u'|^2 \)) equation for compressible flows can be written as [13]:

\[
\frac{\partial}{\partial t} (\rho |u'|^2) + \frac{\partial}{\partial x_j} (\rho |u'| u_j' u_i') = - \rho \left\{ \frac{\partial |u'|^2}{\partial x_j} \right\} \frac{\partial u_i}{\partial x_j} - \frac{\partial}{\partial x_j} (\rho u_i' u_j') - \left\langle u_i' u_j' \right\rangle + \left\langle u_i' p' \right\rangle - \left\langle \tau_{ij} \right\rangle \frac{\partial u_i}{\partial x_j} + \left\langle \tau_{ij} \right\rangle \frac{\partial u_j}{\partial x_i} + \left\langle p' \frac{\partial u_i'}{\partial x_j} \right\rangle + \left\langle p' \frac{\partial u_j'}{\partial x_i} \right\rangle.
\]

This form is a little different from the traditional Favre-averaged TKE equation [16,12] as the Favre-averaging process was only used on the convective terms in the compressible Navier–Stokes equations. However, this form of the TKE equation is equivalent to the traditional (Reynolds averaged) TKE form, as the different terms \(\partial\left\langle u_i' r_{ij} \right\rangle /\partial x_j, \partial\left\langle u_i' p' \right\rangle /\partial x_j, \left\langle \tau_{ij} \right\rangle /\partial x_j \) in Eq. (32) are equal to the respective terms of the traditional form: \(\partial\left\langle u_i' r_{ij} \right\rangle /\partial x_j, \partial\left\langle u_i' p' \right\rangle /\partial x_j, \left\langle \tau_{ij} \right\rangle /\partial x_j \), as \(\langle ab' \rangle = \langle a'b \rangle \).

Fig. 13. Flatness factors of density and temperature fluctuations, in wall coordinates.

Fig. 14. Turbulent kinetic energy budget normalized by wall variables \(\tau_{wj}/\delta_w \) in wall coordinates.
Fig. 15. Compressibility terms of TKE equation (Eq. (38)) normalized by wall variables τ_{uv}/δ_w, in wall coordinates.

Fig. 16. Left Column: Correlations of streamwise velocity fluctuations at different y locations for the cases $Ma=0.2$ (top), $Ma=0.7$ (middle) and $Ma=1.5$ (bottom). Right Column: A snapshot of streamwise velocity fluctuations at $y^*=0.03\ (y^*/C_{25})$ for the case $Ma=0.2$ (top), $Ma=0.7$ (middle), and $Ma=1.5$ (bottom) respectively.
The streamwise \((x_1)\) and spanwise \((x_3)\) directions may be averaged so that Eq. (32) can be simplified to,
\[
A_k = P_k + D_k + \epsilon_k + C_k;
\]
(33)

Where the terms in the TKE Eq. (33) are denoted as,

Advection:
\[
A_k = \frac{\partial}{\partial x_2} \left(\frac{1}{2} \rho \langle u' u'' \rangle \{ u_2 \} \right);
\]
(34)

Production:
\[
P_k = -\langle \rho \{ u' u'' \} \frac{\partial \langle u_2 \rangle}{\partial x_2} \rangle;
\]
(35)

Fig. 17. Iso-surfaces of second invariant of the velocity gradient tensor \(Q = 0.5\) in the bottom half channel (structures in the top half channel are removed for clarity) for \(Ma=0.2, Ma=0.7\) and \(Ma=1.5\). The coloring is based on the local streamwise velocity.
Diffusion:
\[D_k = -\frac{\partial (\rho' u' u'_z) - (u'_z \tau_{xy})}{\partial x_k}, \]
\[\epsilon_k = \left(\frac{\partial u_i}{\partial y} \right)^2; \]
\[C_k = -C_{k1} + C_{k2} + C_{k3}, \]
where \(C_{k1} = (u'_z \partial (p/\partial x_2)), \) \(C_{k2} = (u'_z \partial (\tau_{xy})/\partial x_2), \) \(C_{k3} = (p' \partial u_i/\partial x_k) \) is the pressure-dilatation correlation term.

The second invariant of the velocity gradient tensor (denoted as \(Q = \epsilon_i \epsilon_j - \frac{1}{2} \delta_{ij} \epsilon^2 \)) is zero for incompressible flows, \(S_{ij} = 0.5(\partial u_i/\partial x_j + \partial u_j/\partial x_i), \) and \(R_{ij} = 0.5(\partial u_i/\partial y_j - \partial u_j/\partial y_i). \)

3.5. Near-wall turbulence structures

Near-wall streaks, which are characteristic of wall-bounded turbulent flows [26], are referred to as near-layer regions of near-wall low speed fluid stretched in the streamwise direction [28], [28] studied characteristics of near-wall streaks in a turbulent boundary layer for a Reynolds number range of \(740 < Re < 5830 \) and found that the near-wall low speed streaks had a mean spanwise spacing of \(\Delta z^* \approx 100 \) in wall units, which was independent of Reynolds number; however, the spanwise streak spacing was found to increase with increasing distance from the wall. Numerical results of Kim et al. [15] confirmed these findings by considering spanwise velocity fluctuations for the case \(Ma = 0.2 \) from around 100 wall units at \(y^* \approx 5 \) to around 140 at \(y^* \approx 27 \), which agrees well with the incompressible experimental and numerical results reported by Kim et al. [15], Smith and Metzler [28]. It is also found that the spacing at \(y^* \approx 5 \) increases from around 100 wall units for the case \(Ma = 0.2 \) to around 150 for the case \(Ma = 1.5 \).

The visualization of the streaks is also indicated in Fig. 16, which is taken from a snapshot of streamwise velocity fluctuations at \(y/h = 0.03 (y^* \approx 5) \) for the case \(Ma02 \) (top), \(Ma07 \) (middle), and \(Ma15 \) (bottom) respectively. The streaks lengthen in the streamwise direction and become wider in the streamwise direction as the Mach number increases. In other words, the mean spanwise streak spacing increases with increasing Mach number, which confirms the previous predictions based on spanwise correlations of streamwise velocities. Additional discussion of near-wall streaks of density, temperature, vorticity and their interactions can be found in Wei and Pollard [34].

4. Concluding remarks

DNS of fully developed, isothermal wall, turbulent channel flow at Mach numbers \(Ma = 0.2, Ma = 0.7, \) and \(Ma = 1.5 \) and Reynolds number \(Re \approx 2800 \) has been performed. The agreement between the current simulation results obtained using DGM and the corresponding incompressible DNS data of MKM and compressible DNS data of CKM is satisfactory, thereby demonstrating the utility of the DGM for DNS.

Compared with the log-law, a power law seems to slightly better represent the scaling of mean streamwise velocity with Mach number for the current cases, although the mean velocity profiles of the current cases do not exactly obey power law either all of which is likely the effects of the low Reynolds number used in the simulations.

Second-order and higher-order statistics scalings have been discussed. It is found that the inner scaling of second-order statistics, such as velocity, density, temperature, shear stress and vorticity fluctuations, is dependent of Mach number; but outer scaling with Mach number (i.e. density, temperature fluctuations) shows a better collapse. Near-wall large-scale motions are affected by Mach number.

The TKE budget has been reported. The related scaling and analysis of compressibility terms have been analyzed. The result shows that the inner scaling of TKE budget does not collapse well in the near-wall region. The influence of compressibility terms on the TKE budget is negligible.

Near-wall streaks, indicated by the spanwise correlation of streamwise velocity fluctuations and by the snapshot of streamwise velocity fluctuations close to the wall, have been analyzed. The agreement of spanwise streak spacing between the case \(Ma02 \) and the incompressible data [15] is good. The spanwise
streak spacing, while it is generally known to be independent of Reynolds numbers, increases with increasing Mach number and this was confirmed by the snapshot of near-wall streak contours. Iso-surfaces of second invariant of the velocity gradient tensor are more sparsely distributed and elongated as Mach number increases, which is similar to the distribution of near-wall low speed streaks.

Acknowledgements

The authors would like to thank Dr. George Karniadakis and his CRUNCH group and Dr. Mike Kirby for providing the original discontinuous Galerkin code and the related helpful email discussions. We also thank Dr. Robert Moser and Dr. Gary N. Coleman for the use of their DNS data. The research was funded through grants from NSERC Canada. Computing resources were provided by HPCVL (www.hpcvl.org).

References