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Scale Effect of Plastic Strain Rate

HU Yu-qun1 ,  2,  ZHAO Ya-pu1 1

 (1. LNM, Institute of Mechanics, CAS, Beijing  100080, China)
(2. Dept. of Aircraft, Nanjing University of Aeronautics and Astronautics, Nanjing  210016, China)

Abstract: By analyzing some mechanical quantities and typical dynamic testing results for similar models, this

paper studies the scale effect pertaining to similar models made of strain-rate dependent materials, and also de-

scribes the effect of plastic strain rate on the mechanical behavior of similar models under dynamic loading. It

has been pointed out that the strain-rate sensitivity for dynamic behavior increases with the decrease of the char-

acteristic dimension.
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摘  要: 通过对相似模型中若干力学量和典型动力学实验中部分结果和结论的探讨分析 研究了动态载荷下

率相关材料相似模型的尺度效应 阐述了塑性应变率具有的尺度效应对相似模型在动态载荷下的影响 指出

了塑性应变率尺度效应的一个重要特征是 随着结构特征尺度的减小 其动力行为的应变率敏感效应增强
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Structures will always respond to the action of

external loading to some extent. With the gradual

increase of the external loads, the structural deforma-

tion will be in the elastic range at beginning, and then

elastic-plastic deformation will occur if the external

loading exceeds the elastic limit loading capacity of

the structure [1]. Practical engineering structures are

usually made up of many basic structural com-

ponents such as beams, plates, arches, shells

and so on. When these basic structural elements

are subjected to intensive dynamic loading or

impulsive velocity, large plastic deformation

can occur, as a result excessive permanent de-

formation is produced, and even local or global

failure could be caused in them [2].

The distinctive difference between dynamic

plastic and quasi-static plastic analyses is that inertia

and strain-rate effects are no longer neglected for

dynamic loading. The strain-rate effect is extremely

important for the dynamic plastic analysis, and espe-

cially for strain-rate sensitive materials such as mild

steel, titanium alloy, OFHC copper and so forth.

When these materials are subjected to external inten-

sive loadings (such as high-velocity impact on air-

craft structures from flying birds[3]), their dynamic

yield stresses are much larger than their static

ones[2~5]. Symonds[4] et al. carried out studies on

dynamic plastic response of cantilever beams under

impact loading in 1965, and presented a dynamic

constitutive equation which took both strain-rate

sensitivity and strain hardening into account. In the

meantime, Symonds noticed the scale effect in the

dynamic plastic response of strain-rate sensitive

materials, and pointed out that the smaller the struc-

ture, the stronger the effect of strain-rate sensitivity

will be. In 1967, Jones[5] studied the influence of both

strain hardening and strain-rate sensitivity on perma-

nent deflections of rigid-plastic beams under impul-

sive loading. His analysis showed that physically

smaller beams are more sensitive to strain-rate sensi-

tivity than larger ones. Recently, Zhao et al.[6] studied

the influence of strain-rate effect on the material
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intrinsic length scale in strain gradient plasticity and

the conclusion was that for most metals, the material

intrinsic length scale decreases with increasing strain

rate. Classical plasticity theory cannot predict scale

effect simply because no length scale is included in

its various constitutive equations. This is also true

for classical dynamic plasticity theory.

By analyzing some mechanical quantities and

experimental results of similar models, this paper

studies the influence of scale effect pertaining to

plastic strain rate on the material and structural dy-

namic response.

1 Relationship between Scale Effect
 and Some Mechanical Quantities
 of Similar Models            

Since it is very difficult to make theoretical or

numerical analyses for complicated structural sys-

tems, a smaller model test is often adopted. The

relationship will be discussed in this section between

some mechanical quantities of similar models and

variation of the model size.

1.1  Strain and stress

Engineering strain  can be defined as the ra-

tio of the length variation l to the initial length l
ll /∆=ε  (1)

This definition shows that engineering strain ε
is a dimensionless quantity, and is independent of the

geometric size of practical structures that are studied,

i.e., ε  scales with length scale as
0~][ Lε  (2)

Thus in the model experiments, ε  is independent of

the scale effect.

According to Hooke’s law, the engineering

stress σ  is related to engineering strain ε  through
εσ E= (3)

Obviously, for the similar models made of same

material, the stress will be the same for same strain,

which indicates that the stress, σ , does not vary with

the geometric size of the practical structures.

1.2  Stress wave speed and loading rate

If the transversal effect is ignored, the propaga-

tion velocity of the tensile or compressive distur-

bance along the axial direction in a one-dimensional

linear elastic bar is

ρ/0 Ec = (4)

where E  and ρ  are the Young’s modulus and the

material density, respectively. Eq.(4) shows that 0c

only depends upon the material itself rather than the

geometric size of the structure, namely 0c  is inde-

pendent of the scale effect. Elementary stress wave

theory indicates that stress σ  is linearly proportion-

al to particle velocity υ , viz
υρσ 0c= (5)

Substituting Eq. (3) into Eq. (5), one can obtain the

expression as follows

0/ cυε = (6)

When the disturbing velocity reaches the yielding
velocity )/( 0cyy ρσυ = , i.e. 

yυυ = , the stress

reaches the yield limit 
yσ , i.e., 

yσσ = , simultane-

ously 
yεε = . When 

yυυ > , plastic deformation

will occur and begin to propagate in the material.
Because the yield limit 

yσ  of material depends

only upon material itself, 
yυ  is also determined by

the material property. Due to Eq. (6), if the same
physical characteristics of response are required
between similar models made of the same material,
then the loading rate must be identical, i.e.

0~ βυ  (7)

where  is the similarity coefficient of the similar

models.

1.3  Strain rate

Strain rate ε&  is defined as[1]

td
dε

ε =&  (8)

as well as

00 d
d

d
d 1

lt

l

lt

υε
=

∆
=  (9)

where 0l  is the initial length. From the above section,

υ  must be kept the same in the experiments of the

similar models, consequently, when 0~ βυ , one can

have
1~][ −Lε&  (10)

It is clear from (10) that the strain rate possesses

scale effect.
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1.4 Coefficient of strain-rate sensitivity and 

rate sensitive parameter for strain 

hardening

As a characterization of parameter for material

strain-rate sensitivity in plastic dynamics, the coeffi-

cient of strain-rate sensitivity m  is defined as[8,9]

)(ln p
m

ε
σ
&∂

∂
=  (11)

Since the plastic strain rate pε&  is associated

with the geometric scale of structures in similar mod-

el experiments, the above m  varies with the length

scale.

Klepaczko proposed a parameter hλ  to deter-

mine the rate sensitivity of strain hardening for mate-

rials[8]

TT γ
γγ

τ
λ

,12

h
h )/log( &&

∆
=  (12)

where γ  is strain, γ&  is strain rate ( 12 γγ && > ),

T  is temperature, and τ  is stress. According to Eq.

(10), if β  is the similarity coefficient between the

prototype and the model, βγγ /1/ 12 =&& , then
11

12h )log(~)]/[log(~ −− − βγγλ &&  (13)

The above equation shows that hλ , the parameter of

the rate sensitivity of strain hardening also varies with

the model scale.

2 Several Typical Examples 
Related to Strain Rate  

2.1 Expanding-ring experiment

An expanding ring experimental method was in-

troduced by Johnson et al.[8] in 1963. The strain rate

of the expanding ring can be expressed by

r

υ
ε =&  (14)

where υ  is the initial expanding velocity, and r  is

the initial radius of the expanding ring.

Considering two expanding rings with similarity

coefficient β , i.e. the radii of prototype r′  and the

model r ′′  satisfy the relationship rr ′=′′ β . If the

loading speed υ  is kept unchanged, according to

expression Eq. (14), one can obtain the following

relationship between the strain rate of model ε ′′&  and

that of prototype ε ′& ,

β
ε

εε
′

=′
′′
′

=′′
&

&&
r

r
 (15)

The average length of the fragments of the ex-

panding ring under impulsive loading is of the or-

der[8,10]

3/2

0

3/2

00

cr ~~ −









ε

ερ
&

&C

K
d  (16)

where crK  is the fracture toughness of material, ρ
is the material density, 0C  is the velocity of elastic

wave, and 0ε&  is the bulk strain rate. From Eq. (15),

one can obtain the ratio between the average frag-

mental length of model d ′′  and the one of prototype

d′  as follows

3/2

3/2

0

0 ~~ β
ε
ε

−









′
′′

′
′′

&

&

d

d
 (17)

This shows that the average length of fragments

in the expanding ring experiments depends upon the

scale of test specimens, i.e., there is a scale effect in

the expanding ring experiments.

2.2  Adiabatic shear bands and 

recrystallization of metal

Adiabatic shear bands are regions where plastic

shear deformation in a material is highly concentrated.

The formation of these regions is extremely important

in dynamic deformation of materials because they

often are precursors of the failure of materials. Bai, et

al. [11] obtained the approximate equation for δ , the

half-width of the adiabatic shear band, as follows

2/1

2/1

~ −









≅ γ

γτ
λ

δ &
&

T
 (18)

where λ  is the thermal conductivity, and T , τ ,

and γ&  are the temperature, shear stress, and shear

rate in the shear band, respectively. Considering the

scale effect of the shear rate γ& , one can have the

relationship for the characteristic width of the adia-

batic shear bands between model δ ′′  and prototype

δ ′

2/1

2/1

~~ β
γ
γ

δ
δ

−









′
′′

′
′′

&

&
 (19)

where β  is the similarity coefficient. The above

equation shows that there is a scale effect in the

adiabatic shear deformation.
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The adiabatic shear bands have been observed

in a variety of alloys. Most quenched-and-tempered

steels (martensitic) and a number of alloys under

high-strain-rate deformation also exhibit the adiabatic

shear bands. Actually, any metal material can exhibit

adiabatic shear band formation if work hardening is

appropriately depressed. In the adiabatic shear region,

the size of recrystallizing grains decreases with the

increase of strain rate. Sandstrom, et al. [8] predicted

recrystallized grain sizes ssd  as
2/1

ss

−∝ γ&d  (20)

where γ&  is the shear strain rate. In the same way, one

can obtain the following expression

2/1

2/1

ss

ss ~~ β
γ
γ

−









′
′′

′
′′

&

&

d

d
 (21)

where ssd ′′  and ssd′  are the recrystallized grain sizes

of model and prototype, respectively, and β  is the

similarity coefficient. It is obvious that ssd  depends

on the scale.

2.3 Evolution of voids

Usually, any material contains some micro flaws

to a certain extent. When these materials are subject-

ed to certain external loads, the micro flaws can be

activated and evolve into micro cracks and micro-

voids, and then likely propagate to cause macro

breakage of materials. Under intensive dynamic

loading, the material strain-rate sensitivity has a

major influence on both the size and the statistical

distribution of micro voids[12]. The smaller the aver-

age radius of micro void is, the stronger the strain-

rate sensitivity will be.

2.4 Clamped beam under impulsive loading

The dimensionless permanent mid-point deflec-

tion of a fully clamped rigid, ideally plastic beam of

unit width loaded impulsively can be expressed in the

form of

]1)
3

1[(
2
1 2/1f −+=

n

R

H

W n  (22)

where L2  is the length of the clamped beam, and 0V

is the impulsive velocity. fW  is the permanent de-

flection of the mid-point, and nR  is  the  dimen-

sionless number (response number) suggested by

Zhao[13], which can be expressed as

2

0

22

0

H

LV
Rn σ

ρ
=  (23)

where ρ  is the material density, 0σ  is uniaxial

yield stress, H  is the height of cross section for

beam, and n  can be determined by the following

expression[14]

q

DL

WV
n /1

2

f0

0

0 )
23

(1+=
′

=
σ
σ

 (24)

where D  and q  are material constants.

Considering the similar beam models made of

identical material with the similarity coefficient β
( HHLL ′′′=′′′= //β ), if the response number nR

is kept unchanged, the impulsive velocity 0V  will be

identical between beam models. If the parameter α
is assumed to be

q

DL

HV
/1

2

0
2







=α  (25)

then there will be a relationship between the model

and the prototype as

βα
α 1

=
′′
′

=
′′
′

=







′
′′

H

H

L

L
q

 (26)

Thus it can be seen that with the decrease of beam

dimension (i.e., 1<β ), αα ′>′′  (i.e., nn ′>′′ ).

Combining Eq. (22) yields
′









<

″









H

W

H

W
ff  (27)

The above inequality shows that HW /f  varies with

the similarity coefficient, i.e., HW /f  depends on

the dimension of the beam.

From aforementioned several typical instances,

one can find that whether the average length of ex-

panding-ring fragment d , the characteristic width of

adiabatic shear band δ , the recrystallized grain size

ssd , or the maximum dimensionless permanent lateral

deflection of a clamped beam under the impulsive

loading, are all related to the plastic strain rate of the

material. Therefore, with the decrease of the dimen-

sion of similar models, there occurs correspondingly

the scale effect due to the size effect of the plastic

strain rate.
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3 Discussions on Two Constitutive
   Equations Considering Strain Rate

3.1  Cowper-Symonds dynamic constitutive 

equation

The dynamic behavior of most metallic materi-

als can be modeled by the Cowper-Symonds consti-

tutive equation as follows
qD /1

00 )/(1/ εσσ &+=′  (28)

where 0σ ′  and 0σ  denote, respectively, the dynamic

yield stress and static yield stress at a uniaxial plastic

strain rate ε& ; D  and q  are constants for a par-

ticular material. Some constants for several typical

materials [6] are listed in Table 1.

Table 1 Coefficients in Cowper-Symonds constitutive

 equation for some typical materials

Material D/s-1 q

Mild steel 40.4 5

Aluminum alloy 6500 4

α -Titanium(Ti 50A) 120 9

Stainless steel 100 10

With the decrease of the characteristic dimen-

sion of the similar model, its similarity coefficient

β ( 1<β ) decreases proportionally, and then the

strain rate in the smaller dimension model will be-

come βε /& , its yield stress 0σ ′′  will be
[ ] q

D
/1

00 )/(1/ βεσσ &+=′′  (29)

Comparing Eq. (28) to Eq. (29), leads to
[ ]

q

q

D

D
/1

/1

0

0

)/(1
)/(1

ε
βε

σ
σ

&

&

+
+

=
′
′′

 (30)

If D=ε& , Eq. (30) will be written as

2/])/1(1[/ /1
00

qβσσ +=′′′  (31)

Taking the mild steel in Table 1 as an example,

one can see from the expression (31) that

when 100.0=β , 00 292.1 σσ ′=′′ ;

when 010.0=β , 00 756.1 σσ ′=′′ ;

when 001.0=β , 00 491.2 σσ ′=′′ .

It can be seen from the above example that with

the decrease of the scale of similar model, the yield

stress will increase apparently for the material satis-

fying the Cowper-Symonds dynamic constitutive

equation, which obviously shows the scale effect of

the plastic strain rate. Even for rate-insensitive mate-

rials such as aluminum, the dynamic yield stress will

also increase with the decrease of the dimension of

the similar model due to the scale effect of the plastic

strain rate.

3.2  Johnson-Cook dynamic constitutive 

equation

Johnson and Cook presented a dynamic consti-

tutive equation in 1983 as follows[15],

)1)(ln1)(( ** mn TCBA −++= εεσ & (32)

where A , B ,C , n ,  and m  are yield strength,

work hardening coefficient, work hardening exponent,

strain rate sensitivity and thermal coefficient, ε  is

the equivalent plastic strain, 0

* / εεε &&& =  is the dimen-

sionless plastic strain rate taking 1

0 s1 −=ε& , and

)/()( rmr

* TTTTT −−=  is the homologous tempera-

ture,  with T  being the immediate absolute tem-

perature of the deformed specimen, rT  and mT  being

the room temperature and the melting point, respec-

tively.

Comparing with many other dynamic constitu-

tive equations, Johnson-Cook equation considers not

only the strain hardening and strain-rate effect of

material, but also thermal softening effect of material.

If the dimensionless temperature *T  and the

stress ε  are kept invariable, Eq. (32) can be written

as
)ln1(~ *εσ &C+  (33)

When 1* =ε& , and the similarity coefficient is β
( 1<β ), the relationship of the yield stresses between

the larger model and the smaller model will be as

follows (σ ′′  for larger model and σ ′  for smaller

model)

.ln1
)ln1(

)lnln1(
*

*

β
ε

βε
σ
σ

C

C

CC

−=
+

−+
=

′
′′

&

&

 (34)

Obviously, the yield stress for material satisfy-

ing the Johnson-Cook equation exhibits a size effect

due to the scale effect of the plastic strain rate.
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4 Example of Numerical Analysis

Consider a cylindrical mild steel bar, the proto-

type model, with initial length β4.320 =L  mm and

initial diameter β4.60 =D  mm (here  is the

similarity coefficient,  is taken as 1 for prototype

model, and material parameters of mild steel refer to

the Reference [16]) impacting a rigid target at a

velocity 0V  of 227 m/s (illustrated in Fig. 1).

Fig. 1  A mild-steel bar impacting rigid target

The following Cowper-Symonds equation can

be adopted
)()/1( 0

/1 εσεσ qD&+=  (35)

with )(0 εσ  being
p

effp00 )( εσεσ BE+=  (36)

where 0σ is the static yield stress, B  is the harden-

ing parameter, p

effε  is the efficient plastic strain, and

pE  is the plastic hardening modulus.

The finite element method is utilized, and mod-

els with  being 1, 0.1, 0.01, and 0.001 are calcu-

lated. The mesh of the bar has been shown in Fig. 2,

and all cases have the same mesh configuration.

Frictionless contact condition is assumed between the

bar and the rigid target.

Fig. 2  Sketch of element mesh for numerical analysis

Fig. 3 shows the numerical results of the above

similar bars with different similarity coefficient β .

In this figure, the vertical coordinate denotes the ratio

of instant length L  to the initial length 0L  for the

models under impact loading, i.e., the dimensionless

instant length of models 0/ LL , and the horizontal

coordinate denotes the dimensionless time 00 / LtV .

According to the results of the numerical analysis,

one can see that the relative deformation decreases

steadily with the model dimension. It is the size effect

of the plastic strain rate that results in the scale effect

of similar models made of the same kind of rate-

dependent material.

Fig. 3  Result curves of numerical analysis

5 Summary

In the first part of the present paper, an analysis

is carried out on some mechanical quantities and

some typical dynamic experiments results in similar

models, then further study is made on the scale effect

of the plastic strain rate for materials satisfying two

well-known rate-dependent dynamic constitutive

equations (i.e., Cowper-Symonds and Johnson-Cook).

It is demonstrated by numerical simulation that the

size effect caused by the decrease of the dimension

of rate-dependent material is due to the scale effect

of the plastic strain rate. It should be emphasized that

the scale effect cannot be well explained by constitu-

tive equations of classical dynamic plastic theory,

because such equations contain no length scales.

With the decrease of length scale, the structures are

more sensitive to the strain rate, thus there occurs a

major difficulty: it is necessary to develop a dynamic

constitutive equation containing internal material

length scale in the micron or submicron domains

(mainly in the field of micro-electronics and MEMS

at present). Only by this way, the physical origin and

mechanism of the scaling law and size effect can be

clearly understood.
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