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Scale Effect of Plastic Strain Rate
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Abstract: By analyzing some mechanical quantities and typical dynamic testing results for similar models, this
paper studies the scale effect pertaining to similar models made of strain-rate dependent materials, and also de-
scribes the effect of plastic strain rate on the mechanical behavior of similar models under dynamic loading. It
has been pointed out that the strain-rate sensitivity for dynamic behavior increases with the decrease of the char-
acteristic dimension.
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Structures will always respond to the action of
externa loading to some extent. With the gradua
increase of the external loads, the structural deforma-
tion will be in the elastic range at beginning, and then
elastic-plastic deformation will occur if the external
loading exceeds the elastic limit loading capacity of
the structure . Practical engineering structures are
usually made up of many basic structural com-
ponents such as beams, plates, arches, shells
and so on. When these basic structural elements
are subjected to intensive dynamic loading or
impulsive velocity, large plastic deformation
can occur, as a result excessive permanent de-
formation is produced, and even local or global
failure could be caused in them 2,

The distinctive difference between dynamic
plastic and quasi-static plastic analysesis that inertia
and strain-rate effects are no longer neglected for
dynamic loading. The strain-rate effect is extremely
important for the dynamic plastic anaysis, and espe-
cialy for strain-rate sensitive materials such as mild
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steel, titanium aloy, OFHC copper and so forth.
When these materials are subjected to external inten-
sive loadings (such as high-velocity impact on air-
craft structures from flying birds™), their dynamic
yield stresses are much larger than their dtatic
ones?™®. Symondd” et al. carried out studies on
dynamic plastic response of cantilever beams under
impact loading in 1965, and presented a dynamic
congtitutive equation which took both strain-rate
sengitivity and strain hardening into account. In the
meantime, Symonds noticed the scale effect in the
dynamic plastic response of strain-rate sensitive
materials, and pointed out that the smaller the struc-
ture, the stronger the effect of strain-rate sensitivity
will be. In 1967, Jones™ studied the influence of both
strain hardening and strain-rate sensitivity on perma-
nent deflections of rigid-plastic beams under impul-
sive loading. His analysis showed that physically
smaller beams are more sensitive to strain-rate sensi-
tivity than larger ones. Recently, Zheo et al.'® studied
the influence of strain-rate effect on the materia
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intrinsic length scale in strain gradient plasticity and
the conclusion was that for most metals, the material
intrinsic length scale decreases with increasing strain
rate. Classical plasticity theory cannot predict scale
effect simply because no length scale is included in
its various constitutive equations. This is also true
for classical dynamic plasticity theory.

By analyzing some mechanical quantities and
experimental results of similar models, this paper
studies the influence of scale effect pertaining to
plastic strain rate on the material and structural dy-
namic response.

1 Relationship between Scale Effect
and Some Mechanical Quantities
of Similar Models

Since it is very difficult to make theoretical or
numerical analyses for complicated structural sys-
tems, a smaller model test is often adopted. The
relationship will be discussed in this section between
some mechanical quantities of similar models and
variation of the model size.

1.1 Strain and stress

Engineering strain ¢ can be defined as the ra-
tio of the length variation /:l to theinitial length
e=Dl/I €N
This definition shows that engineering strain e
is a dimensionless quantity, and is independent of the
geometric size of practical structuresthat are studied,
i.e., e scaleswithlength scale as
le] ~L° @
Thus in the model experiments, e is independent of
the scale effect.
According to Hooke's law, the engineering
stress S isrelated to engineering strain e through
s =Ee ©)
Obvioudly, for the similar models made of same
meaterial, the stress will be the same for same strain,
which indicates that the stress, s , does not vary with
the geometric size of the practical structures.

1.2 Stresswave speed and loading rate

If the transversal effect is ignored, the propaga-
tion velocity of the tensile or compressive distur-

bance along the axial direction in a one-dimensiona
linear elastic bar is

c,=+E/T @
where E and r are the Young's modulus and the
material density, respectively. Eq.(4) showsthat c,
only depends upon the material itself rather than the
geometric size of the structure, namely ¢, is inde-
pendent of the scale effect. Elementary stress wave
theory indicates that stress s islinearly proportion-
al to particle velocity u , viz

S=rcu ©)
Substituting Eq. (3) into Eq. (5), one can obtain the
expression as follows

e=ulc, (6)
When the disturbing velocity reaches the yielding
velocity u,=s /(rc), i.e. u=u,, the stress
reaches theyield limit s ,i.e, s =s , smultane-
ously e=e,. When u>u , plastic deformation

will occur and begin to propagate in the materia.
Because theyield limit s = of material depends

only upon materia itself, u, is also determined by

the materia property. Due to Eq. (6), if the same
physical characteristics of response are required
between similar models made of the same material,
then the loading rate must be identical, i.e.

u~b’ @
where £ is the similarity coefficient of the similar
models.

1.3 Strain rate
Strain rate € is defined as'™

é=% (8
dt
aswell as
de_1dDl _u ©
dt 1, dt |

where | istheinitial length. From the above section,
u must be kept the same in the experiments of the
similar models, consequently, when u ~b°, onecan
have
[e]~L"* (10)
Itisclear from (10) that the strain rate possesses
scale effect.
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1.4 Coefficient of strain-rate sensitivity and
rate sensitive parameter for strain
har dening

As a characterization of parameter for material
strain-rate sensitivity in plastic dynamics, the coeffi-
cient of strain-rate sensitivity m is defined as’®?

__Ts
" fi(Ine’)

Since the plasgtic strain rate é” is associated
with the geometric scale of structuresin similar mod-
el experiments, the above m varies with the length
scale.

Klepaczko proposed a parameter |, to deter-
mine the rate sensitivity of strain hardening for mate-
rials'®

1)

T )

log(d./d.)];,

where g isstrain, g is strain rate (d, >d,),

T istemperature, and t isstress. According to Eq.

(10), if b isthe similarity coefficient between the
prototype and the model, ¢,/g, =1/b, then

I, ~[log(d./d,)]" ~ (- logh)™” 13

The above equation showsthat |, , the parameter of

the rate sensitivity of strain hardening also varies with

the model scale.

2 Severa Typica Examples
Related to Strain Rate

2.1 Expanding-ring experiment

An expanding ring experimental method was in-
troduced by Johnson et al.[® in 1963. The strain rate
of the expanding ring can be expressed by

e=" (14
r
where u istheinitial expanding velocity, and r is
the initia radius of the expanding ring.

Considering two expanding rings with similarity
coefficient b ,i.e. theradii of prototype r¢ and the
model r& satisfy the relationship r@=b rd. If the
loading speed u is kept unchanged, according to
expression Eq. (14), one can obtain the following
relationship between the strain rate of model €@ and
that of prototype €,

et= prs el=— (15

The average length of the fragments of the ex-
panding ring under impulsive loading is of the or-
der®10!

2/3

feay e

where K, is the fracture toughness of material, r
is the material density, C, is the velocity of elastic
wave, and €, isthe bulk strain rate. From Eq. (15),
one can obtain the ratio between the average frag-
mental length of model d® and the one of prototype
d¢ asfollows
de a@@o s
~b
d¢ geﬂig
This shows that the average length of fragments
in the expanding ring experiments depends upon the
scale of test specimens, i.e., thereis ascae effect in
the expanding ring experiments.
2.2 Adiabatic shear bands and
recrystallization of metal

1)

Adiabatic shear bands are regions where plastic
shear deformation in amaterial is highly concentrated.
The formation of these regionsis extremely important
in dynamic deformation of materials because they
often are precursors of the failure of materials. Bai, et
al. ™ obtained the approximate equation for d , the
half-width of the adiabatic shear band, as follows

1/2

d @gtgfa 9" o

where | is the therma conductivity, and T, t
and ¢ are the temperature, shear stress, and shear
rate in the shear band, respectively. Considering the
scale effect of the shear rate g, one can have the
relationship for the characteristic width of the adia-
batic shear bands between model d ¢ and prototype
dd

de aeg@o

de gg ¢g
where b is the similarity coefficient. The above
equation shows that there is a scale effect in the
adiabatic shear deformation.

~bv? (19)
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The adiabatic shear bands have been observed
in a variety of aloys. Most quenched-and-tempered
steels (martensitic) and a number of aloys under
high-strain-rate deformation also exhibit the adiabatic
shear bands. Actually, any metal material can exhibit
adiabatic shear band formation if work hardening is
appropriately depressed. In the adiabatic shear region,
the size of recrystalizing grains decreases with the
increase of strain rate. Sandstrom, et al. ¥ predicted
recrystallized grain sizes d_ as

d,ug™ (20)
where g istheshear drain rate. In the same way, one
can obtain the following expression

de_ogjes”

d¢ " &g%
where d@ and d¢ are the recrystallized grain sizes
of model and prototype, respectively, and b is the
similarity coefficient. It is obvious that d_ depends
on the scale.

~b*? (1)

2.3 Evolution of voids

Usudly, any materia contains some micro flaws
to a certain extent. When these materias are subject-
ed to certain externd loads, the micro flaws can be
activated and evolve into micro cracks and micro-
voids, and then likely propagate to cause macro
breakage of materials. Under intensive dynamic
loading, the material strain-rate sengtivity has a
major influence on both the size and the statistical
distribution of micro voids*?. The smaller the aver-
age radius of micro void is, the stronger the strain-
rate sensitivity will be.

2.4 Clamped beam under impulsive loading

The dimensionless permanent mid-point deflec-
tion of afully clamped rigid, ideally plastic beam of
unit width loaded impulsively can be expressed in the

form of

W _1 3R,

— =1+ =) - 1 22

H 2[( - )" -1 22
where 2L isthelength of the clamped beam, and V,
is the impulsive velocity. W is the permanent de-
flection of the mid-point, and R is the dimen

sionless number (response number) suggested by
Zhao*¥, which can be expressed as
VA
R= s,H’
where r is the materia density, s, is uniaxia
yield stress, H is the height of cross section for
beam, and n can be determined by the following
expression™!

(23

n=> 0¢—1+ (—V*’Wf ) (24)
S, 3/2DL*

where D and  are material constants.

Considering the similar beam models made of
identical material with the similarity coefficient b
(b=LWLC=H® HO), if the response number R
is kept unchanged, the impulsive velocity V, will be
identical between beam models. If the parameter a
is assumed to be

H .d/q
a =20 29
eDL g
then there will be a relationship between the model
and the prototype as
aly L¢ He 1
Q_; = = =— (26)

gaty LC HE

Thus it can be seen that with the decrease of beam

dimenson (i.e, b <1), a®>at (i.e, n€>ng).

Combining Eq. (22) yields
2

M5 o
T TR @n
Hy &H 5

The above inequality showsthat W, /H varies with
the similarity coefficient, i.e., W /H depends on
the dimension of the beam.

From aforementioned several typical instances,
one can find that whether the average length of ex-
panding-ring fragment d , the characteristic width of
adiabatic shear band d , the recrystallized grain size
d._ , or the maximum dimensionless permanent lateral
deflection of a clamped beam under the impulsive
loading, are al related to the plastic strain rate of the
material. Therefore, with the decrease of the dimen-
sion of similar models, there occurs correspondingly
the scale effect due to the size effect of the plastic
strain rate.
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3 Discussions on Two Constitutive
Equations Considering Strain Rate

3.1 Cowper-Symonds dynamic constitutive
equation

The dynamic behavior of most metallic materi-
als can be modeled by the Cowper-Symonds consti-
tutive equation as follows

s¥/s,=1+(e /D)"" (28)
where s $and s, denote, respectively, the dynamic
yield stress and static yield stress at a uniaxial plastic
dsrainrate €; D and g are constants for a par-
ticular material. Some constants for several typica
materials'® are listed in Table 1.

Table 1 Coefficients in Cowper-Symonds constitutive

equation for some typical materials

Materid D/s* q

Mild sted 40.4 5
Aluminum dloy 6500 4
a -Titaium(Ti 50A) 120 9
Stainless stedl 100 10

With the decrease of the characteristic dimen-
sion of the similar model, its similarity coefficient
b (b <1) decreases proportionaly, and then the
strain rate in the smaller dimension mode will be-
come e€/b ,itsyield stress s @ will be

sWs, =1+[e/(bD)]"" (29)
Comparing Eq. (28) to Eq. (29), leads to
s¢_1+[e/bD)]"
s¢ 1+(e /D)
If é=D, Eq. (30) will bewritten as
s§/s g:=[1+(1/b)”q]/2 (3D

Taking the mild steel in Table 1 as an example,
one can see from the expression (31) that

when b =0.100, s $=1.292s ¢;

when b =0.010, s $=1.756s §;

when b =0.001, s $=2.491s (.

It can be seen from the above example that with
the decrease of the scale of similar model, the yield
stress will increase apparently for the material satis-

(30)

fying the Cowper-Symonds dynamic constitutive
equation, which obviously shows the scale effect of
the plastic strain rate. Even for rate-insensitive mate-
rials such as aluminum, the dynamic yield stress will
also increase with the decrease of the dimension of
the similar model due to the scale effect of the plastic
strain rate.

3.2 Johnson-Cook dynamic constitutive
equation

Johnson and Cook presented a dynamic consti-

tutive equation in 1983 as follows™™,
s =(A+Be")(1+Clne")@- T (32
where A,B,C,n, and m areyield strength,
work hardening coefficient, work hardening exponent,
strain rate sendgitivity and thermal coefficient, e is
the equivalent plastic strain, ¢ =€/¢, isthe dimen-
sionless plastic strain rate taking €,=1s", and
T =(T-T)/T, -T) isthe homologous tempera-
ture, with T being the immediate absolute tem-
perature of the deformed specimen, T, and T_ being
the room temperature and the melting point, respec-
tively.

Comparing with many other dynamic congtitu-
tive eguations, Johnson-Cook equation considers not
only the strain hardening and strain-rate effect of
material, but also thermal softening effect of material.

If the dimensionless temperature T° and the
stress e are kept invariable, Eq. (32) can be written
as

s ~(1+Cilne) (33)
When é =1, and the similarity coefficient is b
(b <1), therelationship of the yield stresses between
the larger model and the smaller model will be as
follows (s @ for larger model and s ¢ for smaller
model)
s¢_(1+Ciné - Cinb)
s¢ (1+Clne) (34)
=1- Cinb.

Obviously, the yield stress for material satisfy-
ing the Johnson-Cook equation exhibits a size effect
due to the scale effect of the plastic strain rate.
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4 Example of Numerical Analysis

Consider a cylindrical mild steel bar, the proto-
type model, with initia length L, =32.4b mm and
initial diameter D, =6.4b mm (here # is the
similarity coefficient, # is taken as 1 for prototype
model, and material parameters of mild steel refer to
the Reference [16]) impacting a rigid target at a
velocity V, of 227 m/s (illustrated in Fig. 1).

£,

Fig. 1 A mild-sted bar impacting rigid target
The following Cowper-Symonds equation can
be adopted

s =(1+e /D)"'s ,(e) (35
with s (e) being
s,(e)=s,+BEge; (36)

where s isthe static yield stress, B is the harden-
ing parameter, e} isthe efficient plastic strain, and
E, isthe plastic hardening modulus.

The finite element method is utilized, and mod-
elswith £ being 1, 0.1, 0.01, and 0.001 are calcu-
lated. The mesh of the bar has been shown in Fig. 2,
and al cases have the same mesh configuration.
Frictionless contact condition is assumed between the
bar and the rigid target.

Fig. 2 Sketch of dement mesh for numerica anaysis

Fig. 3 shows the numerical results of the above
similar bars with different similarity coefficient b .
In this figure, the vertical coordinate denotes the ratio
of instant length L to the initia length L, for the
models under impact loading, i.e., the dimensionless
instant length of models L/L,, and the horizontal
coordinate denotes the dimensionless time V,t/L,.

According to the results of the numerica analysis,
one can see that the relative deformation decreases
steadily with the model dimension. It is the size effect
of the plastic strain rate that resultsin the scale effect
of similar models made of the same kind of rate-
dependent material.

0.14r
il l"l S=1.000
0.10+ — e paim
0085
~ el L =010
andl £ e T T A=0001

0 01 02 03 04 0.5 0.6
Vel
Fig. 3 Result curves of numerical analysis

5 Summary

In the first part of the present paper, an anaysis
is carried out on some mechanical quantities and
some typical dynamic experiments results in similar
models, then further study is made on the scale effect
of the plastic strain rate for materials satisfying two
well-known rate-dependent dynamic congtitutive
equations (i.e., Cowper-Symonds and Johnson-Cook).
It is demonstrated by numerical simulation that the
size effect caused by the decrease of the dimension
of rate-dependent material is due to the scale effect
of the plastic strain rate. It should be emphasized that
the scale effect cannot be well explained by constitu-
tive equations of classical dynamic plastic theory,
because such equations contain no length scales.
With the decrease of length scale, the structures are
more sensitive to the strain rate, thus there occurs a
major difficulty: it isnecessary to develop a dynamic
condtitutive eguation containing internal material
length scale in the micron or submicron domains
(mainly in the field of micro-electronics and MEMS
at present). Only by thisway, the physical origin and
mechanism of the scaling law and size effect can be
clearly understood.
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