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Nonslipping Contact Between
a Mismatch Film and a Finite-
Thickness Graded Substrate
The contact behavior of an elastic film subjected to a mismatch strain on a finite-
thickness graded substrate is investigated, in which the contact interface is assumed to be
nonslipping and the shear modulus of the substrate varies exponentially in the thickness
direction. The Fourier transform method is adopted in order to reduce the governing par-
tial differential equations to integral ones. With the help of numerical calculation, the
interfacial shear stress, the internal normal stress in the film and the stress intensity fac-
tors are predicted for cases with different material parameters and geometric ones,
including the modulus ratio of the film to the substrate, the inhomogeneous feature of the
graded substrate, as well as the profile of the contacting film. All the physical predictions
can be used to estimate the potential failure modes of the film–substrate interface. Fur-
thermore, it is found that the result of a finite-thickness model is significantly different
from the prediction of a generally adopted half-plane one. The study should be helpful
for the design of film–substrate systems in real applications. [DOI: 10.1115/1.4031936]

Keywords: contact mechanics, nonslipping contact, thin film, graded substrate, finite-
thickness

1 Introduction

The mechanical behavior of film/substrate systems is continu-
ously concerned due to the important application in a large num-
ber of fields in recent decades [1]. For example, the system of
inorganic films on soft substrates is now a hot topic, which can be
used to monitor blood pressure during exercise or fabricate elec-
tronic eye cameras [2]. A model of film/substrate system can also
be adopted in cell mechanics to investigate the interaction
between cells and the surrounding substrates [3]. A precise
estimation of the interface behavior in a film/substrate system is
therefore an essential issue related to many real applications.

Two typically theoretical models have been proposed to study
the interface mechanics of film/substrate systems. The first one
represented by Akisanya and Fleck [4] and Yu et al [5] can be
called as a fracture model, in which a pre-existing crack is intro-
duced at the edge of a thin film. Of course, a model free from
cracks or defects would also be crucial in many practical applica-
tions [6]. The second one may be addressed as a contact model, in
which contact mechanics is used to find the stress field at the inter-
face and near the edge of the film in order to judge possible form-
ing cracks. The governing integrodifferential equations in the
film–substrate contact model belong to singular ones, whose exact
close-form solutions do not exist [7]. An infinite power series
solution was given by Arutiunian [8] for the contact problem
between a finite-length stiffener and a half-plane and an alterative
method was to express the governing singular equation in terms of
the interfacial shear stress [9]. Later, Erodgan and Civelek [10]
explored the contact problem between an elastic reinforcement
and a homogeneous elastic plate. Multilayered/multiperiodic films
bonded to elastic substrates were discussed by Erdogan and
Joseph [11,12]. Using the finite difference method, Hu [13] ana-
lyzed the film-edge-induced stress in substrates. Shield and Kim
[14] discussed the problem of a thin film bonded to an elastic half
space by the beam theory considering both normal and shear
stresses. A closed form solution to a film bonded a homogeneous

substrate was obtained by Alaca et al. [6] with the assumption of a
nearly rectangular film profile and the Vekua’s solution procedure
of Prandtl’s equation.

All the above models involve homogeneous materials.
Recently, graded materials have attracted numerous attentions due
to the novel and excellent performance [15]. The traditional con-
tact problem between a stamp (punch) and a graded medium has
been explored extensively by many researchers to find the contact
stress that may cause crack initiation on the contact surface, such
as Giannakopoulos and Suresh [16,17], Choi and Paulino [18],
Guler and Erdogan [19,20], Ke and Wang [21,22], Mao et al. [23],
etc. Considering the interface adhesive effect, the problem of a
rigid cylinder/sphere contacting a graded half-space was success-
fully discussed by Chen et al. [24,25]. The corresponding nonslip-
ping adhesive model and the axis-symmetrically one were solved
elegantly by Guo et al. [26,27].

A more complex but practical model is a film bonded on a
graded substrate, especially for a deformable film. Guler et al.
[7,28] investigated the problem of a film bonded on a graded and
graded coated half-space using the approach of a singular integral
equation. Whether the result of a film bonded on a graded sub-
strate with an infinite thickness is proper for systems with a finite
thickness in practical applications needs further discussion, since
a significant thickness effect has been found in the problem of an
elastic reinforcement contacting a homogeneous elastic plate by
Erodgan and Civelek [10]. Does the thickness of substrates affect
the interface behavior of a film–substrate system?

In this paper, a nonslipping contact model is established in
order to answer the above questions, in which the mechanical
deformation of the film is modeled as a mismatch strain for con-
venience and the thickness of the graded substrate is finite. The
governing equation is formulated analytically, which can be
reduced to an integral one and further solved numerically. The
interfacial shear stress, the internal normal stress in the film, and
the singularity near the contact edges are mainly focused in order
to discuss the interface behavior of the film–substrate system.

2 Contact Model of a Deformable Film and a Finite

Thickness Graded Substrate

The two-dimensional contact model of a deformable film
bonded a finite thickness graded substrate with a rigid foundation
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is shown in Fig. 1, where the thickness of the film is hf and the
length is lf ¼ 2a. lf is the shear modulus of the film and the Pois-
son’s ratio is �f . Here, the thickness of the film hf is assumed to
be a constant, which can also be a function of the x axis [6]. The
finite thickness of the graded substrate is h and the shear modulus
l2 yð Þ is expressed as

l2 yð Þ ¼ l1 exp cyð Þ (1)

where the subscript “1” denotes the surface layer of the graded
substrate, “2” the inner of the substrate. c is a constant characteriz-
ing the substrate material’s inhomogeneity, which can be obtained
as

c ¼ 1

h
ln

l3

l1

� �
(2)

Here, the subscript “3” denotes the lower boundary layer of the
substrate. The substrate is assumed to have a same constant Pois-
son’s ratio as the film due to a negligible Poisson’s ratio effect
[16].

3 Governing Equation of the Boundary Value

Problem

For the present plane contact problem, the constitutive relation
of the graded substrate in terms of the displacement components
u x; yð Þ and v x; yð Þ in x and y directions can be given as

rxx ¼
l2

j� 1
1þ jð Þ @u

@x
þ 3� jð Þ @v

@y

� �
(3a)

ryy ¼
l2

j� 1
1þ jð Þ @v

@y
þ 3� jð Þ @u

@x

� �
(3b)

rxy ¼ l2

@u

@y
þ @v

@x

� �
(3c)

where rij (i or j ¼ x or y) denotes stress components, j ¼ 3� 4�
for the plane strain case and j ¼ 3� �ð Þ= 1þ �ð Þ for the plane
stress one.

Substituting Eqs. (3a)–(3c) into the classically equilibrium
equation yields

jþ 1ð Þ @
2u

@x2
þ j� 1ð Þ @

2u

@y2
þ 2

@2v

@x@y
þ c j� 1ð Þ @u

@y

þ c j� 1ð Þ @v

@x
¼ 0 (4a)

j� 1ð Þ @
2v

@x2
þ jþ 1ð Þ @

2v

@y2
þ 2

@2u

@x@y
þ c 3� jð Þ @u

@x

þ c jþ 1ð Þ @v

@y
¼ 0 (4b)

The equation of displacements u x; 0ð Þ and v x; 0ð Þ at the upper
surface of the graded substrate can be derived after Fourier trans-
formation to x and a rather lengthy mathematic procedure similar
to Chen and Chen [29,30]. Here, we skip the details and present
only the final formula.

@u x; 0ð Þ
@x

¼ j� 1

4l1

ryy x; 0ð Þ � jþ 1

4pl1

ða

�a

rxy r; 0ð Þ
r � x

dr

þ 1

p

ða

�a

K11 x; rð Þrxy r; 0ð Þ þ K12 x; rð Þryy r; 0ð Þ
� �

dr

(5a)

@v x; 0ð Þ
@x

¼ �j� 1

4l1

rxy x; 0ð Þ � jþ 1

4pl1

ða

�a

ryy r; 0ð Þ
r � x

dr

þ 1

p

ða

�a

K21 x; rð Þrxy r; 0ð Þ þ K22 x; rð Þryy r; 0ð Þ
� �

dr

(5b)

where the kenerls Kij x; rð Þ are bounded functions given in the
Appendix.

The film thickness hf is assumed to be sufficiently small and
the film contacts the graded substrate without any initial stress.
Only the shear stress rxy is produced at the contact interface when
a mismatch strain is exerted, i.e.,

rf
xy x; 0ð Þ ¼ rxy x; 0ð Þ ¼ �f xð Þ; �a < x < a

0; x < �a; x > a

�
(6a)

The normal stress in the film in the direction of the y axis is

rf
yy x; 0ð Þ ¼ ryy x; 0ð Þ ¼ 0 (6b)

Due to a small thickness of the film, the normal stress in the film
in the direction of the x axis is assumed to be uniform across the
thickness as shown in Fig. 2. The equilibrium equation in the film
can be given as

ðx

�a

rf
xy t; 0ð Þdtþ rf

xx x; 0ð Þhf ¼ 0 (7)

and ða

�a

rf
xy t; 0ð Þdt ¼ �

ða

�a

f tð Þdt ¼ 0 (8)

Then, the normal stress in the film can be written as

rf
xx x; 0ð Þ ¼ 1

hf

ðx

�a

f tð Þdt (9)

and the strain in the film induced by the interface stress is

Fig. 1 The perfectly adhesive contact model between an elas-
tic film of length lf and a finite-thickness graded substrate. The
variation of environmental temperature induces a mismatched
strain at the contact interface. The shear modulus of the sub-
strate abides by a graded law l2ðyÞ5l1 expðcyÞ; h is the thick-
ness of the graded substrate.

Fig. 2 Schematic of the mechanical behavior of the bonded
interface between a deformable film and an elastically graded
substrate
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ef
xx x; 0ð Þ ¼ @uf

@x
¼ 1þ jf

8lf

rf
xx x; 0ð Þ (10)

i.e.

ef
xx x; 0ð Þ ¼ 1þ jf

8lf

1

hf

ðx

�a

f tð Þdt (11)

where jf ¼ 3� 4�f for the plane strain problem and jf ¼
3� �fð Þ= 1þ �fð Þ for the plane stress one.

Using Eq. (5) leads to the strain at the upper surface of the
graded substrate

exx x; 0ð Þ ¼ @u x; 0ð Þ
@x

¼ jþ 1

4pl1

ða

�a

1

t� x
� 4l1

jþ 1
K11 x; tð Þ

� �
f tð Þdt

(12)

Now consider a film in nonslipping contact with a finite-thickness
graded substrate as a reference state. Then, a mismatch strain e0 is
imposed at the interface, which may be induced by a sudden change

in temperature in the environment. We have e0 ¼ a1 � a2ð ÞDT,
where ai denotes the thermal expansion coefficient of the film or
the substrate, DT is the temperature change. The assumption of
perfect bonding yields the compatibility condition at the contact
interface

exx x; 0ð Þ � ef
xx x; 0ð Þ ¼ e0 (13)

Substituting Eqs. (11) and (12) into Eq. (13) yields

jþ 1

4pl1

ða

�a

1

t� x
� 4l1

jþ 1
K11 x; tð Þ

� �
f tð Þdt� 1þ jf

8lf

1

hf

ðx

�a

f tð Þdt¼ e0

(14)

which is the governing equation of the present model.

4 Solution of the Integral Equation

By introducing the following normalized quantities:

t ¼ as; x ¼ as (15)

Equations (14) and (8) can be rewritten as

1

p

ð1

�1

1

s� s
� 4l1a

jþ 1
K11 s; sð Þ

� �
f sð Þds� 4l1

jþ 1

1þ jf

8lf

a

hf

ðs

�1

f sð Þds ¼ 4l1

jþ 1
e0

(16)

ð1

�1

f sð Þds ¼ 0 (17)

Considering the Cauchy-type singular kernel in the integral equa-
tion, the solution to Eqs. (16) and (17) may be expressed as [31]

f sð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

X1
n¼0

AnTn sð Þ (18)

where Tn sð Þ denotes the Chebyshev polynomial of the first kind of
order n, An is an unknown constant to be determined.

Substituting Eq. (18) into Eqs. (16) and (17) yields

1

p

ð1

�1

X1
n¼0

An
Tn sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p 1

s� s
� 4l1a

jþ 1
K11 s; sð Þ

� �
ds

� 4l1a

jþ 1

1þ jf

8lf hf

ðs

�1

X1
n¼0

An
Tn sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼ 4l1

jþ 1
e0 (19)

ð1

�1

X1
n¼0

An
Tn sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼ 0 (20)

Considering the following properties of the Chebyshev
polynomials:

ð1

�1

Tn sð ÞTm sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼

0; m 6¼ n
1=2; m ¼ n � 1

1; m ¼ n ¼ 1

8<
: (21)

ð1

�1

Tn sð Þ
s� sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼ 0; n ¼ 0

Un�1 sð Þ; n > 0

�
(22)

Fig. 3 Comparison of the distribution of the nondimensional
interface shear stress rf

xy=p1 and the normal stress in the film
rf

xx=p1 for the model of an elastic film in adhesive contact with a
homogeneous half-plane and the present one with a relatively
thick substrate, where the ratio of the film length to its thick-
ness is lf =hf 532, lf is the shear modulus of the film and l1

denotes the shear modulus of the upper surface of the graded
substrate
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and

ðs

�1

Tn sð Þ
s� sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼ � 1

n
Un�1 sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

(23)

one can readily obtain A0 ¼ 0 and the integral equation may be
rewritten as

X1
n¼1

An Un�1 sð Þ þ Qn sð Þ½ � ¼
4l1

1þ j
e0 (24)

where

Qn sð Þ ¼ �
1

p

ð1

�1

4l1a

jþ 1
K11 s; sð Þ

Tn sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds

þ 4l1a

jþ 1

1þ jf

8lf hf

1

n
Un�1 sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

(25)

Truncating the series in Eq. (18) at n ¼ N, and selecting proper
collocation points as roots of the following Chebyshev
polynomials [32]

TN sið Þ ¼ 0 (26)

the integral equation will be reduced to linear algebraic equations
with N unknown constants An n ¼ 1; 2; :::;Nð Þ.

Based on the solution of Eqs. (24) and (25), the shear stress at
the contact surface can be approximately given as

rf
xy x; 0ð Þ ¼ � 4l1e0

1þ j

XN

n¼1

AnTn
x

a

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x=að Þ2
q (27)

Then, the normal stress in the film can be obtained

rf
xx x; 0ð Þ ¼ 4l1e0

1þ j
a

hf

XN

n¼1

1

n
AnUn�1

x

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=að Þ2

q
(28)

The stress intensity factor near the left contact edge can be defined
as

KII ¼ lim
x!�a

rf
xy x; 0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xþ að Þ

p
(29)

Substituting Eq. (27) into Eq. (29) yields the stress intensity factor
at the left contact edge

KII

4l1e0

1þ j

ffiffiffi
a
p ¼ �

XN

n¼1

AnTn �1ð Þ (30)

5 Special Case

If we set c ¼ 0 and a� h in the present model, the graded sub-
strate will be reduced to a homogeneous one and can be looked as
a half space. Then, the model is degraded to be a special one, i.e.,
an elastic film in contact with a homogeneous half space, which
has well investigated by Guler [28]. Comparison of the present
model and the Guler’s one is shown in Fig. 3, where the distribu-

tion of the nondimensional interface shear stress rf
xy=p1 and the

nondimensional normal stress in the film rf
xx=p1 is given in Figs.

3(a) and 3(b), respectively, where p1 ¼ 4l1e0=1þ jð Þ. The shear
modulus of the homogeneous half space is denoted as l1 and the
ratio of the film length to the thickness of the film lf =hf is 32. One
can see the prediction of both models agrees very well with each
other not only for the system of a soft film on a half space but also
for the one of a stiff film on the half space.

Fig. 4 The distribution of the nondimensional interface shear stress rf
xy=p1 and the normal

stress in the film rf
xx=p1 for the model of a deformable film in adhesive contact with a finite-

thickness graded substrate with determined parameters h=a 5 1 and lf =hf 5 32, but with differ-
ent ratios lf =l1. (a) and (b) for l3=l1 5 1=7 ; (c) and (d) for l3=l1 5 7.
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6 Results and Discussion

In the following analysis, the Poisson’s ratio of both the film
and the substrate is � ¼ 0:3. Only half of the contact area is ana-
lyzed due to the symmetric feature of the model.

The film–substrate system with different parameter combina-
tions is investigated. Figures 4(a) and 4(b) give the distribution of

the nondimensional interface shear stress rf
xy=p1 and the

nondimensional normal stress in the film rf
xx=p1 with a fixed

l3=l1 ¼ 1=7 but for different ratios lf =l1, where

p1 ¼ 4l1e0=1þ jð Þ. Figure 4(a) shows that the interface shear
stress is obviously singular near the contact edges and the singu-
larity increases with an increasing ratio lf =l1, which can be also

found from the variation of the Mode II stress intensity factor
KII=p1

ffiffiffi
a
p

shown in Table 1. The normal stress in the film distrib-
utes nonuniformly in the length direction, the maximum value
always emerges at the symmetric axis and the normal stress in the
film vanishes at the end as shown in Fig. 4(b), which is consistent
with the boundary condition. For different ratios lf =l1, the nor-

mal stress in the film increases with an increasing value of lf =l1.

Both the singularity near the contact edge and the normal stress in
the film demonstrate that an interface between a relatively soft
film and a determined substrate is much reliable. Figures 4(c) and
4(d) give the distribution of the nondimensional interface shear

stress rf
xy=p1 and the nondimensional normal stress in the film

rf
xx=p1 for different ratios lf =l1 but with another fixed value

l3=l1 ¼ 7, which means an increasing stiffness along with the
depth of the graded substrate. Comparing to Figs. 4(a) and 4(b), it
is interesting to find that the varying features of both the shear
stress singularity near the contact end and the normal stress in the
film do not change.

For a fixed ratio lf =l1 ¼ 28, the distribution of the interface
shear stress rf

xy=p1 and the normal stress in the film rf
xx=p1 is shown

in Figs. 5(a) and 5(b), respectively, with different values of the
inhomogeneity parameter l3=l1. It is found that both the interface
shear stress and the normal one in the film increase with an increas-
ing l3=l1. Table 2 gives the Mode II stress intensity factor
KII=p1

ffiffiffi
a
p

, which is obviously enhanced by an increasing l3=l1.
That is to say, for a determined film, a substrate with a gradually
decreasing stiffness in the depth direction would be advantageous
for resisting interface crack initiation. Such a rule should be very
useful for the design of new structures and has already been adopted
by many nature materials, for example, bone marrow, whose stiff-
ness becomes larger and larger from the inside to the outside.

Figure 6 gives the effect of thickness of the graded substrate on
the distribution of the interface shear stress and the normal stress
in the film with a fixed ratio lf =l1 ¼ 28. Figures 6(a) and 6(b)

correspond to cases of a finite-thickness substrate with an increas-
ing stiffness in the depth direction l3=l1 ¼ 7, while Figs. 6(c) and
6(d) correspond to the one with the stiffness decreasing in the
depth direction l3=l1 ¼ 1=7. The substrate thickness shows a
more regular effect on the interface shear stress and the normal
stress in the film in the former case, where both stresses increase
monotonically with a decreasing thickness of the graded substrate.
However, nonmonotonically variation in the interface shear stress
and the normal stress in the film can be found in Figs. 6(c) and
6(d). Variation of the Mode II stress intensity factor KII=p1

ffiffiffi
a
p

versus the nondimensional substrate thickness h=a is given in Fig.
7 for different l3=l1, where the result of a homogeneous half-
plane case is also shown for comparison. Obviously, KII=p1

ffiffiffi
a
p

increases monotonically with a decreasing thickness h=a in cases
of l3=l1 � 1, while decreases first and then increases for the case
of l3=l1 ¼ 1=7. All the results demonstrate that the effect of sub-
strate thickness on the interface behavior can not be neglected. A
semi-infinite model may not be precise in explaining phenomena
found in a finite film–substrate structure. However, if the substrate
thickness is large enough, the boundary effect should be weak-
ened in all cases as shown in Fig. 7, both a half-plane model and a
finite one may replace each other.

The ratio effect of the film length to its thickness in the finite
model on the distribution of the nondimensional interface shear

stress rf
xy=p1 and the normal stress in the film rf

xx=p1 is shown in

Fig. 8. A fixed value l3=l1 ¼ 1=7 is adopted in Figs. 8(a) and

Table 1 The stress intensity factor KII=p1

ffiffiffi
a
p

near the contact
edge versus different ratios lf =l1 in cases with fixed parame-
ters h=a51, lf =hf 532, and l3=l1

lf =l1 ¼ 28=69 lf =l1 ¼ 1 lf =l1 ¼ 10 lf =l1 ¼ 28

KII=p1

ffiffiffi
a
p

ðl3=l1 ¼ 7Þ
0:1782 0:2793 0:7995 1:0831

KII=p1

ffiffiffi
a
p

ðl3=l1 ¼ 1=7Þ
0:1764 0:2722 0:6476 0:7735

Fig. 5 The distribution of the interface shear stress rf
xy=p1 and

the normal stress in the film rf
xx=p1 for the model of a deforma-

ble film in adhesive contact with a finite-thickness graded sub-
strate with determined parameters h=a 5 1, lf =l1 5 28,
lf =hf 5 32, but with different inhomogeneity parameters l3=l1 of
the substrate

Table 2 The stress intensity factors KII=p1

ffiffiffi
a
p

near the contact
edge versus different ratios l3=l1 in cases with determined
parameters lf =l1528, h=a51, and lf =hf 532

l3=l1 ¼ 1=7 l3=l1 ¼ 1 l3=l1 ¼ 2 l3=l1 ¼ 7

KII=p1

ffiffiffi
a
p

0:7735 0:9409 0:9955 1:0831
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8(b), while l3=l1 ¼ 7 is used in Figs. 8(c) and 8(d). Both cases
show that the interface shear stress decreases with an increasing
ratio of lf =hf . The corresponding Mode II stress intensity factor

KII=p1

ffiffiffi
a
p

is given in Table 3, which also exhibits a decreasing
singularity with an increasing ratio lf =hf . It means that, in cases
with a fixed film length, the thinner the film, the stronger the inter-
face strength is; while for a fixed film thickness, the shorter the
film, the more possible failure at the contact end it is. However, in
cases with a fixed film thickness, Figs. 8(b) and 8(d) show that the
normal stress in the film increases with an increasing film length
no matter l3=l1 is larger or smaller than 1. Therefore, a longer
film is more likely to break at site of the symmetric axis than a
shorter one in cases of films with a fixed thickness.

All the above analysis is based on an assumption of a uniform
film thickness. If the profile of the film in the thickness direction
is a function of the x axis, the present model may be transformed
to be the model by Alaca et al. [6]. In Alaca et al. [6], the profile
function of the film in the thickness direction was adopted as

hf xð Þ ¼ hf 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

r
1þ k

x2

a2

� �
(31)

where hf 0 denotes the film thickness at x ¼ 0. k is a shape parame-
ter. Tuning the parameter k would lead to different film profiles as
shown in Fig. 9, which may change from a convex shape to a con-
cave one with an increasing k. With k ¼ 0:9, c ¼ 0 and h� a,
the present model can be reduced to the one by Alaca et al. [6],
where the stress intensity factor was defined as

K2 ¼ lim
x!�a

rf
xy x; 0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p xþ að Þ

p
(32)

Substituting lf =l1 ¼ 28, lf =hf 0 ¼ 32 into Eq. (32) and using the
thickness profile in Eq. (31) yield K2 ¼ 0:4683, which is consist-
ent well with the result of Alaca et al. The requirement that the
thickness of the film is much less than its length should be satis-
fied since the normal stress in the film is assumed to distribute uni-
formly in the thickness direction.

7 Summary

A nonslipping contact model between a mismatched film and a
finite-thickness graded substrate is investigated in the present pa-
per. Fourier transform method is used to transform partial differ-
ential equations to the integral ones. Distributions of the interface
shear stress, the normal stress in the film, and the stress intensity
factors near the contact edge are analyzed. It is found that the
interface behavior would be influenced significantly by material

Fig. 6 The distribution of the interface shear stress rf
xy=p1 and the normal stress in the film

rf
xx=p1 for the model of a deformable film in adhesive contact with a finite-thickness graded

substrate with determined parameters lf =l1 5 28, lf =hf 5 32, but with different ratios h=a. (a)
and (b) for l3=l1 5 7; (c) and (d) for l3=l1 5 1=7.

Fig. 7 Variation of the Mode II stress intensity factor KII=p1

ffiffiffi
a
p

versus the ratio of the substrate thickness to half of the film
length h=a for different ratios l3=l1, where lf =l1528
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parameters of the film and the graded substrate. Appropriate
choice of the film stiffness, the stiffness variation law of the
graded substrate, as well as the length scales of the film and sub-
strate, could improve resistance of an interface crack initiation or

the film breakage. The results should be helpful for the design of
film–substrate systems in practical applications.
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Appendix

The kenerls Kij x; rð Þ in Eqs. (5a) and (5b) are expressed as

K11 x; rð Þ ¼
ðþ1

0

aN11 að Þ þ jþ 1

4l1

� �
sin a r � xð Þ½ �da (A1a)

K12 x; rð Þ ¼ �i

ðþ1
0

aN12 að Þ � i
j� 1

4l1

� �
cos a r � xð Þ½ �da (A1b)

K21 x; rð Þ ¼ �i

ðþ1
0

aN21 að Þ þ i
j� 1

4l1

� �
cos a r � xð Þ½ �da (A1c)

K22 x; rð Þ ¼
ðþ1

0

aN22 að Þ þ jþ 1

4l1

� �
sin a r � xð Þ½ �da (A1d)

where Njk að Þ j; k ¼ 1; 2ð Þ are the corresponding four elements in
matrix N að Þ

Fig. 8 The distribution of the interface shear stress rf
xy=p1 and the normal stress in the film

rf
xx=p1 for the model of a deformable film in adhesive contact with a finite-thickness graded

substrate with determined parameters lf =l1 5 28, h=a51, but with different values lf =hf . (a)
and (b) for l3=l151=7; (c) and (d) for l3=l157.

Fig. 9 The profile of the bonded film in the thickness direction
with different shape parameters k

Table 3 The stress intensity factors KII=p1

ffiffiffi
a
p

near the contact
edge versus different ratios lf =hf in cases with determined
parameters lf =l1528, h=a51, and l3=l1

lf =hf ¼ 32 lf =hf ¼ 60 lf =hf ¼ 100 lf =hf ¼ 200

KII=p1

ffiffiffi
a
p

ðl3=l1 ¼ 7Þ
1:0831 0:9166 0:7672 0:5738

KII=p1

ffiffiffi
a
p

ðl3=l1 ¼ 1=7Þ
0:7735 0:7048 0:6304 0:5113
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N að Þ ¼
m1 m2

1 1

" #

•
1= m1n1 � iað Þ 1= m2n2 � iað Þ

1= j� 1ð Þ �iam1 3� jð Þ þ n1 1þ jð Þ
� �
 �

1
.

j� 1ð Þ �iam2 3� jð Þ þ n2 1þ jð Þ
� �
 �

2
4

3
5
�1 (A2)

Coefficients in Eq. (A2) are as follows:

nj að Þ ¼ � c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 � i �1ð Þjca 3� j

1þ j

� �1=2
s

;

Re njð Þ > 0; j ¼ 1; 2 (A3)

nj að Þ ¼ � c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ a2 þ i �1ð Þjca 3� j

1þ j

� �1=2
s

;

Re njð Þ < 0; j ¼ 3; 4 (A4)

and mj að Þ for each nj að Þ (j ¼ 1; :::; 4) is

mj sð Þ ¼
j� 1ð Þ n2

j þ cnj

� 

� a2 jþ 1ð Þ

a 2nj þ c j� 1ð Þ
� � (A5)
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