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Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is

analytically investigated using the method of the parameter expansion up to the third order.

Our results show that the amplitudes of the first four harmonics will recover those in planar

RTI as the interface radius tends to infinity compared against the initial perturbation wave-

length. The initial radius dramatically influences the harmonic development. The appearance

of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic)

makes the interface move towards the spherical center. For these four harmonics, the smaller

the initial radius is, the faster they grow. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936096]

I. INTRODUCTION

Rayleigh-Taylor instability (RTI)1,2 occurs at the inter-

face between horizontal layers of fluid, and also in cylindri-

cal or spherical geometry. Relevant investigations have been

undertaken by several authors in many applications;3–8 spe-

cifically, an extra instability due to the curvature of the inter-

face (i.e., the Bell-Plesset (BP) effects), the nonlinear

evolution of the interface, and numerical solutions including

magnetic effects have been widely discussed. RTI also plays

a significant role in astrophysics9,10 and inertial confinement

fusion (ICF).11–23

RTI happens on an interface separating two different

fluids when a light fluid supports a heavy fluid in a grav-

ity field or accelerates it.1,2 Assuming that the heavy fluid

is superposed over the light one in a gravitational field

�gey, where g is gravitational acceleration, an initial

interface perturbation between the two fluids of densities

qh and ql is in the form of gðx; t ¼ 0Þ ¼ e cosðkxÞ with

perturbation wave number k¼ 2p/k and perturbation

amplitude e� k, where k is perturbation wavelength.

According to the classical linear theory,1,2 the initial co-

sine modulation grows exponentially in time t, gL¼ eect,

where

c ¼
ffiffiffiffiffiffiffiffi
Akg

p
(1)

is the linear growth rate with A¼ (qh�ql)/(qhþql) being the

Atwood number. When the typical perturbation amplitude is

close to its wavelength, the second and third harmonics are

generated successively, and then the perturbation enters the

nonlinear regime. In the weakly nonlinear growth regime,24–39

within the framework of the third-order weakly nonlinear

theory,24–28 the interface function is gðx; tÞ ¼ g1 cosðkxÞ
þ g2 cosð2kxÞ þ g3 cosð3kxÞ, where gn (n¼ 1, 2, 3) is the am-

plitude of the nth harmonic

g1 ¼ gL �
1

16
3A2 þ 1ð Þk2g3

L; (2a)

g2 ¼ �
1

2
Akg2

L; (2b)

g3 ¼
1

2
A2 � 1

4

� �
k2g3

L: (2c)

It should be noted that the amplitude of the second harmonic

is negative for arbitrary A, and that of the third is negative

for A< 1=2, and positive for A> 1=2. For A¼ 1/2, the third

harmonic vanishes. Here, the negative amplitude denotes the

corresponding phase being opposite to the initial cosine

modulation’s (anti-phase). For problems with large Atwood

number, A! 1, Equations (2a)–(2c) are reduced to

g1 ¼ gL �
1

4
k2g3

L; (3a)

g2 ¼ �
1

2
kg2

L; (3b)

g3 ¼
3

8
k2g3

L: (3c)

As can be seen in Equation (2a) or (3a), at the third-order,

the linear growth of the fundamental mode is reduced by the

nonlinear mode-coupling effect, i.e., third-order negative

feedback to the fundamental mode. Weakly nonlinear behav-

iors in planar RTI have become a field of theoretical,24–34 ex-

perimental35–37 and numerical38–41 interest.

Strictly speaking, perturbation growth driven only by

buoyant force is named as RTI, while the modifications of

perturbation behavior by compression and geometrical
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convergence are usually referred to as the BP effects.42,43

Both the RTI and the BP effects are important to the out-

come of implosion experiments in the ICF.44,45 Epstein46

discussed that the BP effects based on a simple model are

formulated in terms of the mass amplitude of interface per-

turbations, and work by Mikaelian47 gives the differential

equations in cylindrical and spherical coordinates for the

stability of the cylindrical and spherical shells, presents a lin-

earized analysis for different geometries, and the case of

concentric shells of fluid undergoing implosion or explosion

is considered. This linearized analysis is extended to the case

of compressible fluids by Yu and Livescu.48 Since then, a

number of papers by Forbes49–51 have examined the effects

of cylindrical and spherical geometry on an axi-symmetric

Rayleigh-Taylor growth.

The term “accelerationless growth” is also used for the

BP effects appearing without the effects of acceleration.52

To be more precise, “undriven growth” will denote compres-

sion and convergence effects in the absence of the buoyant

force driving the RTI. The term “accelerationless” suggests

the more restricted case of zero acceleration.53 Generally,

the net perturbation growth does not separate naturally into

an acceleration-driven RTI contribution and an undriven

(i.e., BP effects) contribution. Nevertheless, the chosen for-

mulation clarifies the physical distinction between the RTI

and BP effects. As Plesset noted for the spherical case, a

source or a sink should exist at the spherical center to allow

that region surrounded by the interface to expand or contract

while maintaining a constant fluid density.

Because of the complexity of the spherical RTI in ana-

lytic calculations, we just consider the case A¼ 1. In this pa-

per, development of the first four harmonics including the

zeroth, first, second, and third harmonics in the spherical

RTI for irrotational, incompressible, and inviscid fluid is

investigated analytically. It should be pointed out that we do

not assume a source or a sink to exist at the spherical center,

while the region surrounded by the spherical interface is still

in constant pressure. In the following expression, we use the

phrase “spherical RTI” to express the compositive effects

containing the net RTI and the BP effects.

II. THEORETICAL FRAMEWORK AND EXPLICIT
RESULTS

This section is devoted to the detailed description of the

theoretical framework in the present work, and analytic

expressions of amplitudes of the first four harmonics are

demonstrated.

In spherical polar coordinates ðr;u; hÞ, in which r is the

radial coordinate, u is the angle measured down from the z-

axis, and h is the azimuthal angle in the x� y plane, there is

a gas with constant pressure and a fluid, respectively, occu-

pying both sides of the spherical interface r¼ r0. For some

reason, there always exist perturbations on the material inter-

face. According to the relations of the acceleration direction

and fluid distribution, two cases can motivate the spherical

RTI. The first means the acceleration pointing to the center

of the spherical system and the fluid occupying the outer

space of the interface, the second is in complete antithesis to

the first. Here, we focus mainly on the first case, and assume

that interface perturbations are only related with the azi-

muthal angle h. In other words, there are perturbations with

the same mode number at arbitrary declination angle u. This

is similar to the configuration of the one-dimensional planar

RTI. In order to contrast conveniently with the planar results,

we consider perturbations in the equatorial x� y plane, and

this is achieved by setting the angle u ¼ p=2. The detailed

reason that we select u ¼ p=2 will be discussed in the sec-

tion of the initial perturbation as the following. Assuming

the fluid in a gravitational field �ger to be irrotational,

incompressible, and inviscid, the governing equations for

this system are

r2 @
2/
@r2
þ 2r

@/
@r
þ 1

sin2u

@2/

@h2
¼ 0 in the fluid; (4a)

@s

@t
þ 1

r2 sin2u

@s

@h
@/
@h
� @/
@r
¼ 0 on r ¼ s h; tð Þ; (4b)

@/
@t
þ 1

2

@/
@r

� �2

þ 1

2r2 sin2u

@/
@h

� �2

þ gr þ f tð Þ ¼ 0 on

r ¼ s h; tð Þ; (4c)

where the f(t) is an arbitrary function of time, /ðr; h; tÞ is the

velocity potential of the fluid, and the perturbation interface

r¼ s(h, t) corresponds to y¼ g(x, t) in Cartesian geometry.

Laplace equation (4a) comes from the incompressibility

condition of the fluid. Equation (4b) represents the kinematic

boundary condition that a fluid particle initially situated on

the material interface remains on the interface afterwards.

Bernoulli equation (4c) represents the dynamic boundary

condition in which the pressure is continuous across the ma-

terial interface.

We consider an initial perturbation in the form

r ¼ sðh; t ¼ 0Þ ¼ r0 þ e cosðjhÞ; (5)

where r0 is a positive constant, mode number j¼ 2pr0/k
which must be an integer and the amplitude of the perturba-

tion e� k. In fact, for arbitrary declination angle u, the mode

number should be j ¼ 2pr0 sin u=k. Under the condition of

the same perturbation wavelength for the planar and the

spherical RTI, there is a relational expression j ¼ kr0 sin u
with the wave number being k¼ 2p/k. Take ~r0 ¼ r0 sin u,

then ~r0 � r0. From this point, the spherical effect is the weak-

est when the angle u is set as p/2. In addition, at the same

wavelength, whether the spherical result in the limit of the

large r0 (i.e., r0!1) recovers the corresponding planar

result, depends on the angle u. When u ¼ p=2, the former

will tend to the latter. We also know that for the spherical per-

turbations with the same mode number, the condition of e� k
can be satisfied when u ¼ p=2, while it cannot when

u 6¼ p=2, especially u! 0 or u! p. This will result in the

failure of the expansion method with a small parameter,

particularly for u! 0 or u! p. Accordingly, we just take

the case of the perturbations in the equatorial plane, namely

u ¼ p=2, into consideration in the present paper. As regards

to the u effect related to axi-symmetric solutions, we plan to

investigate it in the next work.
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This perturbed interface is prone to RTI, and the higher

harmonics (i.e., the second harmonic, the third harmonic,

and so on) are subsequently generated by the nonlinear

mode-coupling process. Hence, the evolution interface s(h, t)
and velocity potential /ðr; h; tÞ can be expanded into a power

series in ê as

sðh; tÞ ¼ r0fðtÞ þ
XN

n¼1

sðnÞðh; tÞ þ OðêNþ1Þ; (6a)

/ðr; h; tÞ ¼
XN

n¼1

/ðnÞðr; h; tÞ þ OðêNþ1Þ; (6b)

with

f tð Þ ¼ 1þ
XN

2½ �

n¼1

ê2ne2nbta2n;0; (7a)

s nð Þ h; tð Þ ¼ ênenbt
Xn2½ ��1

m¼0

an;n�2m cos n� 2mð Þjh; (7b)

/ nð Þ r; h; tð Þ ¼ ênenbt
Xn

2½ �

m¼0

/n;n�2mr�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 n�2mð Þ2þ1
p

þ1

� �

� cos n� 2mð Þjh: (7c)

Here, the small parameter ê ¼ e=k� 1, N is set as 3,

Gauss’s symbol [n/2] denotes a maximum integer that is

less than or equal to n/2, b is the linear growth rate, and

the functions s(n)(h, t) and /ðnÞðr; h; tÞ are, respectively, nth-

order perturbed interface and nth-order perturbed velocity

potential of the fluid. Regarding the (n� 2 m)th Fourier har-

monic at the nth-order, when m¼ 0, s
ðnÞ
n�2m ¼ ênenbtan;n�2m

½/ðnÞn�2m ¼ ênenbt/n;n�2mr�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2ðn�2mÞ2þ1
p

þ1Þ=2� is a generation

coefficient of the perturbation interface [the velocity poten-

tial]; while m> 0, it is a feedback coefficient of the nth-order

for the perturbation interface [the velocity potential]. Note

that the perturbation velocity potential /ðr; h; tÞ has satisfied

Laplace equation (4a) and boundary condition r/jr!þ1
¼ 0, a1,1¼ k according to the initial condition, and f(t) is a

function of time. Equation (6a) shows that the whole evolu-

tion interface at time t consists of two sections. One is the

net perturbed interface
PN

n¼1 sðnÞðh; tÞ related to h, the other

is the unperturbed interface r0f(t) which is independent of h.

That is, the perturbations grow on the profile of the radius

r0f(t), while the radius r0f(t) changes with time. The function

f(t) determines whether the unperturbed interface moves

with time: the relation f(t)� 1 means that the interface keeps

resting; otherwise, it moves from the initial position

r(t¼ 0)¼ r0. As a result, the function f(t) represents the ra-

dius of the unperturbed interface, rather than the spatial aver-

age of the radius of the whole bubble, which can be

explained as below. To maintain the constant pressure with-

out a source or sink inside of the interface, the capacity there

should remain unchanged, and then the spatial average of the

radius of the whole bubble should be invariable (i.e., the ini-

tial radius r0). The coupling factors in the amplitudes of

the Fourier harmonic, an,n�2m (n¼ 2,…, N, and m¼ 0, 1,…,

[n/2]), and b are undetermined quantities.

On the basis of the method employed in the work of

Ref. 8, this system can be solved successively from the

first order to the third one. Note that the zeroth-order equa-

tions are satisfied due to the arbitrary function f(t). The lin-

ear growth rate and coupling factors of the first four

harmonics with corrections up to the third order can be

expressed as

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 þ 1
p

þ 1
� �

2r0

s
; (8a)

a2;0 ¼ �
1

2r2
0

; (8b)

a2;2 ¼
2j2 K1 � K2 þ 3ð Þ � K1 þ 1ð Þ K2 � 1ð Þ

2r0 K1 þ 1ð Þ K2 � 1ð Þ � 4j2½ � ; (8c)

a3;1 ¼
16j4 �4K1 þ K2 þ 5ð Þ þ j2 �83K2 þ 2K1 K2 þ 131ð Þ þ 347½ � � 33 K1 þ 1ð Þ K2 � 1ð Þ

16r2
0 K2 � 1ð Þ K1 þ 1ð Þ K2 � 1ð Þ � 4j2½ � ; (8d)

a3;3 ¼
K4

6r2
0 K2 � 1ð Þ K1 þ 1ð Þ K2 � 1ð Þ � 4j2½ � 4j2 � K1 þ 1ð Þ K3 � 1ð Þ

� � (8e)

with K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 þ 1
p

; K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16j2 þ 1
p

; K3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36j2 þ 1
p

,

and K4¼ 12j6(12K1� 3K2� 12K3þ83)þj4(�361K3þ 3K2

(19K3� 87)þ 3K1(�35K2þ 3(K2� 17)K3þ 211)þ 949)

þ 2j2(�67K3þ 3K2(9K3� 17)þK1(�57K3þK2(17K3� 41)

þ 81)þ 91)þ 10(K1þ 1)(K2� 1) (K3�1).

The linear growth rate on the spherical interface [see

Eq. (8a)] is different from that on the planar one [see Eq. (1)

where A should be selected as 1]. Keeping acceleration g and

mode number j invariable, the smaller the initial radius of

the interface r0 is, the larger the linear growth rate in the

spherical geometry is. In addition, expressions (8c)–(8e)

demonstrate that coupling factors are influenced by not only

j but also r0. If the constant k is considered in both the

spherical and Cartesian geometries [i.e., j/r0¼ k], and r0 is

large [i.e., r0!þ1], the interface constructed by the above

results will be reduced to the planar one. That is, the first
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three harmonics in spherical RTI will be simplified as those

[see Eqs. (3a)–(3c)] in planar RTI. In this configuration, it

should be noted that the second-order feedback to the zeroth

harmonic will vanish away, which can be easily confirmed in

Eq. (8b). The generation of a2,0 is an essential character com-

pletely different from the result in Cartesian geometry where

g2,0¼ 0.

Accordingly, the interface function at the framework of

the third-order theory takes the form r¼: fr0 þ
P3

n¼1 sn

cosðnjhÞ, and the function f and the amplitude of the nth

harmonic, sn, are

f ¼ 1þ a2;0g
2
Ls; (9a)

s1 ¼ gLsð1þ a3;1g
2
LsÞ; (9b)

s2 ¼ a2;2g
2
Ls; (9c)

s3 ¼ a3;3g
3
Ls; (9d)

where gLs¼ eebt is the linear growth amplitude of the funda-

mental mode. It should be pointed out that just the amplitude

of the fundamental mode is corrected by the third order,

while the second and the third harmonics are not. As dis-

cussed above, an essential character different from the

Cartesian case is that the zeroth harmonic appears [see

Equation (9a)]. This means that the position of the initial

unperturbed interface r¼ r0 changes into r¼ f(t)r0 with the

development of the perturbation, differing completely from

that in Cartesian space where the initial unperturbed inter-

face keeps resting all the time. Additionally, it is found that

both the unperturbed interface �r ¼ fr0 and the net perturbed

interface ~r ¼
P3

n¼1 sn cosðnjhÞ are closely related with g (in

linear growth rate b) and r0. This means that the net pertur-

bation growth and the BP effects affect the spherical RTI

collectively.

III. HARMONIC DEVELOPMENT

Because of the nonlinear mode-coupling, high harmonics

will be generated quickly and the initial interface developing

in linear growth will be reduced. The evolutional interface

includes two sections: the initial unperturbed interface known

as the zeroth harmonic and the perturbed interface. Within the

third-order theory, the zeroth harmonic has a second-order

correction, the fundamental mode (the first harmonic) is just

corrected by the third one, and the second and third harmonics

have no higher-order feedback. For unity, we use the charac-

teristic quantities k and g to normalize the initial radius and

the time. The development of the amplitude of these four har-

monics is investigated in this paper. Figures 1–4 show the

evolution of the zeroth, first, second, and third harmonics. To

better understand the spherical effect, we take the initial ra-

dius as r0/k¼ 10/2p, 20/2p, 100/2p, and 1000/2p, as well as

the planar results (i.e., the amplitudes of the first, second, and

third harmonics expressed by Eqs. (3a), (3b), and (3c), and the

amplitude of the zeroth harmonic which is zero in the planar

case), respectively. The initial amplitude of the perturbed

interface is set as e/k¼ 1/1000.

Figure 1 shows that for the case of large r0, the ampli-

tude of the zeroth harmonic in spherical RTI tends to be zero

(i.e., the planar result). With r0 decreasing, the amplitude of

FIG. 1. The amplitude development of the second-order feedback to the zer-

oth harmonic for different initial radii versus time. The initial amplitude is

e/k¼ 1/1000.

FIG. 2. The amplitude development of the fundamental mode versus time.

The initial amplitude is e/k¼ 1/1000.

FIG. 3. The amplitude development of the second harmonic versus time.

The initial amplitude is e/k¼ 1/1000.
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the zeroth harmonic quickly increases. That is to say, the

spherical effect inspires the appearance of the zeroth har-

monic which vanishes in the planar RTI. The negative ampli-

tude of the zeroth harmonic indicates that the unperturbed

interface starts moving towards the spherical center. The

unperturbed interface in planar RTI, nevertheless, keeps rest.

Accordingly, the phenomenon that the unperturbed interface

evolves to the spherical center is an innate character in the

spherical RTI.

Figure 2 denotes that the fundamental mode has the

same trend in spherical RTI as the planar one. With time, the

amplitude of the fundamental mode mildly increases first,

and then rapidly decreases. It should be noted that the

smaller the radius is, the larger the amplitude is. That is, the

spherical effect has a great influence on the fundamental

mode.

The amplitude of the second harmonic in Fig. 3 is found

to grow negatively for the different initial radii. When the

normalized radius tends to be infinity, the amplitude goes to

the result of the planar RTI. With decreasing radius, the am-

plitude grows fast.

In Fig. 4, one finds that the spherical effect strengthens

the positive growth of the third harmonic: the smaller the ra-

dius is, the faster the amplitude grows.

From the above figures, one also finds that for the first,

second, and third harmonics, their amplitude growth is dra-

matically strengthened when the initial interface radius is

less than 100k/2p. That is, when the initial interface radius is

more than 100k/2p, the spherical effect on their amplitude

growth vanishes. However, for the zeroth harmonic, when

the initial radius is between 100k/2p and 1000k/2p, the

spherical effect still plays a role.

IV. CONCLUSION

In this paper, we use the method of the small parameter

expansion with nonlinear corrections up to the third order to

analytically explore the amplitude evolution of the first four

harmonics in the classical RTI (irrotational, incompressible,

and inviscid fluid) for spherical geometry. Take the same

initial wavelength and large initial radius, then our spherical

results will tend to those in the planar RTI.

Unlike the planar RTI, the second-order feedback to the

zeroth harmonic is always negative for the varying initial ra-

dius, leading the initial unperturbed interface to move

towards the center of the spherical system. The smaller the

initial radius is, the faster the initial unperturbed interface

moves. In other words, the spherical effect has a great influ-

ence on the initial interface. In the spherical RTI, the first,

second, and third harmonics have the same development

trend as the planar RTI. However, the smaller the radius is,

the faster they grow. Hence, the spherical effect plays a key

role in the amplitude development of the harmonics.
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