Electronic Supplementary Information (ESI) for Lab on a Chip.

This journal is © The Royal Society of Chemistry 2015

Supplementary Information

A Generalized Formula for Inertial Lift on a Sphere in Microchannels

Chao Liu,^a Chundong Xue,^a Jiashu Sun,^b Guoqing Hu*^a

^a State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. E-mail: Guoqing.hu@imech.ac.cn
^b Beijing Engineering Research Center for BioNanotechnology & CAS Key Labtorary for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.

Pseudocode of the UDF

```
Lift calculation (){
    define global parameters;
    define fitting constants;
    calculate shear rates and shear gradient; //call built-in macros after solving the continuous
flow field without particles.
    if (straight channel){
       if (coordinate x){
               return component x = 0;
                                           //The lift along the main flow direction is vanishing.
       }
       if (coordinate y){
               use fitting constants for AR = 1;
               calculate component y of the lift vector;
                                                            //Eqn. 13 in the main text
               return component y;
       }
       if (coordinate z){
               use fitting constants for AR = W/H;
               calculate component z of the lift vector;
                                                            //Eqn. 13 in the main text
               return component z;
       }
    if (curved channel){
                              //using cylindrical coordinate system
       if (coordinate theta) {
                                     //the tangential direction
               return component theta = 0; //The lift along the main flow direction is vanishing.
       }
       if (coordinate r){
                              //the radial direction
               use fitting constants for AR = W/H;
               calculate component_r of the lift vector;
                                                            //Eqn. 13 in the main text
               return component r;
       }
       if (coordinate y){
```

```
use fitting constants for AR = 1;
```

```
calculate component_y of the lift vector; //Eqn. 13 in the main text
return component_y;
}
```

Data fitting

The fitting constants $c = [C_1 C_2 C_3 C_4]^T$ by solving the matrix equation:

$$\mathbf{A}c = \mathbf{C}$$

$$\mathbf{A} = \begin{bmatrix} F_{w}(x_{1}) & F_{s}(x_{1}) & F_{ss}(x_{1}) & F_{c}(x_{1}) \\ F_{w}(x_{2}) & F_{s}(x_{2}) & F_{ss}(x_{2}) & F_{c}(x_{2}) \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ F_{w}(x_{N}) & F_{s}(x_{N}) & F_{ss}(x_{N}) & F_{c}(x_{N}) \end{bmatrix}, c = \begin{bmatrix} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} C_{L}(x_{1}) \\ C_{L}(x_{2}) \\ \mathbf{M} \\ C_{L}(x_{N}) \end{bmatrix}$$
(S1)

where matrix **A** is constructed by the contributions of F_w , F_s , F_{ss} , and F_c to the C_L and vector **C** by the C_L calculated by DNS at positions $x_1, x_2...x_N$. *c* is determined as the least square solution of Eqn. S1, which can be easily solved using MATLAB.

Figure S1. The functions G_1 (red) and G_2 (green) calculated by Ho & Leal.¹

Figure S2. The lift coefficients C_L theoretically predicted by Ho & Leal.¹ Green: the contribution of wall-induced lift, red: the contribution of shear-gradient-induced lift, and blue: the C_L for the net lift force.

Figure S3. The 3D particle trajectories of 5- (blue) and 15- μ m (red) particles are shown at the (a) 1st unit, (b) 10th unit, and (c) 20th unit of the serpentine microchannel and at (d) the inlet and the loop followed by the outlet and (e) the S-shaped junction of the double spiral microchannel. The simulation conditions are identical to those for Figure 9 and 10.

1 B. P. Ho and L. G. Leal, J. Fluid Mech., 1974, 65, 365-400.