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The threshold pressure gradient and formation stress-sensitive effect as the two prominent physical phenomena in the
development of a low-permeable reservoir are both considered here for building a new coupled moving boundary model
of radial flow in porous medium. Moreover, the wellbore storage and skin effect are both incorporated into the inner
boundary conditions in the model. It is known that the new coupled moving boundary model has strong nonlinearity. A
coordinate transformation based fully implicit finite difference method is adopted to obtain its numerical solutions. The
involved coordinate transformation can equivalently transform the dynamic flow region for the moving boundary model
into a fixed region as a unit circle, which is very convenient for the model computation by the finite difference method on
fixed spatial grids. By comparing the numerical solution obtained from other different numerical method in the existing
literature, its validity can be verified. Eventually, the effects of permeability modulus, threshold pressure gradient, wellbore
storage coefficient, and skin factor on the transient wellbore pressure, the derivative, and the formation pressure distribution
are analyzed respectively.
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1. Introduction
In modern times, these unconventional tight oil and

gas reservoirs such as oil & gas shale reservoirs and low-
permeable reservoirs have become new energy targets in
petroleum engineering; and they play more and more impor-
tant roles in the world’s energy consumption. Correspond-
ingly, the studies of the kinematic principles of fluid flow in
unconventional reservoirs and their applications in engineer-
ing problems have become a hot topic at present.

1.1. Moving boundary problem considering threshold
pressure gradient

Abundant experimental and theoretical analyses[1–13]

have demonstrated that the fluid flow in low-permeable reser-
voirs do not obey the conventional Darcy’s law; there exists a
threshold pressure gradient (TPG). That is, the fluid flow hap-
pens only if the formation pressure gradient exceeds TPG. In
particular, Cai[11] presented the analytical expressions for the
flow rate and the velocity of non-Newtonian fluid flow in low-
permeable porous medium, and also obtained the scaling rela-
tion between TPG and permeability through fractal approach.

Unlike the modeling of Darcy’s flow, the flow in porous
medium with TPG is a nonlinear moving boundary problem.
Figure 1 shows the computed dimensionless formation pres-

sure distribution curves corresponding to Darcy’s flow and the
flow in porous medium with TPG, respectively. Compared
with the result of Darcy’s flow, the dimensionless formation
pressure distribution curve of modified Darcy’s flow is much
steeper, and the dimensionless formation pressure becomes
zero value at the position of moving boundary. At the mov-
ing boundary, the formation pressure gradient is just equal to
TPG. Inside the moving boundary, the dimensionless forma-
tion pressure gradient is larger than TPG, and then the fluid
flow can be driven under a net pressure gradient, i.e., the for-
mation pressure gradient minus TPG. However, outside the
moving boundary, no fluid flow happens (the formation pres-
sure keeps initial pressure; and the formation pressure gradient
is equal to zero, which is a “jump” of pressure gradient at the
moving boundary position). In a word, the formation pressure
curve corresponding to modified Darcy’s flow shows a prop-
erty of compact support.[10]

In another way, if an angle α between formation pressure
curve and distance is set to be on the moving boundary, TPG
will be equal to the value of tangent α from the definition of
TPG. When TPG tends to zero, the tangent of α will become
zero gradually. Then the type of formation distribution curve
will tend to a limit case i.e., Darcy’s flow.
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flow in porous media with TPG: 
tan(α)=TPG
Darcy's flow: tan(α)=0
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Fig. 1. (color online) Comparison between computed dimensionless
formation pressure distribution curves with and without including TPG.

Many relevant studies have proved that it is very signif-
icant to take into account the TPG in the modeling of fluid
flow in porous medium in low-permeable reservoir, whether
from reservoir engineering applications or theoretical model-
ing analysis. For example, the gas flow in water bearing tight
gas reservoirs in consideration of TPG is investigated by Zhu
et al.;[14] and through the analytical investigation, their pre-
sented mathematical model shows that due to the existence of
TPG the reservoir energy is largely consumed near the well-
bore. The research[15] by Zhu et al. shows that the consid-
ering of TPG in low-permeable reservoir simulation can im-
prove the history matching precision in the relevant applica-
tions in Units X10 and X11 of Daqing Oilfield. In Yin and
Pu’s study,[16] it is demonstrated through a pilot test in Chao
45 Block of Daqing Oilfield that the improved history match-
ing degree can be reached under the condition of considering
TPG in the simulation of surfactant flooding in low-permeable
reservoir. Yao et al.[10] and Liu et al.[17] investigated a ba-
sic one-dimensional moving boundary problem of fluid flow
in porous medium with TPG by an analytical solution method
and a subsequent strictly verified numerical method. And it
is concluded that it is very necessary to take into account the
effect of TPG for the fluid flow in porous medium with TPG,
for mathematical modeling in engineering applications.

1.2. Stress-sensitive effect

In the actual oil and gas production, the fluid pressure in
the development of oil and gas from low-permeable reservoirs
decreases gradually with the production time. As a result,
the rock skeleton, which bears the net overburden pressure
of reservoirs, will be compressed and deformed. It can cause
elastoplastic deformation of the rocks, and reduce the perme-
ability of reservoir. Academically, it is defined as “stress-
sensitive reservoir”.[18–23] However, as far as we know, in pre-
vious researches of the moving boundary problems of fluid
flow in low-permeable reservoir, the effect of deformation of
low-permeable rock has not been considered and evaluated
yet.

Here, based on these aforementioned concerns, in con-
sideration of the two prominent physical phenomena in the
development of low-permeable reservoirs i.e., the existence
of TPG and the stress-sensitive effect, a new coupled mov-
ing boundary model of radial flow in low-permeable reservoir
is developed; a concept of permeability modulus[18,19,21,22] is
introduced to reflect the effect of formation deformation on the
permeability change. Besides, both the wellbore storage and
skin effect are incorporated into the inner boundary conditions.

Abundant researches have been conducted on the analyt-
ical and numerical solutions for such moving boundary prob-
lems of fluid flow in porous medium with TPG. And current
major solution methods include the integral approximate an-
alytical method,[24] the Green function method,[25] the exact
analytical solution by similarity transformation method,[17,26]

coordinate transformation based numerical method,[10] and
direct finite difference numerical method.[27] Owing to the
strong nonlinearity and complexity of our presented coupled
moving boundary model, a coordinate transformation based
finite difference method[10] is adopted to numerically investi-
gate the effect of physical parameters on the model solutions
to the formation pressure and moving boundary. The utility of
the numerical method can be attributed to its simple approach
to converting the moving boundary problem into a problem
with fixed boundary conditions, and then solving it by a stable
fully implicit finite difference method on fixed spatial grids.

2. Mathematical modeling
2.1. Physical model

The problem considered involves the radial flow in an in-
finite low-permeable stress-sensitive reservoir with TPG. The
reservoir is homogeneous, isotropic, and isothermal. And the
single-phase horizontal flow does not have any gravity effect.
Both the wellbore storage and skin effect[19] are considered.
The Newtonian fluid and rocks are slightly compressible.

The schematic of the physical model is shown in Fig. 2.
Once the oil is produced from the low-permeable reservoir
with TPG, the formation pressure drop happens in the for-
mation inside the moving boundary. Owing to the formation
pressure drop, the stress -sensitive reservoir can be deformed,
which reduces the formation permeability (See Fig. 2).

moving boundary positionmoving boundary position

oil output

reservoirreservoir

stress sensitive effectstress sensitive effect

horizontal level

wellbore

Fig. 2. (color online) Schematic diagram of physical model.
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2.2. Mathematical model

The fluid density is as follows:[24]

ρ = ρ0 exp(−Cf (p0− p)) , (1)

where ρ is the fluid density (in units g·cm−3); ρ0 is
the initial fluid density (in units g·cm−3); p0 is the ini-
tial pressure (in unit atm); p is the pressure (in unit atm,
1 atm = 1.01325×105 Pa); Cf is the compression coefficient
of the fluid (in unit atm−1).

The porosity of the porous medium is as follows:[24]

φ = φ0 exp
(
−Cφ (p0− p)

)
, (2)

where φ is the porosity of the porous medium (in the fraction
form); φ 0 is the initial porosity (in the fraction form); Cφ is the
compression coefficient of the porosity (in unit atm−1).

The modified Darcy’s law for the fluid flow in the porous
medium with TPG is as follows:[1]

υ =


− k

µ
· ∂ p

∂ r
·

1− λ∣∣∣∣∂ p
∂ r

∣∣∣∣
 ,

∣∣∣∣∂ p
∂ r

∣∣∣∣> λ ,

0, 0≤
∣∣∣∣∂ p

∂ r

∣∣∣∣≤ λ ,

(3)

where k is the permeability of the porous medium (in unit D);
µ is the fluid viscosity (in unit cP); r is the radial distance (in
unit cm); υ is the seepage velocity (in units cm3·(s·cm2)−1);
λ is the TPG (in unis atm·cm−1).

The permeability modulus γ (in unit atm−1) is similar to
the compressibility coefficient, and can be defined by the fol-
lowing equation:[18,19,21,22]

γ =
1
k
· dk

dp
. (4)

Coefficient γ plays an important role in the stress-
sensitive effect on the rock permeability. It is a measure-
ment of the dependence of the permeability on formation pres-
sure drop. For practical engineering applications, it can be
assumed to be constant.[18,19,21,22] Then the permeability of
deformed rock in low-permeable reservoirs can be expressed
from Eq. (4) as follows:

k = k0e−γ(p0−p), (5)

where k0 is the permeability at the initial reservoir pressure.
The continuous equation for the radial flow in the porous

medium is as follows:[24]

− 1
r

∂

∂ r
(rρυ) =

∂ (ρφ)

∂ t
, rw ≤ r ≤ s(t) , (6)

where t is the time (in unit s); s is the moving boundary (in
unit cm); rw is the wellbore radius (in unit cm). Besides, it

should be noted that Eq. (6) is only valid for the radial space
from the wellbore to the moving boundary.

Substituting Eqs. (1)–(3), and (5) into Eq. (6), the gov-
erning (mass balance) equation for the radial flow in the low-
permeable stress-sensitive reservoir, can be deduced as fol-
lows:

1
r
· ∂

∂ r

[
r · e−γ·(p0−p) ·

(
∂ p
∂ r
−λ

)]
=

µφ0Ct

k0
· ∂ p(r, t)

∂ t
,

rw ≤ r ≤ s(t) , (7)

where Ct is the total compression coefficient (in unit atm−1);
and Cf� γ .

The initial conditions are as follows:

s(0) = 0, (8)

p|t=0 = p0. (9)

The inner boundary conditions in consideration of well-
bore storage and skin effect with constant flow rate are

2πk0hr
µ

(
∂ p
∂ r
−λ

)∣∣∣∣
r=rw

= q ·B+C · dpwf

dt
, (10)

pwf =

[
p−S · e−γ·(p0−p) · r ·

(
∂ p
∂ r
−λ

)]∣∣∣∣
r=rw

, (11)

where h is the reservoir thickness (in unit cm); C is the coef-
ficient of wellbore storage (in units cm3·atm−1); q is the con-
stant flow rate (in units cm3·s−1); B is the volume factor, di-
mensionless; pwf is the wellbore pressure (in unit atm); S is
the skin factor.

According to the definition of TPG, the moving boundary
conditions are the same as the ones in Ref. [10] as follows:

p|r=s(t) = p0, (12)

∂ p
∂ r

∣∣∣∣
r=s(t)

= λ . (13)

Equations (7)–(13) together form a coupled moving
boundary model of radial flow in low-permeable stress-
sensitive reservoir with TPG for the case of a constant flow
rate at the inner boundary in consideration of both the well-
bore storage and skin effect.

The dimensionless variables are defined as follows:

rD =
r

rw
, (14)

tD =
k0t

µφ0Ctr2
w
, (15)

δ =
s

rw
, (16)

PD =
2πk0h(p0− p)

qµB
, (17)

λD =
2πk0hrwλ

qµB
, (18)

γD =
qµBγ

2πk0h
, (19)

CD =
C

2πφ0Cthr2
w
, (20)
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PwD =
2πk0h(p0− pwf)

qµB
, (21)

where rD is the dimensionless radial distance; tD is the dimen-
sionless time; PD is the dimensionless pressure; PwD is the di-
mensionless wellbore pressure; αD is the dimensionless com-
pressibility; λ D is the dimensionless TPG; γD is the dimen-
sionless permeability modulus; δ is the dimensionless moving
boundary; CD is the dimensionless coefficient of wellbore stor-
age.

And then the dimensionless form of the coupled moving
boundary model can be transformed equivalently. The govern-
ing equation is as follows:

1
rD
· ∂

∂ rD

[
e−γD·PD · rD ·

(
∂PD

∂ rD
+λD

)]
=

∂PD (rD, tD)
∂ tD

,

1≤ rD ≤ δ (tD) . (22)

The initial conditions are as follows:

PD|tD=0 = 0, (23)

δ (0) = 0. (24)

The inner boundary conditions are as follows:

CD
∂PwD

∂ tD
− e−γD·PD ·

(
∂PD

∂ rD
+λD

)∣∣∣∣
rD=1

= 1, (25)

PwD =

[
PD−S · e−γD·PD ·

(
∂PD

∂ rD
+λD

)]∣∣∣∣
rD=1

. (26)

The moving boundary conditions are

∂PD

∂ rD

∣∣∣∣
rD=δ (tD)

=−λD, (27)

PD|rD=δ (tD) = 0. (28)

3. Velocity of moving boundary
From Eq. (28), we have

PD (δ (tD) , tD) = 0. (29)

Differentiating two sides of Eq. (29) with respect to tD,
we have

∂PD

∂ tD

∣∣∣∣
rD=δ (tD)

+
∂PD

∂ rD

∣∣∣∣
rD=δ (tD)

· ∂δ

∂ tD
= 0. (30)

Substituting Eq. (27) into Eq. (30) yields

∂PD

∂ tD

∣∣∣∣
rD=δ (tD)

= λD ·
∂δ

∂ tD
. (31)

By using Eqs. (27) and (28) and letting xD = δ (tD) on
both sides of Eq. (22), we have

∂ 2PD

∂ r2
D

∣∣∣∣
rD=δ (tD)

=
∂PD

∂ tD

∣∣∣∣
rD=δ (tD)

. (32)

By Eqs. (31) and (32), the velocity of the moving bound-
ary can be written as follows:

∂δ

∂ tD
=

1
λD

∂ 2PD

∂ r2
D

∣∣∣∣
rD=δ (tD)

. (33)

From Eq. (33), it can be concluded that the velocity of
moving boundary is proportional to the second derivative of
the formation pressure function with respect to the radial dis-
tance on the moving boundary, but inversely proportional to
TPG. It is different from the result of classical heat-conduction
Stefan problem.[15,17]

4. Numerical method
In order to overcome the difficulty in discretizing space

for the transient flow region with moving boundary, a spatial
coordinate transformation method is used. It is the same as the
one for the radial seepage flow problem with moving boundary
in Ref. [10] as follows:

y(rD, tD) =
rD−1

δ (tD)−1
, 1≤ rD ≤ δ (tD) . (34)

moving boundary  δ(tD)

radius=δ(tD)-1

coordinate transformation

fixed boundary

unit circle

Fig. 3. (color online) Schematic diagram of coordinate transformation.

Through Eq. (34), the dynamic flow region for the moving

boundary problem [0, δ (tD)] can be transformed into a fixed

region [0, 1] as shown in Fig. 3. Then the dimensionless pres-

sure PD(rD, tD) can be transformed into a new variable η(y,

tD). The same transformation of differential variables as the
one in Ref. [10] can be obtained as

∂PD

∂ rD
=

∂η

∂y
· 1
(δ −1)

, (35)
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∂ 2PD

∂ r2
D
=

∂ 2η

∂y2 ·
1

(δ −1)2 , (36)

∂PD

∂ tD
=−∂η

∂y
· y
(δ −1)

· ∂δ

∂ tD
+

∂η

∂ tD
. (37)

Expanding the term on the left-hand side of the governing
equation i.e., Eq. (22), the resulting equation can be obtained
as follows:

1
rD
· ∂PD

∂ rD
+

λD

rD
+

∂ 2PD

∂ r2
D

−γD ·
(

∂PD

∂ rD

)2

−λD · γD ·
∂PD

∂ rD
=

∂PD

∂ tD
· eγD·η . (38)

Substituting Eqs. (35)–(37) into Eq. (38) yields

1
yD · (δ −1)+1

· ∂η

∂yD
· 1
(δ −1)

+
λD

yD · (δ −1)+1
+

∂ 2η

∂y2
D
· 1

(δ −1)2

−γD ·
(

∂η

∂yD
· 1
(δ −1)

)2

−λD · γD ·
∂η

∂yD
· 1
(δ −1)

=

(
− ∂η

∂yD
· yD

(δ −1)
· ∂δ

∂ tD
+

∂η

∂ tD

)
· eγD·η . (39)

Substituting Eqs. (35)–(37) into Eq. (23), Eqs. (25)–(28), and
Eq. (33), respectively, we have

η |tD=0 = 0, (40)

CD
∂PwD

∂ tD
− e−γD·η ·

(
∂η

∂yD
· 1
(δ −1)

+λD

)∣∣∣∣
yD=0

= 1, (41)

PwD =

[
η−S · e−γD·η ·

(
∂η

∂yD
· 1
(δ −1)

+λD

)]∣∣∣∣
yD=0

, (42)

∂η

∂y

∣∣∣∣
y=1

=−λD (δ −1) , (43)

η |y=1 = 0, (44)

∂δ

∂ tD
=

1
λD

∂ 2η

∂y2

∣∣∣∣
y=1
· 1

(δ −1)2 . (45)

From Eq. (43), we have

δ −1 =− 1
λD
· ∂η

∂yD

∣∣∣∣
yD=1

. (46)

Substituting Eqs. (45) and (46) into Eq. (39) to cancel the
variables ∂δ/∂ tD and δ yields

∂η

∂yD
· 1

λ 2
D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)2

− 1
λ 2

D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)3

+
∂ 2η

∂y2
D
· yD

λ 2
D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)2

− 1
λD
· ∂

2η

∂y2
D
· ∂η

∂yD

∣∣∣∣
yD=1

−γD ·
(

∂η

∂yD

)2

· yD

λ 2
D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)2

+
γD

λD
·
(

∂η

∂yD

)2

· ∂η

∂yD

∣∣∣∣
yD=1

+γD ·
∂η

∂yD
· yD

λ
2
D

·

(
∂η

∂yD

∣∣∣∣
yD=1

)3

− γD

λD
· ∂η

∂yD
·

(
∂η

∂yD

∣∣∣∣
yD=1

)2

=
∂η

∂yD
· ∂ 2η

∂y2
D

∣∣∣∣
yD=1
· eγD·η · y2

D

λ 2
D
· ∂η

∂yD

∣∣∣∣
yD=1

− ∂η

∂yD
· yD

λD
· ∂ 2η

∂y2
D

∣∣∣∣
yD=1
· eγD·η

+
∂η

∂ tD
· eγD·η · yD

λ 4
D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)4

− ∂η

∂ tD
· eγD·η · 1

λ 3
D
·

(
∂η

∂yD

∣∣∣∣
yD=1

)3

. (47)

Substituting Eq. (46) into Eqs. (41) and (42) to cancel the vari-
ables δ yields

CD ·
∂PwD

∂ tD
· ∂η

∂yD

∣∣∣∣
yD=1

+ λD ·
(

e−γD·η · ∂η

∂yD

)∣∣∣∣
yD=0

− e−γD·η
∣∣
yD=0 ·λD ·

∂η

∂yD

∣∣∣∣
yD=1

=
∂η

∂yD

∣∣∣∣
yD=1

, (48)

PwD ·
∂η

∂yD

∣∣∣∣
yD=1

= η |yD=0 ·
∂η

∂yD

∣∣∣∣
yD=1

+S ·λD · e−γD·η
∣∣
yD=0 ·

∂η

∂yD

∣∣∣∣
yD=0

−S ·λD · e−γD·η
∣∣
yD=0 ·

∂η

∂yD

∣∣∣∣
yD=1

. (49)

Equations (47)–(49), Eq. (40) and Eq. (44) together form
a transformed mathematical model with fixed boundary con-
ditions. The model shows strong nonlinearity, indirectly indi-
cating the strong nonlinearity of the original, untransformed
moving boundary problem. Here, a stable, fully implicit finite
difference method[10] is used to obtain its numerical solutions
of the nonlinear model. The difference equation for the model
can be written as follows:

η
j+1

i+1 −η
j+1

i

∆y
· 1

λ 2
D
·

(
−

η
j+1

N−1

∆y

)2

− 1
λ 2

D
·

(
−

η
j+1

N−1

∆y

)3

+
η

j+1
i−1 −2η

j+1
i +η

j+1
i+1

(∆y)2 · i∆yD

λ 2
D
·

(
−

η
j+1

N−1

∆y

)2

− 1
λD
·

η
j+1

i−1 −2η
j+1

i +η
j+1

i+1

(∆y)2 ·

(
−

η
j+1

N−1

∆y

)

−γD ·

(
η

j+1
i+1 −η

j+1
i

∆y

)2
i∆yD

λ 2
D
·

(
−

η
j+1

N−1

∆y

)2

+
γD

λD
·

(
η

j+1
i+1 −η

j+1
i

∆y

)2

·

(
−

η
j+1

N−1

∆y

)
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+γD ·
η

j+1
i+1 −η

j+1
i

∆y
· i∆yD

λ
2
D

·

(
−

η
j+1

N−1

∆y

)3

− γD

λD
·

η
j+1

i+1 −η
j+1

i

∆y
·

(
−

η
j+1

N−1

∆y

)2

−
η

j+1
i+1 −η

j+1
i

∆y
·

η
j+1

N−2−2η
j+1

N−1

(∆y)2

· eγD·η
j+1

i · (i∆yD)
2

λ 2
D
·

(
−

η
j+1

N−1

∆y

)

+
η

j+1
i+1 −η
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·
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−

η
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= 0,

i = 1,2, . . . ,N−1, (50)

−CD ·
P j+1

wD −P j
wD

∆t
·

η
j+1

N−1

∆y
+λD · e−γD·η

j+1
0 ·

η
j+1

1 −η
j+1

0
∆y

+ e−γD·η
j+1

0 ·λD ·
η

j+1
N−1

∆y
+

η
j+1

N−1

∆y
= 0, (51)

−P j+1
wD ·

η
j+1

N−1

∆y
+η

j+1
0 ·

η
j+1

N−1

∆y

−S ·λD · e−γD·η
j+1

0 ·
η

j+1
1 −η

j+1
0

∆y

−S ·λD · e−γD·η
j+1

0 ·
η

j+1
N−1

∆y
= 0, (52)

η
0
i = 0, i = 0,1,2, . . . ,N−1, (53)

η
j+1

N = 0, (54)

where N denotes the total number of spatial grid subintervals
with the same length; ∆y is the length of a grid subinterval,
which is equal to 1/N; i denotes the index of the spatial grid
from the well; j denotes the index of a time step; ∆tD denotes
the time step size.

Equations (50)–(54) together form the closed differ-
ence equations at the ( j + 1)-th time step, and also contain
(N + 1) unknown variables . The Newton–Raphson iterative
method[10] is used to numerically solve these nonlinear differ-
ence equations. Eventually, numerical solutions for the trans-
formed nonlinear partial differential equation system with re-
spect to η(y, tD) can be obtained.

The difference equation of Eq. (46) is

δ
j+1−1 =

1
λD
·

η
j+1

N−1

∆y
. (55)

Substituting Eq. (55) into the difference equation of
Eq. (34) yields

r j+1
Di

= i ·
η

j+1
N−1

λD
+1. (56)

By Eq. (56), numerical solutions of η(y, tD) can be trans-
formed into the ones of PD(rD, tD) in the numerical solution
process.

5. Verification of numerical solutions
Li and Liu[27] have studied a moving boundary model of

radial flow in porous medium with TPG without consideration
of the stress-sensitive effect, nor wellbore storage nor skin ef-
fect. Its numerical solution is obtained by direct spatial dis-
cretization with fixed grids. In our presented coupled moving
boundary model, if γD, CD, and S are all set to be zero, the
coupled moving boundary model can be reduced to the same
model as the one in Ref. [27]. From Eq. (55), the dimension-
less moving boundary distance δ can be computed for each
time step. Then the numerical solutions regarding the dimen-
sionless transient distance of moving boundary by the two dif-
ferent numerical methods can be compared with others.

101 102 103
0

40

80

120

160 λD=0.0001   Li and Liu's numerical method 

λD=0.0001   the numerical method presented here

tD

γD=0, CD/↪ S/

δ

Fig. 4. (color online) Comparison of numerical results

Figure 4 shows the comparison between numerical results
when the value of dimensionless TPG λ D is equal to 0.0001.
From Fig. 4, it can be seen that the two numerical solutions
are in a good agreement. Therefore, the validity of the coordi-
nate transformation based finite difference numerical method
of solving the coupled moving boundary model presented here
can be verified.

6. Results and discussion
6.1. Effect of dimensionless permeability modulus γD

Figure 5 shows the effects of dimensionless permeabil-
ity modulus on the log–log curves of dimensionless transient
wellbore pressure and its derivative (with respect to dimen-
sionless time) multiplied by the dimensionless time, under dif-
ferent values of dimensionless permeability modulus. These
typical log–log curves are very useful for the well testing ex-
planation in petroleum engineering. Figure 6 shows the effects

024701-6



Chin. Phys. B Vol. 25, No. 2 (2016) 024701

of dimensionless permeability modulus on the dimensionless
formation pressure distribution for different values of γD.

Figure 5 shows that the dimensionless permeability mod-
ulus, characterizing the reservoir deformation, has little effect
on both the transient wellbore pressure and its derivative.

Figure 6 indicates that the larger the dimensionless radial
distance, the bigger the effect of reservoir deformation on the
formation pressure is; the larger the dimensionless permeabil-
ity modulus, the nearer the dimensionless distance of moving
boundary is. It can be explained that the reservoir deforma-
tion can reduce the formation permeability as the formation
pressure drops, which slows down the propagation of moving
boundary. Besides, it can be concluded from Fig. 6 that the
larger the dimensionless permeability modulus, the bigger the
sensitive effect of the parameter is.
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Fig. 5. (color online) Effects of dimensionless permeability modulus on
transient wellbore pressure and its derivative for different values of γD.
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Fig. 6. (color online) Effects of dimensionless permeability modulus on
formation pressure distribution for different values of γD.

With respect to the dimensionless formation pressure,
near the wellbore (see the enlarged semi-log plot in the inset of
Fig. 6), with the increase of the dimensionless radial distance,
the larger the dimensionless permeability modulus, the larger
the dimensionless formation pressure and the absolute value of
the dimensionless formation pressure gradient are; however,
in the place further away from the wellbore, with the increase

of the dimensionless radial distance, the larger the dimension-
less permeability modulus, the smaller the dimensionless for-
mation pressure is. Then it can be concluded that the more
serious pressure drop caused by the formation deformation in
low-permeable reservoirs mainly happens in the place near the
wellbore; it can be explained that much larger formation pres-
sure drop happens near the wellbore than far away from the
wellbore in the formation, and can cause greater formation de-
formation and subsequent permeability reduction.

6.2. Effect of dimensionless TPG λDλDλD

Figures 7 and 8 show the effects of dimensionless TPG
λ D on dimensionless transient wellbore pressure and its
derivative, and dimensionless formation pressure distribution
respectively, under different values of dimensionless TPG. The
estimation of value range of λ D has been performed from the
experimental data of eight samples[1,10] and the range is from
0 to 0.852. Here four different values of λ D are set to be 0.1,
0.2, 0.3, and 0.4, respectively.

From Figs. 7 and 8, it can be seen that the larger the di-
mensionless TPG, the larger the dimensionless transient well-
bore pressure and its derivative are and the smaller the dis-
turbed area between the wellbore and the position of mov-
ing boundary is. In comparison with the typical curves of
Darcy’s flow, these log–log curves, which correspond to non-
zero value of TPG, all turn upward, and the line represent-
ing the period of radial flow is not horizontal any more. The
formation pressure distribution curve corresponding to larger
TPG exhibits a larger slope. Moreover, unlike for Darcy’s flow
problem, for this moving boundary problem, the formation
pressure drops only inside the moving boundary, but outside
the moving boundary the formation still keeps initial pressure:
the pressure distribution curves show a property of compact
support.[10]
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λD=0.4
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Fig. 7. (color online) Effects of dimensionless TPG on transient well-
bore pressure and its derivative.

Besides, from Fig. 7, it can also be concluded that the
smaller the dimensionless TPG, the bigger the sensitive ef-
fects on the transient wellbore pressure and the derivative are,
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which challenges the well testing problems in low-permeable
reservoirs.
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Fig. 8. (color online) Effect of dimensionless TPG on formation pres-
sure distribution.

6.3. Effect of dimensionless wellbore storage coefficient CDCDCD

Figures 9 and 10 show the effects of dimensionless well-
bore storage CD on dimensionless transient wellbore pressure
and derivative and dimensionless formation pressure distribu-
tion respectively, under different values of dimensionless well-
bore storage coefficient CD.
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Fig. 9. (color online) Effects of dimensionless wellbore storage co-
efficient on transient wellbore pressure and its derivative for different
values of CD.
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Fig. 10. (color online) Effects of dimensionless wellbore storage coef-
ficient on formation pressure distribution for different values of CD.

From Fig. 9, it can be seen that the wellbore storage
mainly affects the initial stage of transient wellbore pressure

behavior, and with time increasing, its effect tends to dimin-
ish. The smaller the dimensionless wellbore storage coeffi-
cient, the less the time of wellbore storage is and the larger
the sensitive effect is. From Fig. 10, it can also be concluded
that the effect of dimensionless wellbore storage coefficient on
dimensionless formation pressure distribution is not very obvi-
ous. The larger the dimensionless wellbore storage coefficient,
the smaller the dimensionless transient wellbore pressure and
the dimensionless formation pressure are.

6.4. Effect of skin factor SSS

Figures 11 and 12 show the effects of skin factor S
on dimensionless transient wellbore pressure and its deriva-
tive and dimensionless formation pressure distribution respec-
tively, under different values of skin factor S. From Figs. 11
and 12, it can be seen that the effect of skin factor on the di-
mensionless transient wellbore pressure is more obvious than
on the dimensionless formation pressure distribution. Its effect
on the derivative is more serious in the early production period.
The larger the skin factor, the larger the dimensionless tran-
sient wellbore pressure and its derivative are, and with time
increasing, its effect tends to diminish. In addition, the skin
factor has little effect on the dimensionless formation pressure
distribution.
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Fig. 11. (color online) Effects of skin factor on transient wellbore pres-
sure and its derivative for different values of skin factor S.
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Fig. 12. (color online) Effects of skin factor on the formation pressure
distribution for different values of skin factor S.
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7. Conclusions
A new coupled moving boundary model of radial flow in

a stress-sensitive reservoir with TPG is built in consideration
of the aforementioned two prominent physical phenomena in
the development of low-permeable reservoir. A coordinate
transformation based fully implicit finite difference method
is adopted to obtain the numerical solutions of the nonlinear
model. Its validity is also verified.

Some important conclusions from the numerical results
analysis are obtained. The dimensionless permeability mod-
ulus, indicating the reservoir deformation, has little effect on
transient wellbore pressure and its derivative. The more se-
rious pressure drop caused by the formation deformation in
low-permeable reservoirs mainly happens in the place near the
wellbore. Unlike the scenario from the Darcy’s flow prob-
lem, the formation pressure distribution curves corresponding
to nonzero TPG show a property of compact support; the log–
log typical curves all turn upward, and the line representing
the period of radial flow is not horizontal. The effect of dimen-
sionless wellbore storage coefficient on the dimensionless for-
mation pressure distribution is not very obvious, and it mainly
affects the initial stage of transient wellbore pressure behavior.
The skin factor has little effect on the dimensionless formation
pressure distribution.
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