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ABSTRACT 

In finite length tube or channel gas flow the pressure 
gradient is determined by the global mass conservation law. In 
the continuum and slip flow the pressure distribution 
determined by the global mass conservation is given 
analytically. In the transitional flow regime an equation 
containing the flow rate of the Poiseuille flow solved by the 
strict kinetic theory is obtained and is shown to be the 
degenerated Reynolds equation for the lubrication theory. The 
integration of the equation is illustrated in the case of full 
diffuse reflection of the channel wall. The pressure distribution 
thus obtained is shown to be in excellent agreement with 
experimental data of long microchannels and the simulation 
results of the information preservation method. The results as 
having the strict kinetic theoretical merit are used to confirm 
the unfeasibility of the Lattice Boltzmann method in the 
transitional flow regime. 

 
Keywords : microchannel flow, pressure distribution, MEMS, 
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INTRODUCTION 

Microchannel is the basic constituent of the MEMS 
devices, its geometric form is regular and simple, but the gas 
flow in it is the basic flow pattern in MEMS and can reveal the 
specific features of the low speed micro internal flows, so it has 
been a subject of growing intensive investigation. In the 
classical fluid mechanics the steady Poiseuille flow is 
considered as a flow in long tube or channel having constant 
pressure gradient G= /p x−∂ ∂  (see, e.g., Batchelor [1]). In the 
kinetic theoretical consideration a constant pressure gradient is 
also proposed for the linearized Boltzmann solution of the 
Poiseuille flow of gas (see e.g. Ohwada et al. [2]). But the 
constancy of pressure gradient in a tube or channel is true only 
for the flow of liquid (with constant density) and, as shown in 
the following, in any realistic tube or channel gas flow the 
pressure gradient is never a constant but varies from one cross 
section to another and is determined by the global mass 
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conservation law. The assumption of the constancy of the 
pressure gradient in the Poiseuille flow is not necessary, in fact, 
the solution of the Poiseuille flow determines only the local 
flow characteristics in dependence of the local pressure 
gradient. As it is shown in the following the global mass 
conservation defines the pressure distribution in the continuum 
flow regime and the slip flow regime. In the transitional flow 
regime a strict kinetic theoretical solution of the channel flow 
pressure distribution is also provided by the mass conservation 
across the channel, given the kinetic theoretical solution of the 
mass flux for the Poiseuille flow is known. The channel 
pressure distribution so determined is compared with the 
experimental data of Pong et al. and Shih et al.[3,4] and the 
numerical simulation result by the information preservation (IP) 
method [5]. It is used also to test the validity of the calculation 
of the channel flow by the Lattice Boltzmann method 
accomplished by Nie et al. [6]. 

NOMENCLATURE 
h: height of the channel 
Kn: Knudsen number 
L: length of the channel 
p: pressure 
P: =p/po, dimensioinless pressure 
Qm: mass flow rate 

~

mQ : dimensionless mass flow rate 
    R: gas constant 
    T: temperature 
    u: x direction velocity 
    x: Cartesian coordinate in the channel axis direction 
    y: Cartesian coordinate normal to the channel surface 

z:  the third Cartesian coordinate 
ς : slip coefficient, (2 ) /σ λ σ= −  

   oς : (2 ) /o o op pς ς σ λ σ= = −  
   λ : mean free path 
   µ :  viscosity 
   ρ :  density 
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   σ :  tangential reflection coefficient 
 

subscript 
C: continuum flow 
i: inlet 
o; outlet 
SLIP: slip flow 
TR: transitional flow 
 

1. The pressure distribution determined by the global mass 
conservation 
Consider the gas flow in a channel between two plane plates at 
a cross section x with the local pressure gradient dp/dx, which 
can vary from one cross section to another (see Fig.1). First we 
consider the continuum flow case. In the case of low speed the 
temperature variation is neglected, µ  is a constant, the 
Navier-Stokes equation attains the form 

2

2

d u dp dx
dy µ

= .                            (1) 

 
 
Fig. 1 The schematic of the Poiseuille flow  
 

Equation (1) with the slipless boundary condition u=0 at y=h/2 
yields  

            ( )2 21 4
8

dpu h y
dxµ

= − −  .                (2) 

The mass flux ,m CQ  flown in unit time through the gap 
between the two plates (with unit length in z) is obviously 

32

,
0

2
12

h

m C
p dp hQ udy

RT dx
ρ

µ
−

= =∫ .            (3) 

The global mass conservation across any cross section requires 
that 
                 p(dp/dx)=constant,                (4) 

or in the dimensionless variables 0/P p p= and X=x/L( ( po : 
the pressure at the outlet, L : the length of the channel) 
 
                 PdP/dX=constant.                 (5) 

 From the above equation with the inlet and outlet boundary 
conditions  

/i i oP P p p= ≡   at 0X = ,  and  P=1 at X=1,          (6) 
the pressure distribution is easily determined   

      1/ 2
2

1[1 (1 ) ]i
i

P P X
P

= − − ,                 (7) 
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with the pressure gradient  
1/ 2

2 2

1 1 1(1 )[1 (1 ) ]
2 i

i i

dP P X
dX P P

−= − − − −  .     (8) 

Obviously, the pressure distribution is approximately linear if 
the value 2(1 1/ )iP−  is small, and its slope is negative with 

2
iP 1> , and the absolute value of the pressure slope 

monotonously increases with increasing X. 
In the case of slip flow the basic equation (1) remains the 

same, the velocity profile in the case of slip boundary condition 

/ 2y h
duu
dy

ζ= = − , with 2 σζ λ
σ
−

= ,  is  

( )2 21 4 4
8

dpu h y h
dx

ζ
µ

= − − + .                     (9) 

And the mass flux instead of Eq. (3) is obtained as 

  
2

3 2
,

0

1 12 2
4 3

h

m SLIP
p dpQ udy h h

RT dx
ρ ζ

µ
−  = = + 

 ∫ .        (10) 

Note that ς  is dependent on p: (2 ) / ,ς σ λ σ= −  and as 
ρλ = constant, one can write /o pς ς= , where 

 2 2
o o op pσ σς λ λ

σ σ
− −

= = .            (11) 

. So from Eq. (10) the mass conversation can be written as 

             6 odp dpp
dx h dx

ς
+ = constant, 

 or in dimensionless variables 

0
26dP dPP Kn

dX dX
σ

σ
−

+ =  constant,       (12) 

where Kno= /o hλ  is Knudsen number at the outlet of the 
channel. The solution of the above equation with the integration 
constants determined from the inlet and outlet boundary 
conditions, Eq. (6), is 

26 oP Knσ
σ
−

= − + 

2 2 22 2 2(6 ) 12 [1 12 (1 )]o i o i i o iKn P Kn P P Kn P Xσ σ σ
σ σ σ
− − −

+ + + − + −  

                                     (13) 
Note that the mass flux Eq. (10) in slip flow also can be written 
as 

   ,m SLIPQ =
3 2(1 6 )

12
h pdpKn
RT dx

σ
µ σ
− −

+ ,              (14) 

or   
3 ~

, ,12m SLIP m SLIP
h pdpQ Q
RT dxµ

−
= ,

~

,
21 6m SLIPQ Knσ
σ
−

= + ,     

(15) 
if the first half of Eq. (11) is used for ς , and here Kn= / hλ  is 
the local Knudsen number. This is the well known solution of 
the mass flow rate of the Poiseuille flow in the slip flow regime, 
where p, dp/dx and Kn are local values of pressure, pressure 
gradient and Knudsen number.  
    The above expression of pressure distribution in the slip 
flow regime seems to be obtained the earliest by Arkilic 
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through a different derivation as a first approximation with 
accuracy of order /H Lε = (see Ph.D. Thesis of E. B. Arkilic 
[7] and its publication version [8]), and the similar results have 
been also published and recorded in [9, 10, 11]. 

In the transitional flow regime the flow rate of the plane 
Poisuille flow has been solved by the linearized Boltzmann 
equation or its BGK [12] model version by many authors (see 
e.g. by Cercignani and Daneri [13] and Ohwada et al. [2]). 
Fukui and Kaneko [14] in derivation of the generalized 
Reynolds lubrication equation also calculated the flow rate of 
Poiseuille flow numerically, and later [15] they had used this 
flow rate calculated rigorously to generate a database for rapid 
calculation of the generalized Reynolds equation for high 
Knudsen numbers. The flow rate of the Poiseuille flow can be 
expressed in the form 

       ,m TRQ =
3 ~

, ( )
12 m TR

h pdpQ Kn
RT dxµ

− ,               (16) 

where Kn is the local Knudsen number and 
~

, ( )m TRQ Kn  is the 
flow rate in transitional regime (normalized by the slip-less 
value ,m CQ ) calculated from the linearized Boltzmann equation 
for Poiseuille flow. A tabled database of the calculated values 

of 
~

, ( )m TRQ Kn  for 1σ = , 0.9σ = , 0.8σ =  and 0.7σ =  is 
provided in [15], and a fitted formula approximation for diffuse 
reflection ( 1σ = ) by Robert is recorded in [16] (there the 
second term on the right hand side is misprinted as 6A Knπ ) 

     
~

,
12( ) 1 6 log(1 )m TRQ Kn AKn Kn BKn
π

= + + + ,       (17) 

where 1.318889A =  and 0.387361B = . The global mass 
conservation, i.e., the constancy of the mass flux being equal at 
any cross section, requires 

       
~

, ( ) tanm TR
pdpQ Kn cons t
dx

= ,                  (18) 

or in the dimensional form 
~

, ( ) 0m TR
d dPQ Kn P

dX dX
 = 

.                   (19) 

 With the database incorporated this equation is valid for any 
surface conditions of the plates and can be integrated 
numerically. But for the illustrative purpose only the case of 
complete diffuse reflection, 1σ = , is expounded here, then the 
mass conservation is (from Eqs. (17) and (19)) 

12{[1 6 log(1 )] } 0d dPAKn Kn BKn P
dX dXπ

+ + + = .   (20) 

For the ease of integration the local Knudsen number Kn  is 
most conveniently expressed through P  

/o o
o

p
Kn Kn P

h h p
λλ

= = = ,        (21) 

and Eq. (20) becomes  
12[ 6 log(1 )]o

o o
BKn dPP AKn Kn D

P dXπ
+ + + = ,      (22) 

where D  is an unspecified constant to be determined from the 
integration and has the physical meaning of the flow rate across 
the channel normalized by the slip-less flow rate value. The 
equations determining the pressure distribution (19) and (20) 
are in fact the generalized Reynolds equation of the gas 
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lubrication theory degenerated for the microchannel flows (see 
[17, 18]). They are integrated with the inlet and outlet boundary 
conditions (6) to yield the pressure distribution in the 
transitional regime. 
 
 2. Comparison with the experimental data and the 
simulation results 
To compare the above results with the experimental data of 
flow in the microchannel with pressure sensors imbedded in the 
channel accomplished by Pong et al. [3] and Shih et al.[4], we 
calculate the pressure distribution for nitrogen in the 

31.2 40 3000 mµ× ×  channel [3] and for helium in the 
31.2 40 4000 mµ× ×  channel [4]. Under the experimental 

condition 0 294T K=  the value of oKn  for nitrogen is 
0.052325, and for helium is 0.15579. The experimental data of 
nitrogen is compared with the results of the global mass 
conservation in the continuum regime, Eq. (7), and the slip flow 
regime, Eq. (13), in Fig. 2. The pressures ip  at the inlet of the 
channel in psig  are given in [3] and [4], and the 
corresponding values of 0i XP P ==  are listed in Table 1. In 
Eq. (13) Kno is taken equal to 0.052325, and 1σ = . The 
comparison shows that the global mass conservation predicts 
the pressure distribution quite well and the slip flow result 
improves the agreement of the continuum prediction with the 
experimental data. The experimental data are also compared 
with the prediction of the transitional flow regime. Equation 
(22) is integrated under the following boundary condition 

0 /X i oP p p= =  as given in Table 1, and 1 / 1X o oP p p= = = , 

  
 
Fig.2 Comparison of the pressure distribution obtained from 
slip solution, Eq.(13), (solid line) and slipless solution, Eq. (7), 
(dashed Line) with experimental data in a 31.2 40 3000 mµ× ×  
microchannel for nitrogen [3] (symbols). Kno =0.052325. 
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Table I  The experimental inlet pressure data in psig  
and corresponding values of 0XP =  for nitrogen and 

helium  
for nitrogen[3] 

ip  (in psig )       5      10      15     20       25 

0XP =           1.3402  1.6805   2.0207  2.3609   2.7012 

for helium[4] 

ip  (in psig )     8.7     13.6    19.0 

0XP =           1.5920  1.9254  2.2929 

 

The results of integration are presented in Fig.3 and Fig.4. It is 
seen from the figures that the results of the global mass 
conservation (degenerated Reynolds equation) agree well with 
the experimental data. The finite length channel flows under the 
experimental conditions have been calculated also by the 
information preservation (IP) method [19,20] in Shen, Fan and 
Xie [21]. The IP simulation results are also presented in Figs.3 
and 4 by dashed lines. The comparison shows excellent 
agreement between the results calculated by the global mass 
conservation and by the IP method. 

 
Fig.3 Comparison of the pressure distribution from Eq.(22) 
(solid line) with experimental data in a 31.2 40 3000 mµ× ×  
microchannel for nitrogen [3] (symbols) and the result of IP 
method [21] (dashed line). Kno =0.052325. See also [18]. 

 
3. Examination of the feasibility of LBM in solving the 
microchannel problem in transitional regime 
The Lattice Boltzmann method (LBM, see [22] and references 

cited there) solves the simplified Boltzmann equation on lattice 
points. LBM solution converges to the Navier-Stokes solution 
for small Kn. The ease of LBM in handling complex geometry, 
simplicity in implementation and its high efficiency makes it 
tempting to be used in simulating gas flows in MEMS. 
Recently Nie, Doolen, and Chen [6] attempt to use it in 
transitional regime. 
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Fig.4 Comparison of the pressure distribution from Eq.(22) (solid line) 
in a 31.2 40 4000 mµ× ×  with experimental data in a microchannel 
for helium [4] (symbols) and the the IP method [21] (dashed lines, 
note that the solid lines and the dashed lines almost coincide). Kno 
=0.15579 

It is of fervent concern for the scientific community to know 
whether LBM is capable to simulate correctly the transitional 
regime flows in MEMS. Shen, Tian, Xie and Fan examined the 
feasibility of using LBM in simulating MEMS flows by 
comparison with the DSMC calculations [23]. Here the LBM 
results are compared with the calculations by using the mass 
conservation equation or the degenerated Reynolds equation to 
attain the same conclusions as in Reference [23] but this time 
the conclusion is confirmed by a test stone with the merit of 
strict kinetic theory. The equation (22) is integrated under the 
following conditions (definitely in transitional regime) for a 
short 21 100 mµ×  microchannel that have been considered by 
LBM in Nie, Doolen and Chen [6] 

 0 10.194, 2, 1o X XKn P P= == = = ,                 (23) 

 0 10.388, 2, 1o X XKn P P= == = = .                 (24) 
The results of comparison of results of equation (22) with those 
of Nie, Doolen and Chen by using the Lattice Boltzmann 
method (LBM) [6] are shown in Fig.5 and Fig.6. Also shown in 
the figures are the DSMC and IP results. From the comparison 
it is seen that the DSMC method, the IP method and the mass 
conservation equation (degenerated Reynolds equation) yield 
almost identical pressure distribution, but the LBM results are 
quite different from the calculations of the degenerated 
Reynolds equation and as well from DSMC and IP results, so it 
can be concluded that the version of LBM employed in 
Reference [6] is not feasible for simulating microchannel flows 
in the transitional regime. For the detailed examination of the 
feasibility of the LBM method in simulating transitional regime 
microchannel flows readers are referred to Reference [18] 
where among other things the version of LBM used [6] was 
briefly described. Also, there the comparison of the pressure 
distributions was given in the form of deviation from linearity, 
so the differences between results of various methods were 
revealed in more relief. In this paper the quantities being 
4 Copyright © 2005 by ASME 
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compared are the pressure distributions themselves and the 
same conclusions are achieved. But here the conclusion of 
unfeasibility of the LBM in simulating transitional flows is 
reconfirmed by the comparison with calculations having the 
strict kinetic theoretical merit.  

 
Fig. 5  Pressure distribution in a microchannel with 

0.194Kn =  at outlet ( / 100h L = ). Comparison  of equation 
(22), DSMC, IP methods [21] and the LBM method [6] 

 
Fig. 6 Pressure distribution in a microchannel with 0.388Kn =  at 
outlet ( / 100h L = ). Comparison of equation (22), DSMC, IP methods 
[21] and the LBM method [6] 

It is noted, that in [23] the comparison of LBM with DSMC and 
IP methods was also given for smaller Knudsen numbers (e.g., 
Kn=0.0194) where good agreement between them was 
obtained, so the failure of LBM in predicting microchannel 
flow is verified for transitional flow regime ( Kn =  0.194,  
0.388 ) but not for slip flow regime. For the relative error of 
LBM readers are referred to [23], where the results were shown 
via the deviation ( ) /l op p p− of the pressure distribution from 
the linear distributed pressure 0lp p= +  ( )(1 )i op p X− − . 
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4. Concluding remarks 
In the present paper the finite length microchannel pressure 
distribution for continuum flow, slip flow and transitional flow 
regimes is determined by the global mass conservation 
equation. In the transitional flow regime this equation is the 
Reynolds equation for the gas film lubrication problem 
degenerated by the suggestion of the author  for solving the 
microchannel flow [18]. The comparison shows excellent 
agreement with the experimental data and the IP results in the 
long microchannels. Earlier the IP results for long channel were 
only compared [5] with the experimental data (the DSMC was 
not able to accomplish simulation of the long channel flow 
where the experimental data were available), now they are 
verified by comparison with results having the strict kinetic 
theory merit. The global mass conservation equation (the 
degenerated Reynolds equation) provides a means with the 
merit of strict kinetic theory to test various methods in solving 
the micro scale rarefied gas dynamics flows in transitional 
regime. The unfeasibility of LBM for solving the transitional 
flow problem [23] is reconfirmed by this means. From the 
practical application point of view database for the flow rates of 
the Poiseuille flow with various combinations of possible 
surface properties obtained from strict kinetic theory is an 
actual task for the solution of the microchannel flow, and also 
for the thin film air bearing problem and the gas damping 
problem [24] in micromechanical accelerometers. The database 
in the form of fitting formulas is especially desirable. 
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