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Abstract. This work performs the analysis and simulation investigations of penetration behaviors of chisel-shape projectile. In
analysis, the projectile is assumed to be a rigid body and the target plate is elastic-plastic material. By introducing the velocity
potential function, the velocity field in target is first obtained. Then, the momentum equation is solved for determining the
pressure and stress fields in the elastic and plastic regions in target. The variation of the resultant force subjected by the projectiles
with the penetration depth is studied. The approximate expressions of penetration depth and the residual velocity with the initial
impacting velocity are obtained for the exploration of the penetration mechanisms of the chisel-shape projectile. In numerical
simulation, the main attention focuses on the dissipation mechanisms of the kinetic energy of the chisel-shape projectile in
penetration process.

1. Introduction

The geometric effect of projectile on the failure behaviors
of the target material has drawn great attention in academia
and engineering since it determines, to a great extent,
the terminal effects of penetration. The previous studies
mainly deal with the penetration behaviors of projectiles
with conical, hemispherical, flat and ogival configurations.
Bishop et al. [1] proposed the cavity expansion model
and used the model to estimate the forces of conical-
shape projectile of punching slowly into metal targets.
Goodier [2] used the cavity-expansion theory to predict
the penetration depth of rigid spheres launched into metal
targets and to study the penetration behaviors of non-
compressible strain hardening material. Forrestal et al.
[3,4] studied by penetration experiments the influences of
target material constitutive behaviors on the penetration
mechanism of different projectile configurations. Chen
et al. [5] studied the terminal effects of flat projectile
penetrating into metallic target and demonstrated the
shear failure mechanism of target board material in
penetration. Alekseevskii [6] and Tate [7,8] developed
an inviscid flow model for projectile and target material
which depicts the velocity field of target material in
high-speed collision between projectile and target plate.
Ravid et al. [9,10] used this model to research the failure
mechanism of metallic plates and the evolution of velocity
field at high impacting velocity. Yarin and Rubin [11,
12] established the penetration model by introducing a
velocity potential function and analyzed two-dimensional
transient stress fields in target for several projectile nose
shapes and dynamic phenomena in highly penetration
process. Recently, Jordan and Naito [13] carried out an
experimental investigation of the effects of nose shape

a Corresponding author: watwm@imech.ac.cn

on fragments penetrating E-Glass/Phenolic glass fiber
reinforced plastic targets. Initial velocity, residual velocity,
and ballistic limit velocities were determined for each nose
shape and target thickness. However, it is still a lack of the
documents on the studies of the penetration mechanism of
chisel-shape projectile into metal target plate.

In this work, the penetration mechanisms of chisel-
shape projectile into metal target plate are studied. The
penetration model of Yarin et al. [9] is developed to obtain
an approximate solution of normal penetration problem of
a chisel-shape projectile into elastic-plastic target plates.
Through the analysis of stress state in the elastic and
plastic regions of target material, the equation of motion
of the projectile in the axial direction is solved. The
approximate analysis reveals the variations the resultant
pressure, penetration depth, kinetic energy dissipation
with the initial impact velocity and time. The penetration
behaviors of chisel-shape projectile to a finite target plate
are investigated.

2. Model and analysis

Consider the problem of normal penetration of a
rigid chisel-shape projectile into an elastoplastic target
plate. Presently, we assume that the material in plastic
deformation region of target is an incompressible fluid
and rate-insensitive. The velocity and stress fields in plane
strain state are assumed for simplicity. Figure 1 shows the
analytic model and the coordinate system (o; x , y, z) with
the unit vectors (i , j , k) which has a fixed origin o at
the front surface of the target. The tip of the projectile
is located by z = w(t). The initial impacting velocity is
U0. Furthermore, the projectile body is assumed to have a
rectangle cross-section such that to obtain the approximate
solution of problem is possible.
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Figure 1. The model for the analysis of the chisel-shape
projectile penetration behaviors.

In the following analysis of the penetration behaviors
of chisel-shape projectile into metallic target, we adopt
the analytic method of Yarin et al. [9] to the mathematic
derivation and calculus. The approximate velocity field
is first determined by introducing a velocity potential
φ(x , z, t) and then the stress field in target is calculated.
Thus, we have the velocity vector expression as follows

v = ∇φ, ∇2φ = 0 (1)

the momentum balance equations:

∇
[
ρ

{
∂φ

∂t
+

1

2
∇φ · ∇φ

}
+ p

]
= divs (2)

the conservation condition of mass:

div ν = 0. (3)

The Cauchy stress tensor σ has been separated into a
hydrostatic pressure p and the stress deviatoric part s:

σ = −pI + s, s · I = 0 (4)

where I denotes the unit tensor and the deviatoric stress s
is determined as

s = 2µεe +

(
2

3

)1/2
τs

(ε̇ p · ε̇ p)1/2
ε̇ p (5)

where εe is the elastic strain and ε̇ p is the rate of plastic
deformation tensor. τs is the shear yield stress. The chisel-
shape projectile is assumed to be a two-dimensional body
for the simplicity in below analysis and the chisel-shape
nose lateral profile is defined by

x =

{
tan θξ + h (−l ≤ ξ ≤ 0, 0 ≤ y ≤ b)

h (0 ≤ ξ ≤ L − l, 0 ≤ y ≤ b)
(6a)

ξ = z − w (t) − h

tan θ
(6b)

ξ is an axial coordinate measured from the point o′ in
projectile (Fig. 1) and 2θ denotes the chisel angle.

The velocity field is found as

vx = −ẇ(t)
h

tan θ

x

ξ 2 + x2
, vz = −ẇ(t)

h

tan θ

ξ

ξ 2 + x2

(7)

where ẇ(t) is the moving velocity of the projectile tip. The
divergence of deviatoric stress is

divs = ∇
[
−τs ln

(
ξ 2 + x2

h2

)]
(8)

where τs is the shear yield stress. The pressures in
the elastic and plastic regions of target and the stress
components are respectively determined as follows

p p = f (t) + 	 (ζ, x, t) − τs ln

(
ξ 2 + x2

h2

)
pe = g (t) + 	 (ζ, x, t)

σnn = − p +
τs�1

�0
, σt t = −p − τs�1

�0
, σnt =

τs�2

�0
(9)

where

	 (ζ, x, t) = − ρhẇ2

2 tan2 θ

h + 2ξ tan θ

ξ 2 + x2
− ρhẅ

2 tan θ
ln

h2

ξ 2 + x2

�0 =
(

X̄ − 1
)2
+ tan2 θ X̄2

�1 =
(
1 + tan2 θ

)
X̄2 − 2X̄ +

1 − tan2 θ

1 + tan2 θ

�2 = tan θ cos 2θ X̄2 − tan θ (2 + cos 2θ ) X̄ + sin 2θ

(10)
in (9), the functions of time f (t) and g(t) are determined
by boundary conditions and in (10), X̄ = X/h an
Ȳ = Y/h are the normalized coordinates.

The moving equation of projectile in z direction is
given by

[M + A (w, ẇ)] ẅ = F (w, ẇ) (11)

where M = 2ρP hb (2L − h/ tan θ ) and ρP are the
projectile mass and density. F (w, ẇ) is the resultant force
subjected by projectiles in the positive z axial direction.
According to the method of Yarin et al. (9), the motion of
chisel-shape projectile with angle 2θ penetrating into the
metallic target plate with thickness H can be solved. Thus,
we obtain the resultant force F (w, ẇ) is

F (w, ẇ) =




2bhτsC1 (η1) (ζ0 ≤ w ≤ 0)

2bhτsC2 (η2) (−H ≤ w < ζ0)

0 (w < −H ) .

(12)

Furthermore, we may determine the relationships of the
residual velocity and penetration depth varying with the
initial impacting velocity as follows

Ur =
1

C0

[
C0U 2

0 + C3 (η2)
]1/2 ( w ≤ −H ) · (13)

and

P =
hC2

0U 2
0

η0
[
1 + 2 ln

(
2µ
/
τs
)] · (14)
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Figure 2. The variation of the resultant forces of the projectiles
with different nose shapes with the penetration depth. The target
thickness is 40 mm.

In (12) to (14),

C0 =
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4bh2τs
η0

)1/2
,
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1
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2
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2
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]
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h
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2

η0 tan θ (η2 + 1)
, η0 =

τs

2µ

η1 = η0

(
1 − ζ0 − w

h
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)
, η2 = η0

(
1 +

H

h
tan θ

)
(15)

where ζ0 denotes the boundary between the elastic and
plastic regions in target ahead the projectile nose.

3. Results and discussion

Figure 2 illustrates the variation of the resultant forces
respectively caused by the chisel- and ovoid-shape
projectiles with the penetration depth as striking the target
of 40 mm thickness. The lengths of the projectile noses and
bodies are respectively 5 mm and 25 mm. Since the contact
area between the chisel nose and target is sufficient large,
the force amplitude of the chisel-shape projectile reaches
its peak value as the penetration depth is only 2 mm,
and then it remains constant. The force of ovoid-shape
projectile non-linearly increases in amplitude in initial
penetration distance of the nose length 5 mm. Then, as the
ovoid nose completely gets into the target which is denoted
by the inflexion on the cover, the force increases linearly
with the penetration depth. When the whole body of
projectile gets into the target, the force amplitude exceeds
that of the chisel-shape projectile, which implies that the
chisel-shape projectile is favorable to the penetration of the
target plate with large thickness comparing to the ovoid-
shape projectile.

Figure 3. The effects of projectiles with different nose shapes on
the residual velocities.

Figure 4. The relationships between the penetration depth and
the initial impacting velocity.

Figure 3 shows the effect of the chisel- and ovoid-shape
projectiles on the residual velocity. For the comparison,
these projectiles are assumed to have same masses but
different lengths, and the target thickness is taken as
25.4 mm. Clearly, in the penetration process at high
impacting velocities, the influence of projectile nose
shapes on the residual velocities is not evident. However,
at lower impacting velocities, the residual velocities of the
chisel-shape projectile with larger length (blue line) are
lower evidently then that of the ovoid-shape projectile.
This is because that the work done by the drag force caused
by target acting on the projectile is larger, whereas for the
shorter ovoid-shape projectile in length (red line), the work
done by drag force is less so that the influence is slight.

Figure 4 compares the theoretical result in this
study and the studying results in [9] for the penetration
mechanisms of different nose shape projectiles into
semi-infinite target plates. It predicts that the chisel-
shape projectile may have better penetration efficiency
than that with other nose shapes at high impacting
velocities. Particularly, the chisel-shape projectile has
evident increasing tendency for the material dynamic
failure of target plates with large thickness in the
penetration process at high impacting velocity.

4. Numerical simulation
In order to further study the energy dissipation mech-
anisms of different projectiles striking a metallic target
plates, numerical simulations were performed using the
LS-DYNA finite element code [1]. Figure 5 shows the
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Figure 5. The finite element model of the chisel-shape projectiles
penetrating into the target plate.

finite element model used in this simulation. Consider
the symmetric property of the problem; a quarter part
of the model is calculated for conserving computational
time. Similarly, the projectiles with different nose shapes
are assumed as rigid body and the nose shapes of
projectiles simulated are chosen as spherical, conical and
chisel-shapes. The mass of the projectile is about 63 g,
diameter is 7.2 mm and the length is 48 mm. The target
material is the 4340 steel and two kinds of target plate
sizes are 240 × 240 × 6 mm3 and 240 × 240 × 40 mm3

respectively. The mesh comprises 8-node brick elements
with reduced integration and stiffness-based hourglass
control with exact volume integration. In the simulation
for penetrating 6 mm target plate, the smallest element in
the impact region has the initial size of 1 × 1 × 0.6 mm3

and a total of 10 layer elements are distributed over the
target thickness. In the case of the 40 mm target plate, the
element size is 1 × 1 × 1 mm3 and 40 layer elements are
distributed in thickness.

Figure 6 shows the variation of the normalized kinetic
energy with time in the penetration process of the target
plate in 6 mm thickness. The kinetic energy of chisel-
and spherical-shape projects decreases quickly when the
penetration depth is less than the thickness of target plate
and it begins to decrease for the conical-shape projectile
when the penetration depth is near the thickness of target
plate. For the chisel-and spherical-shape projectiles, when
the penetrable lengths equal to 18.6 mm and 27.4 mm,
the dissipation of the kinetic energy finish and, for the
conical-shape projectile it is stopped as the penetrable
length is larger than 38.2 mm. Thus, we can say that the
chisel-shape projectile remains larger residual velocity,
which means that it is in favor of the penetration of thick
target plate. The simulation results in Fig. 7 shows that
the sphere- and chisel-shape projectiles with the chisel
angles 30 ◦, 45 ◦ and 60 ◦ can penetrate through the target
plate of 40 mm thickness but the penetration depth of the
cone-shape projectile is 35 mm. The normalized kinetic
energies of all kinds of projectiles decrease linearly with
the penetration distance. The dissipations of kinetic energy
for the sphere-shape and the chisel-shape 30 ◦ projectiles
are almost identical. The loss of kinetic energy of chisel-
shape projectile increases with the chisel angle increasing.
The cone-shape projectile dissipates the less kinetic energy
at the beginning stage of the penetration, however, most of

Figure 6. The variation of the normalized kinetic energy with
time in the penetration process of the target plate in 6 mm
thickness.

Figure 7. The variation of the normalized kinetic energy with the
depth of penetration in the penetration process of the target plate
in 40 mm thickness. The chisel angles are respectively 30◦, 45◦

and 60◦.

kinetic energy quickly dissipates in the later penetrating
stage so that it cannot penetrate the target plate of 40 mm
thickness. Therefore, the chisel-shape projectile has the
ability for the penetration of thicker target plates and the
cone-shape projectile is favorable to the penetration of thin
target plate.

5. Conclusions
Through the analysis and numerical simulation study
of the chisel-shape projectile penetrating a target plates
with finite thickness, we have shown that, comparing to
different nose shape projectiles, the chisel-shape projectile
is favorable to penetrate the thick target plates at high
impacting velocities; contrarily, the cone-shape projectile
is to that of thin target plates at low impacting velocities.
The simulation result shows that the sphere-shape and the
chisel-shape 30◦ projectiles are almost identical of the
energy dissipation behaviors in the penetration process of
thick target plates.
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