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Abstract. The diffusive information preservation (D-IP) method is utilized to simulate three-dimensional turbulent 
channel flow. The Knudsen number and Reynolds number based on the channel half-width and mean velocity are 5 10 5  
and 2800, respectively. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP agree well 
with the DNS results given by Kim, Moin and Moser. Turbulent mixing length and turbulent viscosity obtained by the 
present results based on kinetic analogy are found to be comparable with the classic theory of Prandtl’s mixing length and 
Boussinesq eddy viscosity.  
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INTRODUCTION 

Turbulence is a fundamental issue characterized by multi-scale phenomena from macroscopic to molecular 
levels. It is unsolved completely but quite important in many engineering applications. Turbulent numerical studies 
are mostly based on continuum equations, such as RANS, LES & DNS [1-3]. Molecular schemes such as the direct 
simulate Monte Carlo (DSMC) method, though widely applied to rarefied gas flow problems [4-7] and 
straightforward in principle for turbulence flows, are not feasible in practice for turbulent flows due to the statistical 
scatter and the rigorous restriction of temporal and spatial size. To solve the problem, the D-IP method was recently 
developed [8] that  may be viewed as a combination of the diffusion approach [9] and the information preservation 
(IP) method [10]. The main idea of D-IP is to track the motion of a simulated molecule from the diffusive standpoint, 
and obtain the flow velocity and temperature through sampling and averaging the IP quantities. The D-IP method 
was validated through simulating benchmark problems [8], such as Couette flows, Poiseuille flows, Rayleigh flows 
and square cavity flows with Kn ~ 10-3-10-4, and the D-IP calculations were shown not only accurate but also 
efficient in comparison with those using DSMC. 

There is a great interest to extend the D-IP method to turbulence in order to understand the microscopic 
mechanism behind complicated flow patterns. A successful attempt for decaying and forced isotropic turbulences 
has been made by Fei et al. [11] The present paper aims to calculate turbulent channel flows using D-IP. As a type 
of wall turbulent flows, the turbulent channel flows often occur in natural processes and engineering applications. 
To validate the D-IP method, we employ the same computational parameters as those used in the DNS calculation of 
Kim, Moin & Moser [12] where the Reynolds number (Re) based on the mean velocity mU  and channel half width 

 was 2800. The averaged velocity profile and the higher order turbulent statistics obtained by D-IP and DNS will 
be compared with each other. Furthermore, the similarities and differences between molecular thermal motion and 
turbulent fluctuation will be investigated. 

METHODOLOGIES 

Figure 1 shows the flow geometry and the coordinate system, where the channel half width 4=2 10 m  ( m : 
molecular mean free path), and the streamwise and spanwise lengths are 2  and , respectively. The 
computational domain is divided into 64 96 64 cells that are non-uniform only in the y direction  
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FIGURE 1. Schematic of turbulent channel flow and computational conditions. 
 
The boundary conditions are periodic in the x and z directions but fully diffusive reflecting on the channel walls. 

The weighting factor of simulated molecules is proportional to the width of a cell in the y direction. Initially, 100 
simulated molecules are assigned to each cell, and their velocities are generated according to the local Maxwellian 
velocity distribution with the mean velocities equaling to the sum of the local laminar solution and random 
perturbations. The latter magnitudes in the three directions are all set to be 20% of the laminar solution. The time 
step is 50 c  ( c : molecular mean collision time), about 41.7 10 / mU  .  

Molecular Motion 

In the D-IP method [8], if ,IP iu  is the IP velocity of a simulated molecule, D
ir the diffusive drift, then 

molecular motion  
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According to the Chandrasekhar solution of the Langevin equation [13], we have 
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where ic is the thermal velocity of the simulated molecule. /Bk T mD , Bk  the Boltzmann constant, T  the 
temperature, m  the molecular mass, D  the diffusion coefficient, and 1,i  and 2,i  random numbers that obeys the 
standard normal distribution. 

Dissipation of the IP Velocity and Temperature 

If ,
,

i c
IP ju  and ,

,
i a
IP ju  are the IP velocities in the j-direction of simulated molecule i before and after the motion and 

collisions during a time step, respectively, then 
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In the present calculations, 0.25 , 0.25 ,s sx x y y and 0.25sz z  

A similar scheme can be used to calculate the dissipative processes of IP temperature. The total momentum and 
energy are required to be conserved in the process. 

Macroscopic Velocity and Temperature 

If ui,k and Tk are the macroscopic velocity and temperature of cell k in a flow field, then 
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where Nk is the total number of the simulated molecules sampled in cell k. 

Effects of Pressure Gradient and External Force iF  

Density of the field is updated via continuum Eq. (12), the effect of pressure and external force to the velocity 
and temperature can be expressed by Eqs. (13) and (14).  
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where n is the number density of molecules, vC  the specific heat at constant volume, and Bp nk T .  

Simplifications 

It is well known that the Mach number (Ma) is related to Kn and Re, approximately, 0.7ReMa Kn . From 
this relation we know Ma is about 0.1 in the present condition. Consequently, the isothermal assumption is invoked 
and the compressible effect is negligible. Based on the above analysis, the calculation can be expressed by Eqs. (2), 
(8), (12) and (13).  

The calculation procedures each time step are as follows: i) simulated molecules move according to Eq. (2); ii) 
the velocity field is updated according to Eq. (11); iii) exchange the IP velocities between molecules following Eq. 
(8); iv) solve Eqs. (12) and (13) to update the corresponding macroscopic quantities. 

VALIDATION 

The D-IP calculation consists of two stages. The first stage begins from the initial perturbed laminar flow state 
until it reaches a steady state in statistic sense. The steady state can be identified by examining the skin friction 
coefficient 2 2=2f mc u U , where 2 = m w

u U y  , m  is the gas kinetic viscosity, U u ,  denotes an 

average over x, z and t, and the subscript w denotes at the channel walls. The first stage ends when -37.96 10fc  

that compares well the corresponding value of -38.18 10 in literature [12]. In the second stage, the velocity and 
velocity fluctuations are obtained through compared to the previously published DNS result.  
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Figure 2 compares the averaged velocity profiles obtained by D-IP and DNS, where the superscript “+” denotes 
dimensionless quantities scaled by wall units, specifically, the friction velocity u  and viscous lengthscale /m u  
for velocity and length respectively. The DNS results came from Kim et al. [12]. The viscous sublayer and 
logarithmic region are clearly observed in the velocity profile of D-IP that agrees well with Kim’s data.  

Turbulent fluctuation intensities in the three directions, Reynolds shear stress, and skewness and flatness are 
illustrated and compared with DNS results in Figs.3 (a), (b) and (c) respectively. The D-IP profiles are generally in 
good agreement with those of Kim et al. [12], except for the small discrepancies of turbulence fluctuation velocities 
near the wall.  

 
FIGURE 2.  Mean velocity obtained by D-IP versus the DNS results of Kim et al. [12]. 

 

 
(a) Turbulent fluctuation velocity    (b) Reynolds shear stress 

             
(c) Skewness (S) and flatness (F) 

FIGURE 3.  Turbulence fluctuation velocities, Reynolds shear stress, skewness and flatness obtained by D-IP versus the DNS 
results of Kim et al. [12]. 
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MOLECULAR THERMAL MOTION VERSUS TURBULENT FLUCTUATION 

Turbulent fluctuation is compared with molecular thermal motion from four aspects: the autocorrelation 
functions and their characteristic time, the root mean square velocity, mean free path and turbulent mixing length, 
and viscosity.  

The normalized autocorrelation function of molecular thermal motion ( )mK t  may be written as  
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If the characteristic time of the autocorrelation of molecular thermal motion is defined as ( ) 1m
m aK e , then 

a =1.5m
c . 

Similarly, the autocorrelation function of turbulent fluctuation velocity ( , )t kK t y  is defined as  
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where ,

k
IP iv  is the fluctuation velocity of  simulated molecule i initially in layer k in the normal direction, ,

j
IP rmsv  is 

the root mean square velocity obtained by all the simulated molecules in layer j where simulated molecule i located 
at t.  

If the characteristic time of turbulent fluctuation velocity t
a  is defined as ( ) 1t

t aK e , then a relation of t
a  to 

the distance from the channel can be obtained from the D-IP results shown in Fig. 4. Figure 5 presents the relation 
that approximately linearly increases in the central region, where the superscript “+” denotes the dimensionless time 
normalized by 2/m u . 

The root mean square velocity m
rmsv  of molecular thermal motion is simply Bk T m . It is a constant across the 

channel under the isothermal condition. For turbulence, we define the r.m.s. velocity t
rmsv  as the r.m.s. turbulent 

fluctuation velocity in normal direction. 
 

 
FIGURE 4.  Autocorrelation function of turbulent 

fluctuation velocity at different distances from the channel 
wall. 

FIGURE 5.  Characteristic time of the autocorrelation of 
turbulent fluctuation velocity versus the distance from the 

wall. 
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According to kinetic theory [4], the molecular mean free path and viscosity may be related to a
m  and m

rmsv  as 
follows 
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Based on a kinetic analogy between molecular thermal motion and turbulent fluctuation velocity, the turbulent 

mixing length mm  and the turbulence viscosity k
t  have the following expressions   

 

 4 2= ,
3

24=
3

t t
m a rmsv  (18) 

 
25 .

6
k t t
t a rmsv  (19) 

 
Figure 6 presents the turbulent mixing length across the channel given by Eq. (18), with t

a  and t
rmsv  obatined 

by the D-IP calculation and shown in Figs. 5 and 2, respectively. It agrees well with the classical theory of Prandtl in 
the logarithmic region; in the central region, it tends to be flat rather than a linear increase with y, which is more 
physically reasonable.  

Figure 7 presents the turbulence viscosity given by Eq. (19) that is comparable with the Boussinesq eddy 
viscosity B

t . The latter is obtained by the relation ' 'B
t dU dy u v , with dU dy  and ' 'u v  obatined by the D-

IP calculation and shown in Figs. 1 and 2, respectively. 
 

CONCLUSION 

The D-IP method has been applied to a turbulent channel flow and compared in details with the DNS results of 
Kim, Moin & Moser. The comparison validates the feasibility and accuracy for D-IP to simulate the typical wall 
turbulence. Based on the D-IP results, turbulence mixing length and viscosity are studied via kinetic analogy 
between molecular thermal motion and turbulent fluctuation velocity. The classic theory of turbulence such as the 
Prandtl mixing length and the Boussinesq eddy viscosity has been investigated in a kinetic view that is helpful to 
undertand them more deeply.  

 

 
 

FIGURE 6. Turbulent mixing length versus the distance 
from the channel wall.  

FIGURE 7.  Normalized turbulent viscosity versus the 
distance from the channel wall. 
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