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ABSTRACT

A new variant of Immersed Boundary method is proposed
in the framework of discrete stream function approach for the
Navier-Stokes equations. A parallelized flow solver is developed
to simulate two and three-dimensional flow problems involving
complex and moving boundaries. The parallel performance of
the present flow solver is tested by varying the number of proces-
sors used in the simulation. Code validations and applications
are also presented, in an order of increasing complexity.

INTRODUCTION

The Immersed Boundary (IB) method is a numerical tech-
nique for solving flow problems with complex geometries [1] [2].
This technique has gained popularity recently in the community
of computational fluid dynamics due to the great simplification
of mesh-generation.

The IB method was first introduced by Peskin [3] to simulate
flow interacting with elastic boundaries. This method was later
extended to handle rigid boundaries by using the direct forcing
technique [4] [5]. In IB methods for incompressible flows, most
frequently used Navier-Stokes solvers are based on primitive-
variable formulation and projection or SIMPLE-type methods.
The stream-function vorticity formulation is seldom used in con-
junction with the IB method, the only exception to the best of
our knowledge is [6]. However, due to the limitation of the
stream function-vorticity formulation itself, it can only be ap-
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plied to two-dimensional flows. Recently, Colonius and Taira
[7] proposed a method that combines the IB method with the
discrete stream function (null space) approach to solve Navier-
Stokes equations on irregular domains. Although this formula-
tion shares some similarities with that of the stream function-
vorticity one, it works well for both two and three-dimensional
problems.

In this paper, we proposed an alternative implementation of
the IB method based on the discrete stream function approach.
We simplify the forcing strategy and reduce both the algorithm
complexity and the computational cost. In this new variant of
IB method, the cost to compute the force is negligible when
compared with that in the basic Navier-Stokes solver. Usually a
grid requires several million nodes in a typical three-dimensional
simulation where the Re number is in the range of 10? to 103.
When the turnover time of the simulation is considered, feasible
computation is severely limited by the current computing power.
In order to utilize the computing resources more efficiently, the
solver is parallelized using MPI and ported to a cluster. The per-
formance of the code in terms of parallel efficiency is tested by
varying the number of processors used.

The outline of the paper is as follows. The numerical
methodology is presented in section 2. The code parallelization
and efficiency tests are described in section 3. Code validation
and application examples are presented in section 4. Finally, the
conclusions are drawn in section 5.
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NUMERICAL METHODOLOGY

The three-dimensional incompressible viscous flow is con-
sidered in the present work. The governing equations of the flow
can be written as:
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where u and p represent velocity vector and pressure respec-
tively. f is the force representing the appearance of immersed
body in the flow. The Reynolds number is defined as Re = UL / v,
where U and L are the characteristic velocity and length respec-
tively, and v is the kinematic viscosity of the fluid.

The three-dimensional incompressible Navier-Stokes equa-
tions (1) and (2) are solved using the discrete stream func-
tion (null space) approach [8]. Unlike the classic fractional step
method,in this method the divergence-free condition is satisfied
to machine precision and there are no splitting errors associated
with it. The discretized form of equaitons (1)-(2) can be ex-
pressed by a matrix form as
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where q, p, and f are the discrete velocity flux, pressure, and
body force respectively. The discrete velocity u, can be related
to q by multiplying the cell face area. A, G and D are the implicit
operator, gradient operator and divergence operator respectively.
In addition, the negative transpose of the divergence operator is
the gradient operator, G = —D’. 7" is the explicit right-hand
side of the momentum equation. bc; and bc, are the boundary
condition vectors for the momentum and continuity equations.

In the discrete stream function approach [8], a discrete
stream-function s is define, such that ¢ = Cs, where C is the
curl operator (which is a non-square matrix). This matrix is con-
structed in such a way that D and C enjoy the relation DC = 0,
thus the incompressibility condition is automatically satisfied.

The definition in Eqn.(4) together with the relation in
Eqn.(5) guarantee the discrete incompressibility. In the discrete
stream function approach, another type of curl operator which is
called the rotation operator R is also used. The matrix R and
matrix C enjoy the relation R = CT .

By pre-multiplying the momentum equation with R, the
pressure can be eliminated and the system of Eqn. (3) is reduced
to a single equation for s at each time step

CTACs""! =R(r" —bcy) + Rf =R + Rf. €))

The matrix CTAC is symmetric, positive-definite and thus can
be solved using the Conjugate Gradient (CG) method.

As to time advancement, the diffusion term is implicit and
treated by the trapezoidal method; the convection term is ex-
plicit and a three-step second-order, low storage, Runge—Kutta
scheme is used [9].

The forcing term f on the right hand side of Eqn. (1) is com-
puted in an implicit way. Within one step of time advancing
(from n to n+1), this procedure can be summarized as three sub-
steps:

i) A ‘predicted’ stream function is computed without the
forcing and the velocity vectors are reconstructed using the ‘pre-
dicted’ stream function.

ii) A force is applied to achieve the desired velocity on the
boundary. In this paper, we follow a similar procedure as that
in [10] to determine the force. Mathematically, the forces at the
Largrangian points that are used to represent the solid boundary
are computed using the formula
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where U"t! and U* are the desired and ‘predicted’ velocities
respectively; & is the regularized Delta function; /# and As are
the grid sizes of the Euler and Largraigian points respectively; At
is the time step. By definition, the forces at the (computational)
grid points f can be computed by the transformation

f(x) = ) F(Xj)on(x—Xy)As. (6)
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A 4-point regularized Delta function [1] is used in Eqn. (5) and
(6) in all the simulations thereafter. From Eqn. (5), it is seen that
to determine the forces, we only need to solve a small linear sys-
tem in which the number of unknowns is the same as the number
of the Largrangian points.

iii) The stream function at time step n+1 is computed with
the forcing term computed in ii). The procedure i) - iii) is re-
peated until the terminating time is reached.

In the work of [7], Eqn.(4) and the non-slip condition on the
Largrangian points are reformulated into a larger Karush-Kahn-
Tucker (KKT) system; where the forcing term appears as a set
of Largrangian multiplier. The LU decomposition (as that in the
standard projection method) is then used to derive an equation
for f. This equation is of Poisson-like where (CT AC)~! appears
in the modified Laplacian operator. A ‘nested iteration’ is needed
to solve it directly and the computational cost is very large. In
this paper, we propose to employ a forcing strategy that is simple
and straightforward. The implementation of this strategy is also
very easy. Since the number of unknowns of the linear system in

Copyright (© 2010 by ASME

Downloaded From: http://proceedings.asmedigital collection.asme.or g/ on 06/27/2016 Ter ms of Use: http://www.asme.or g/about-asme/ter ms-of-use



a) b)
FIGURE 1. A SCHEMATIC REPRESENTATION OF MESH PAR-
TITIONING IN THE PREPROCESSING STAGE, a) THE ORIGINAL

MESH; b) THE SUB-DOMAINS AND MESHES GENERATED US-
ING METIS.

Eqn.(5) is much smaller compared to that of the Navier-Stokes
equation, the extra computational cost is negligible.

PARALLEL IMPLEMENTATION

To facilitate an efficient use of the computer resources
in distributed-memory architectures, domain decomposition
methodology is employed to parallelize the code. Message Pass-
ing Interface (MPI) library routines are used for data communi-
cation in a master-slave algorithm. An unstructured data struc-
ture is used to store the connectivity of the grid that is used in
the solver. Grid partition is performed in a preprocessing stage.
A well known graph partitioning software METIS [11] is used
to partition the grid. To balance the computations among the
processors, the partition is done so that the number of cells in
each sub-domain is almost the same. To reduce the commu-
nication cost between processors, the number of adjacent cells
assigned to different sub-domains is minimized. Figure 1 shows
the schematic representation of the original mesh before partition
and meshes of each sub-domain after partition.

In the parallel implementation, the master process performs
the input-output, global time-step control and also the computa-
tion of forces. The slave processes solve the flow field within
the partition. The flow variables at the partition boundaries are
exchanged among the neighboring partitions at each time step.
The concept of overlapped communication and computation is
used in this implementation to increase parallel efficiency. The
computation of the forces which mimic the presence of immersed
boundary further complicates the parallel implementation. Keep-
ing in mind the master-slave strategy employed in the paralleliza-
tion of flow solver, it is reasonable to have a given processor deal
with those Largrangian points which are currently located within
its local sub-domain. However, such implementation will cause a
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FIGURE 2. A SCHEMATIC DIAGRAM OF THE “MASTER-
SLAVE” PARALLEL MODE.

variety of complications in problems that involve a freely moving
boundary. For example, it is necessary to hand-over the control
of some Largrangian points from one processor to another pro-
cessor if the moving boundary crosses the partition border. To
overcome this difficulty, we employ an alternative strategy which
is called the ‘gathering-and-scattering” method. A schematic rep-
resentation of this method in shown in Fig. 2. In this implementa-
tion, some (very limited) global information (such as the position
and fluid velocity at the grid points) are sent to and stored in the
master at each time step. The master gathers from the slaves the
information that are needed, compute the forces and then scatters
them to the slaves. The slaves only solve the Navier-Stoke equa-
tions using the local forces within the partition. This ‘gathering-
and-scattering’ strategy is very easy to programm. The disadvan-
tage of this method is that the redundant storage of information
in the master process causes a waste in memory usage. Further-
more, frequent transfer of data between the master and slaves
can jeopardize the efficiency of the code if the number of the
grid points is very large. These side-effects can be alleviated
by setting a small ‘window’ that encompasses all the grid points
which interact with the Largrangian points. For the grid points
in each sub-domain, only those lie within the ‘window’ are acti-
vated in the ‘gathering-and-scattering’ operations. If the number
of Largrangian points is very large (more than 10%), a parallel
solution of Eqn. (§) may also enhance the parallel efficiency.

The index of speedup is used to quantify the parallel perfor-
mance of the code. This is as a measurement of relative speed
of a multiprocessor system and a single processor system and is
defined as

SN P) =2 ™)

where N is the size of the problem and P is the number of pro-
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FIGURE 3. THE SPEEDUP OF THE PARALLEL IMMERSED
BOUNDARY FLOW SOLVER. A) 1.4x 10 UNKNOWNS RUNNING

ON 1-32 CPUS. B) 1.2 MILLION UNKNOWNS RUNNING ON 8-128
CPUS.

cessors used; #; is the execution time on a single processor and ¢,
is the execution time on a multiprocessor.

The three-dimensional lid-driven cavity problem serves as
the test case to assess the parallel performance of the code. A
Reynolds number of Re = UD / v = 100 is simulated for two
cases described below, where U is the lid sliding velocity and
D is the dimension of the cavity. In case I and case /I, the do-
main of D x D x D is discretized using a hexahedral mesh with
1.4x10° and 1.2 million grid points. To study the performance of
the parallel code in obtaining the solution, the domain is divided
into N sub-domains, where 1 < N < 32 is considered in case /
and 8 < N < 128 in case II. We run the code for 200 time steps
in both cases and record the wall-clock time. In case /I, running
the code on a single node is not feasible due to the memory size
limit. Thus in evaluating the speedup, the execution time on a
single processor ; is replaced by the execution time on 8§ CPUs.
As shown in Fig. 3, good parallel scalability of the solver is ex-
hibited in both cases. The super linear speedup in the two cases
is probably due to cache effect of the computer nodes and further
investigations are needed to clarify the situation.

VALIDATIONS AND APPLICATION

To validate the parallel immersed boundary flow solver,
some benchmark flows, including the viscous flow around a cir-
cular cylinder and a sphere are simulated. The flow around a
fish-like body is also simulated to demonstrate the capability of
the solver in handling complex and moving boundaries.

Flow around a Cylinder

Viscous flow around a circular cylinder is simulated in a
rectangular domain L x H = 60D x 40D, where D is the di-
ameter of the cylinder. The flow is uniform with velocity U at
the inlet. The boundary condition on the surface of the cylinder
is non-slip and at the outlet is convective. The Reynolds num-

FIGURE 4. THE RECIRCULATION ZONE BEHIND A CYLIN-
DER AT Re =40. [/ IS THE LENGTH OF THE RECIRCULATION , a
IS THE DISTANCE FROM THE CYLINDER TO THE CENTER OF
THE WAKE VORTEX, b IS THE GAP BETWEEN THE CENTERS
OF THE WAKE VORTICES, AND 6 IS THE SEPARATION ANGLE.

ber Re is defined based on the cylinder diameter D, free-stream
velocity U and kinematic viscous coefficient v. In addition, the
drag and lift coefficients are defined as

Cp = F/(2pU?), (®)

CL=F/(2pU?). ©)

For the simulation of Re = 40, the grid size in the region of
2D x2D near the cylinder is 0.033D. For the simulation of Re
= 100, the grid size in the region of 1.5Dx1.5D near the cylinder
is 0.02D. The grids are stretched to the boundaries with a factor
of 1.05 and the maximum grid size in both cases is 0.5.

At Re = 40, the flow is steady and the recirculation zone
is characterized by the length /, the distance from the back of
cylinder to the vortex center a, the distance between to two vortex
centers b, and the separation angle 6, as defined in Fig. 4. The re-
sults of the present computation and the data from the literatures
are listed in Tab. 1. The streamlines and the contours of vertical
velocity component are shown in Fig. 5. At Re = 100, the flow
is characterized by alterative vortex shedding from the cylinder.
The instantaneous vorticity contours are shown in Fig. 6. The
comparison of the present results (drag and lift coefficients and
Strouhal number) with those from the literatures is presented in
Tab. 2. For both cases (Re = 100 and 200), the numerical results
are in good agreements with those from the literatures.

Flow around a Sphere

Viscous flow around a sphere are investigated at Re = 100
and Re = 300 respectively. Here the Reynolds number Re is de-
fined based on the free stream velocity U, the diameter of the
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TABLE 1. DRAG COEFFICIENT AND CHARACTERISTICS OF
RECIRCULATION ZONE FOR FLOW PAST A CYLINDER AT Re =
40

Case I/ID a/D b/ID 6 Cp
Present 236 072 0.6 53.8° 1.54
Dennis and Chang [12] 2.35 - - 53.8° 1.52

Linnick and Fasel [13] 2.28 0.72 0.6 53.7° 1.54
Taira and Colonius [14] 2.33 0.72 0.6 53.6° 1.54

FIGURE 5. STREAMLINES AND CONTOURS OF VERTICAL
VELOCITY COMPONENT FOR FLOW PAST A CYLINDER AT Re
=40.

FIGURE 6. INSTANTANEOUS VORTICITY CONTOURS FOR
FLOW PAST A CYLINDER AT Re =100 .

sphere D and the kinematic viscosity v. The computation is per-
formed in a domain of L x H x W = 30D x 30D x 30D. The
drag and lift coefficients are defined as

Cp = F./(0.5pU*nD? /4), (10)

CL=F,/(0.5pU*nD?*/4). (11)

TABLE 2. DRAG AND LIFT COEFFICIENTS AND STROUHAL
NUMBER FOR FLOW PAST A CYLINDER AT Re = 100.

Case Cp CL St
Present 1.32  £0.32 0.166
Liuetal [15] 135 +£0.32 0.164
Parketal [16] 1.33 £0.33 0.165

TABLE 3. DRAG COEFFICIENT FOR FLOW PAST A SPHERE AT
Re =100

Case Cp
Present 1.13
Johnson and Patel [17] 1.10
Fadlun et al [4] 1.08

For the case of Re = 100, a mesh with the uniform size of
0.025 is used in the region of 1.5D x 1.5D x 1.5D surrounding
the sphere and the total number of nodes is approximately of
1 million. For the case of Re = 300, a mesh with the uniform
size of 0.0125 is used in the region of 1.25D x 1.25D x 1.25D
surrounding the sphere and the total number of nodes for this
case is 1.2 million. The uniform velocity of U is prescribed on
the inlet. The boundary condition on the surface of the sphere is
non-slip, and at the outlet is convective.

At Re = 100, the the flow is steady and axisymmetric with a
separation bubble behind the sphere. The drag coefficient of the
present calculation is compared with the data in the literatures in
Tab. 3. At Re = 300, the flow exhibits unsteady characteristics
such as vortex shedding and oscillations of drag and lift coef-
ficients. The vortical structures are shown in Fig. 7, where the
vortical surfaces are identified using the method by Jeong and
Hussain [18]. The averaged drag and lift coefficients are shown
in Tab. 4. The results for Re = 100 and Re = 300 agree well with
those from the literatures.

Flow around a Fish-like Body

The swimming of a fish-like body is simulated using the
present immersed boundary flow solver. A body shape repre-
senting a tuna is employed. The parameters of the model are
taken from the work of Zhu et al [20] with a little modification.
The wave-like motion of body is described as (in the body-fixed
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FIGURE 7. INSTANTANEOUS VORTICAL STRUCTURES FOR
FLOW PAST A SPHERE AT Re=300.

TABLE 4. DRAG AND LIFT COEFFICIENTS AND STROUHAL
NUMBER FOR FLOW PAST A SPHERE AT Re = 300.

Case Cp Cr St
Present 0.68 0.071 0.135
Johnson and Patel [17] 0.66 0.069 0.137
Kim et al [19] 0.66 0.067 0.134

coordinate system)

y(x,t) = a(x) sin(kyx — ot),

a(x) = c1x+cx?, (12)

where ky = 27/A is the wave number, corresponding to wave-
length A , o is the circular frequency of oscillation, a(x) is de-
fined by the adjustable parameters c; and c, , representing the
smoothly varying of the amplitude of the waving body.

The caudal fins of the fish-like body are allowed to undergo
a pitch motion around the front point. The pitching motion is
taken as:

0 = asin(kyx, — of — @) (13)

where « is the amplitude of the pitch angle and ¢ the phase lag
between the undulation and pitch.

The parameters in present simulation are: A = 1.22, @ =2,
c1 = 0.0, ¢ =0.155, ¢ = /6.0, ¢ = w/2.0. The Reynolds
number Re based on the free stream velocity U, the length of
the fish-like body L and the kinematic viscosity V in the present
simulation is 1000.

FIGURE 8. WAKE STRUCTURES IN THE SWIMMING OF A
FISH-LIKE BODY.

The wake structures of the swimming of fish-like body are
shown in Fig. 8. The vortical structures in the wake are visual-
ized using the iso-surfaces of the second invariant of the velocity-
gradient tensor. The iso-surfaces are colored with the values of
stream-wise vorticity. The structures are arranged in a single row
and remain confined within a relatively narrow strip that is cen-
tered about the horizontal axis of the fish body. The wake struc-
tures consist of a series of hairpin-like vortices braided together
such that the legs of each vortex are attached to the head of the
preceding one.

CONCLUSIONS

In this paper, we report the development of an Immersed
Boundary flow solver in combination with the discrete stream
function approach for incompressible Navier-Stokes equations.
The parallel implementation of the code on a distributed-memory
cluster is also described. The parallel performance tests show a
super linear behavior in the speedup of the code. The code is
validated by some canonical problems such as the flows over a
cylinder and a sphere. The results are in agreement with the data
from other references. To demonstrate the capability of the code
in simulating three-dimensional flows that involve complex and
moving boundaries, the swimming of a fish-like is also studied.
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