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Abstract 

Catastrophic rupture in heterogeneous media, such as earthquake in crust, has long been a topic of scientific and societal 
importance. However, there has been no reliable approach to its prediction. Recently, our experimental study of rocks unveiled a 
power law singularity ahead of catastrophic rupture, namely the response of the rock specimen R (the ratio of the increments of 
sample deformation u and controlling crosshead displacement U) can be expressed as R ∼ (1-U/UF) -β with β = 0.51±0.10 
(mean±s.d.) ahead of the catastrophic rupture UF. Numerical simulations also demonstrate the power law singularity ahead of 
catastrophic rupture. Theoretical analysis gives the power law singularity with the critical exponent β = 1/2. In addition, other 
tests with cement specimens showing gradual failure without catastrophic rupture do not demonstrate such a singularity. 
© 2009 Elsevier B.V. All rights reserved 
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1. Introduction 

Catastrophic rupture, such as rock rupture and earthquake in crust, is a topic of scientific and societal 
importance1. However, there is no reliable approach to prediction owing to its complexity, in particular the uncertain 
occurrence of catastrophic rupture. It is well known that in both “Nature” and “Science” there have been special 
debates on whether earthquakes can be predicted or not2-3. Since then, what is most closely related to catastrophic 
rupture becomes a key to the problem. Though a number of options, such as accelerated responses4-9, have been 
proposed, the problem on what sort of accelerated criticality can specifically identify the occurrence of catastrophic 
rupture remains open.  

In order to seek such a specific signal, we performed a series of rock tests and examined the variation of the 
responses near catastrophic rupture. From these tests, a common power law singularity with power law index 
-0.51±0.10 ahead of the catastrophic rupture was found10-11. Further numerical simulations also demonstrate the 
power law singularity and theoretical analysis gives the power law index -1/2.  

In the following, by taking the controlling crosshead displacement U as the governing variable we examine three 
kinds of responses defined as follows: Ru=du/dU, RD=dD/dU and RW=dW/dU, namely the increments of 
deformation u , damage fraction D and cumulative energy release W induced by the controlling displacement U 
respectively. 
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2. Experimental and Numerical Results 

In the experiments, rock samples, 18×20×40 mm3, were compressed uniaxially. The loading is under the 
crosshead displacement, U, control. The catastrophic rupture occurs at UF. Obviously, the controlling displacement 
consists of the deformation of both loading apparatus and deformed rock sample. The deformation u of the rock 
sample was measured by an extensometer. Then, the response Ru=du/dU can be obtained each loading step10-11. The 
curves of force P/Pmax and response Ru=du/dU versus U/UF are shown in Fig.1, where the subscripts max and F 
denote maximum load and rupture respectively. All samples show a sharp increase of the response Ru ahead of 
catastrophic rupture (Fig.1). Now, let us focus on how fast the response Ru=du/dU grows with the controlling 
displacement U ahead of catastrophic rupture. Fig.2a shows the log-log plots of the response Ru=du/dU versus the 
reduced displacement 1-U/UF of 3 samples. From the linear dependence in the left part of the log-log plots in this 
figure, we can see that the increase of the responses ahead of catastrophic rupture can be described by a power law 
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We fit the power law in the form Ru=A(1-U/UF)-βu to determine the two constants A and βu. Clearly, this fitting is 
valid only close to catastrophic rupture. According to the experimental data, a best-fitting of the exponent βu was 
found within the last 4%portion ahead of the critical state. Then, we fitted all experimental data of 43 samples of 
marble and granite to the power law in the range of about 3 orders of magnitude from U/UF=0.96 to rupture (i.e. -4 < 
log 10(1-U/UF) < -1.4) and obtained the mean critical exponent βu=0.51 with standard error ±0.10. On the other 
hand, Fig.2b shows the other experiment of cement for which the failure is not catastrophic. Note that there is no 
singularity at all because no catastrophic rupture occurs, although the response can grow. 

By means of multi-scale finite element method12, we also performed corresponding numerical simulations of the 
processes from damage to failure in heterogeneous media. Figure 3 shows the numerical results of the variations of 
two other kinds of response, damage response RD and energy release response RW. Interestingly, both of them show 
the similar power law singularity ahead of catastrophic rupture.” 
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Fig.1 The experimental variations of the normalized load (P/Pmax) (solid lines) and the normalized responses Ru /Rumax for 10 rock samples 
(symbols) vs controlling displacement (U/UF). It is clear that the responses grow very fast ahead of catastrophic rupture11. 
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Fig. 2. (a) The log-log plots showing the power law singularity ahead of catastrophic rupture in rock tests (3 samples). Symbols are experimental 
data and solid lines are their fittings11; (b) The variations of the normalized load (P/Pmax) (solid lines) and the normalized responses Ru /Rumax 
(symbols) vs displacement (U/UF) for a cement sample. There is no singularity in this case, since its failure is not catastrophic11.  
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Fig 3. The numerical variations of normalized responses RD/RDmax and RW/RWmax versus the reduced displacement 1- U/UF , showing the power 
law singularity ahead of catastrophic rupture11. 
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Fig. 4. (a) The analytical log-log plots of normalized responses Ru/Rumax, RD/RDmax and RW/RWmax versus the reduced displacement 1-U/UF for the 
case of m=2 and k=0.2. The dashed inset with a slope -1/2 is drawn for comparison. Obviously, beyond log10(1-U/UF) < -1 (the left portions of 
the curves) all responses tend to a power law singularity with power index -1/2,11; (b) The analytical variations of normalized responses Ru/Rumax, 
RD/RDmax and RW/RWmax versus the reduced displacement U/UF for the case of m=3 and k=1. Since k greater than kc=0.79, there is no catastrophic 
rupture and no singularity was found for all three responses 11. It should be noted that the subscript max denotes the cut off values of the 
responses nearby catastrophic rupture point because of the infinite responses at catastrophic rupture. 

3. Analysis based on Mean Field Approximation 

Now, we verify the observed power law with the analysis based on mean field approximation10-11. It is well 
known that catastrophic rupture occurs in a sample as soon as the elastic energy released by its environment can 
fully compensate the rupture dissipation1. The system can be considered to consist of two parts in series: an elastic 
part with stiffness ke and a damageable sample marked with subscript d and catastrophic rupture occurs only when 
the stiffness ratio k=ke/kd0<kc

11, where kd0 is the elastic stiffness of the sample. Then, the responses related to the 
deformation of the damageable sample u  can be derived as 11 
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where stiffness ratio k=ke/kd0=ke/(Ed0A/ld), A is the cross sectional area, ld is the length and Ed0 is the initial elastic 
modulus of the sample. Interestingly, the responses of energy release and damage, Rw and RD, share the same 
denominator k+dσ0/dεd. So, 0lim ( / ) 0σ ε

F
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+ =+ =+ =+ =  represents the common singularity of all responses RZ (Z 

stands for D, W and u) at catastrophic rupture. After expanding the nominal stress σ0 and the strain of the 
damageable sample εd and omitting the higher order terms in the vicinity of UF, one can easily 
derive11 (((( )))) 1/ 2

1 /Z FR U U
−−−−∝ −∝ −∝ −∝ − . 

After examining a concrete example, namely elastic and statistically brittle (ESB) model with mesoscopic 
strength εc following Weibull distribution 1( ) exp( )m m

c c ch mε ε ε−−−−= −= −= −= − , where m is Weibull modulus, we have 
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calculated all three responses in the whole deformation process10-11, see Fig. 4a.  Clearly, at early stage 
-1<log10(1-U/UF) <0, all responses do not demonstrate any power law, however, beyond log10(1-U/UF) < -1 all 
responses tend to a common power law singularity with power law index -1/2. On the other hand, Fig.4b gives a 
case study showing no catastrophic rupture and no singularity. Now, the comparison of the experimental results in 
Fig.2 and the theoretical calculations in Fig. 4 can lead to the concluding remark: the power law singularity does 
specifically appear ahead of catastrophic rupture only. In addition, the -1/2 power law singularity is independent of 
stiffness ratio k, the stress-strain relation and the mesoscopic heterogeneity. However, it is worth noting that apart 
from this universal aspect, the catastrophic rupture shows very sample-specific, namely the catastrophic point UF is 
dependent on all factors mentioned above11. Additionally, the power law singularity can appear ahead of 
catastrophic rupture under either  crosshead displacement U or load P control, hence the power law singularity can 
be expressed in a common way (((( )))) 1/ 2

1 /Z FR λ λ −−−−∝ −∝ −∝ −∝ −  , where Z and λ stand for cumulative and controlling variables 

respectively11. 
To summarize this work, a common power law singularity of the responses prior to catastrophic failure is 

investigated in three different ways: rock experiments, numerical simulations and theoretical analysis. Rock 
experiments demonstrate a singular power law of the response of deformation Ru =du/dU∼(1-U/UF)-βu with 
βu=0.51±0.10 ahead of catastrophic failure. The numerical simulations also show similar singularity in the responses 
of damage and energy release. Based on a model with statistical distribution of heterogeneity, mean fields 
approximation shows that there is always a power law singularity with β=1/2 for all three responses ahead of 
catastrophic rupture. Furthermore, the power singularity is independent of the details of heterogeneity. On the other 
hand, both experiments and analysis show that gradual failure does not present such a singularity, though its 
responses can increase before failure. Therefore, this power law singularity provides not only a good guide to 
foresee the occurrence of catastrophic rupture, but also to distinguish catastrophic failure from gradual ones. 
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