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Abstract. Using finite element method with the conventional J2 theory and strain gradient
theory respectively, the effect of the indenter tip radius on the micro-indentation hardness
is investigated in the present paper. It is found that the former can not predict the size ef-
fect even considering the indenter tip radius, while the latter gives a good agreement to the
experimentally measured micro-indentation hardness, which confirms that the size effect of
micro-indentation hardness does exist due to the factor of the strain gradient effect.
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1 Introduction

When a material or a structure possesses a micrometer scale, some mechanical char-
acters are different totally from those in macro scale. Size effect is a main phe-
nomenon found in the micro-scale, especially for the micro-indentation hardness [1–
3]. The micro-indentation hardness increases as the indent depth decreases, which
can not be explained by the conventional plasticity theory due to no length scale is
included. Strain gradient theories are proposed as an effectively theoretical tool to
understand the size effect, see for example [4–8].

Using the strain gradient theories, the size effect in micro-indentation hardness
has been studied [9–11] with an assumption that the indenter tip is perfect without a
curvature and the theoretically predicted results are consistent well with the experi-
mentally measured data.

As for the size effect in micro-indentation hardness, some researchers thought
that many experimental factors, such as the effect of the surface layer, the friction
between the indenter and the indented material, the indenter tip curvature, should
have a great influence on the measured hardness, which could cause an increasing
indentation hardness for a decreasing indent depth [12]. However, recent experiments
carried out by Swadener et al. [13] on a fine-grained polycrystalline iridium using
spherical indenters with different radius show a different trend from [12]: at a fixed
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indenter radius, the hardness decreases with the indentation depth decreasing for the
case of a/R < 0.2. One question arises from [12] and [13]: which result is right?
Of course, experiment is a believable truth, which is always adopted to check the
correctness of any theory.

In the present paper, the micro-indentation hardness tests will be analyzed nu-
merically using finite element method with the conventional J2 theory and strain
gradient theory proposed by Chen and Wang [7, 8] respectively. A conical indenter
with a round tip is considered. The effect of the indenter tip radius on the micro-
indentation hardness is emphasized.

The strain gradient theory is briefly reviewed in Section 2. The finite element
analysis in the present paper is given in Section 3. In Section 4, numerical results are
compared to the existing experimental data for several materials.

2 Review of Strain Gradient Theory

The incremental constitutive relations of the strain gradient theory [7, 8] are{
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Here εe is the effective strain, χe the effective rotation gradient and η1 the effective
stretch gradient, defined by Fleck and Hutchinson [4].
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The rotation gradient χij is defined as a curvature tensor related to the micro-rotation
ωi ,

χij = ωi,j . (5)

lcs is an intrinsic material length scale required on dimensional grounds. K is the
volumetric modulus, K1 the bend-torsion volumetric modulus. The influence of
stretch gradient is introduced by the following hardening law,
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where B(Ee, l1η1) is the hardening function; σY is the yield stress and µ is the shear
modulus; For power law hardening material, A(Ee) = σYE

n
e ; l1 is the second in-

trinsic material length associated with the stretch gradient. The strain gradient the-
ory [7, 8] reduces to the conventional J2 deformation theory in the absence of strain
gradient effects.

3 Finite Element Analysis

The principal of virtual work and the detailed formulas of the finite element method
for the strain gradient theory [7, 8] can be found in [10].

3.1 The Coordinate System

It is convenient to express the field quantities in terms of cylindrical coordinate sys-
tem (r, θ, z). Both the geometry of the indented solid and loading are axis-symmetric.
The displacement field of the indented solid is

ur = ur(r, z), uθ = 0, uz = uz(r, z) (7)

and the micro-rotation field is

ωθ = ωθ (r, z), ωr = ωz = 0. (8)

3.2 The Blunt Conical Indenter

In order to simulate the micro-indentation test, the axis-symmetric model is adopted
in this paper. The blunt conical indenter and the axis-symmetric model are shown in
Figure 1. The contact depth can be expressed as:⎧⎨

⎩ δ(r) = r

tanβ
− ξ, r0 ≤ r ≤ a,

δ(r) = R − (R2 − r2)1/2, r ≤ r0,

(9)

where r0 = R cosβ, ξ = R/ sin β − R.
The assumptions in the numerical simulations and the boundary conditions can

be found in [10]. The indented body is taken to be a circular cylinder. The size of
the indented body is much larger than the depth of the indentation. On the whole
surface of the cylinder, the torque tractions are taken to be zero, which yields ωi = 0,
mij = 0 so that the influence of lcs can be ignored.
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Fig. 1. Blunted conical indenter and axis-symmetric model.

3.3 The Material Parameters

Young’s modulus and Poisson ratio can be obtained from the existing literature –
but the yield stress, power-law hardening exponent and intrinsic length scale need
to be determined by the numerical fitting method based on the simulation for the
experiment data. Following is the detailed steps:

1. Choose three values of depths h0, h1, h2 at large depth where the indentation
hardness nearly keeps constant, the corresponding loads P(h0), P(h1), P(h2)

can be obtained from the experiment data.
2. First, the values of n and l1 are prescribed and the initial value σY is chosen as

σy = σ , one can get P ∗(h0, σ, n, l1), P ∗(h1, σ, n, l1) and P ∗(h2, σ, n, l1) by
finite element calculations.

3. Introducing

F(σ, n, l1) =
2∑

i=0

(P ∗(hi, σ, n, l1) − P(hi))
2,

one can get the proper σ ∗ by the quasi-Newton method [14]:

σk+1 = σk − F(σk)

F ′(σk)
, F ′(σk) = F(σk) − F(σk−1)

σk − σk−1
,

which makes the functional F to be minimum minσ F (σ, n, l1) = G(n, l1). Ob-
viously, σ ∗ depends on n and l1 , that is, σ ∗ = σ ∗(n, l1).

4. Keeping l1 as a constant, for a given value n (0 ≤ n ≤ 1), carrying out the
above calculations to get each G(n, l1), then from the curve G(n, l1) versus n,
one can get the proper value n∗, which makes the functional G to be minimum
T (l1) = minn G(n, l1) = G(n∗, l1).

5. Finally, for a given value l1 (0 < l1 < 1 µm), carrying out above calculations to
get each T (l1), then from the curve T (l1) versus l1 to make minl1 T (l1) = T (l∗1 ).
The final parameters σn, n∗ and l∗1 are the needed yield stress σY , the power-law
hardening exponent n and the intrinsic length scales l1.
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Fig. 2. The indentation load P versus depth h, the calculation results are based on the classical
J2 plasticity theory.

4 Calculation Results and Comparison with the Test Data

The calculation results are shown in this section. Comparisons between the calcula-
tion results and the experimental indentation data are emphasized. The indenter tip
radius is taken to be R = 100 nm.

4.1 Calculation Results and Comparison with the Test Data

Figure 2a shows the results of the indentation load P versus indentation depth h

for single crystal silver. The solid line is the experimental results given by Ma and
Clarke [2] and the full circles are the present calculation results. Young’s modulus
E = 100.4 GPa and Poisson’s ratio ν = 0.2 were given by Ma and Clarke [2]. The
yield stress σY = 37.5 MPa and power-law hardening exponent n = 0.2 are obtained
by the fitting method of Section 3.3. It can be seen that the calculation results agree
well with the test results at deep depth, but lower than the test results at the shallower
depth.

The nominal indentation hardness H ∗ versus the indentation depth h for single
crystal silver is shown in Figure 3a. Here H ∗ = P/(24.56h2), which is defined by
Ma and Clarke [2]. From Figure 3a, one can see that the calculation results are much
lower than the test results for shallower depth.

The calculation results on polycrystalline copper are shown in Figures 2b and 3b
respectively, which have the same trends as Figures 2a and 3a.

Figure 4a shows the results of the indentation hardness H versus indentation
depth h for single crystal silver. The indentation hardness H is defined as H =
P/πa2.

Since one cannot directly measure the contact area, the existed experimental data
did not include any measured values of contact area. We only use the calculated val-
ues of the contact area instead the measured values of contact area. From Figure 4a,
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Fig. 3. The nominal indentation hardness H ∗ versus depth h, the calculation results are based
on the classical J2 plasticity theory.

Fig. 4. The indentation hardness H versus depth h, the calculation results are based on the
classical J2 plasticity theory.

one can see that the calculation results are not only much lower than the test results,
but the hardness decreases with the decreasing depth when the depth is lower than
500 nm. It means that the predicted load and hardness based on the conventional J2
theory cannot agree well with the experimentally measured micro-indentation load
and hardness over a wide range of the indentation depth, even considering the effect
of indenter tip radius, which reveals that the indenter tip radius cannot explain the
size effect.
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Fig. 5. The indentation load P versus depth h, the calculation results are based on the strain
gradient theory [7, 8].

4.2 Calculation Results for Strain Gradient Theory

The above results clearly show that the effect of the indenter tip radius cannot explain
the size effect, so we carry out the calculations based on Chen and Wang’s strain
gradient theory [7, 8] with considering the influence of the indenter tip radius.

Figure 5a shows the results of the indentation load P versus indention depth h

for single crystal silver. The solid line is the experimental results given by Ma and
Clarke [2] and the full circles are the present calculation results. Young’s modulus
E = 100.4 GPa and Poisson’s ratio ν = 0.2 were given by Ma and Clarke [2]. The
yield stress σY = 37.5 MPa, power-law hardening exponent n = 0.2 and the intrinsic
length scale l1 = 0.4 µm are obtained by the fitting method of Section 3.3.

From Figure 5a, one can see that the predicted load agree very well with the
experimentally measured micro-indentation load over the whole range of the indent-
ation depth, which provides a validation of Chen and Wang’s strain gradient theory
[7, 8].

The nominal indentation hardness H ∗ versus the indention depth h for single
crystal silver is shown in Figure 6a.

From Figure 6a, one can see that the predicted nominal indentation hardness
agree very well with the experimentally measured nominal indentation hardness over
the whole range of the indentation depth. Similar calculations are carried out on
polycrystalline copper and shown in Figures 5b and 6b respectively, which have the
same trends as Figure 5a and 6a.

5 Conclusions

The predicted load and hardness based on the conventional J2 theory cannot agree
well with the experimentally measured micro-indentation load and hardness at mi-
cron scales even considering the indenter tip radius, which means that indenter tip
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Fig. 6. The nominal indentation hardness H ∗ versus depth h, the calculation results are based
on the strain gradient theory [7, 8]

radius is not the reason for size effect as some researchers said. While based on the
strain gradient theory proposed by Chen and Wang [7, 8], the predicted load and
hardness agree very well with the experimentally measured micro-indentation load
and hardness over a whole range of the indentation depth.
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