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Abstract: In this paper, using the moving boundary CFD method, we developed a new real-time optimal control
method which can adaptively change the shapes of body surface to obtain the unsteady optimal airfoil. The results
show that the aerodynamics properties of airfoil with the new method can be improved remarkably, and the
aerodynamics characteristics of the final optimal airfoil at different angles of attack are all superior than the original
airfoil NACA0012.
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1. INTRODUCTION

The Nature creates millions of strange creatures during the billions years of evolution, and every day
these living things moves around the world in their graceful, unique and the most energy saving way. But
up to now, we are still aware of very little on the mechanism of fluid mechanics of various unsteady
boundary motion, such as the moving body surface, associated with the locomotion of these creatures. We
hope to increase our understanding of the inscrutability by means of studying the unsteady optimal
control of the adaptive smart surface in complex flows.

On the other hand, now in the community of fluid mechanics, the unsteady control and compliant surface
technique are becoming the most compelling research directions. The rapid development of MEMS,
MAFC and smart materials, such as the shape memory alloy, make the dreams to become true.

In this paper, we developed a new real-time optimal control method which can adaptively change the
shapes of body surface to obtain the unsteady optimal airfoil. This study is not only important for the
dynamical stall of airfoils, and will boost the experiments and manufactures of smart surfaces and
artificial muscles, and also will provide new theories and concepts for the optimal designs, biological
locomotion (such as fish swimming) and other control methods.

2. NUMERICAL METHOD AND THE ALGORITHM OF OPTIMAL CONTROL
2.1 Numerical method
The 2D incompressible integral form Navier-Stokes and continuity equations

%In pudQ+ [ puy -nds=[ v, -nds-( pi,-ndS+| (p-p,)gdQ
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are solved by finite volume scheme!" on C type grids.
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The second order implicit three time level scheme is used for integration in time. This leads to the
following approximation of the unsteady term
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The surface integrals may be split into four control volume(CV) face integrals which can be approximated
by the midpoint rule. So [ fdS=Y [ fdS=Y f.5. =Y fS.c=ewns, where f, is the

. mean value of the integrand over the face ‘c’ and f, is the value of the integrand at the face center. The
approximation of the volume integral is
[,g42=~g,00 @

where g, is the value of the integrand at the CV center P.

2.2 The conservation problem in the moving grid system

When the cell faces move, the conservation of mass(and all other conserved quantities) is not necessarily
ensured if the grid velocities are used to calculate the mass fluxes. Mass conservation can be obtained by
enforcing the so-called space conservation law (SCL) which can be thought of as the continuity equation
for zero fluid velocity:

d
41, 80-fpnes=0 ®
This equation describes the conservation of space when the CV changes its shape and/or position with
(A.Q)nﬂ - (Ag)n :

time. Eq.(5) reads, in discretized form 2 (v,-n). S, ,where c=e,w,n,s.

At
The difference between the ‘new’ and the ‘old’ CV volume can be expressed as the sum of volume & £2,
swept by the CV faces during the time step.
(A-Q)Ml -(AQ)" — X Q 6)
At T A
By comparing these two equations, we see that the volume swept by one cell face is

(PR}

_(')c=(v,,-n)cSc=5ft‘. The mass flux through a cell face ‘c’ can be calculated asp, =

L pv—y,)-ndS=p (v-n) S, —p.,. For the implicit Euler scheme, the discretized continuity

(pAQ)nH _(pAQ)n N
At

treated in a way that is consistent with the space conservation law. For incompressible flows, the
contribution of the grid movement to the mass fluxes has to cancel the unsteady term, i.e. the mass

conservation equation reduces to L pv-ndS =0. Then the mass conservation law is satisfied in the

equation reads

Zcmc=0, where ¢ =e,W,n,s. The unsteady term has to be

moving grid system.

2.3 The optimal method
The optimal method that we used is an approach to nonlinearly constrained minimal problems?. The

problem we consider is the following. Let m, ,m, ,m, be integers with 0<m <m, <m,, let f, be given

real numbers and let g, be given smooth functions. We wish to choose Xx;,-:-, X, to
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min @

|f—g,(xl,..-,x")$a) 1<i<m, -
g(x. - x)<w m+1<i<m,
8(x,-,x,)<0 m+1<i<m,

To implement the optimal method to unsteady optimal control, the first task is to find a parameter space
for a large range of airfoil shapes. Chang et al.”” introduced a parameter space suitable for our current
purpose. An airfoil can be defined by up to 20 parameters and supercritical airfoils are included in this
space.

3. THE PROCEDURE OF UNSTEADY OPTIMAL CONTROL
The procedure of unsteady optimal control is as follows: (1) Parameterizing the original airfoil to get the

initial parameters x,; (2) Using the original airfoil to create the initial grid; (3) Computing the flow field
on the initial grid till 7, at which the process of control start; (4) Saving the shape of airfoil and c’,Ct

at 7. Calculating the value of the objective function J(x,); (5) Finding a search step h and
reconstructing the new airfoil using x,+h; (6) Creating new grid by using the new airfoil. Then,

interpolating the flow field at #;, into the new grid to get the new initial field. (7) Using the new grid and

the new initial field to compute the flow field at #,+d¢ (dr is the time step) and the value of objective
function J(x,+h); (8) If J (x, + k) <J(x,) and all of the constrains are satisfied, we will let x, =x,+h,

and J(x,)= J (x, +h) ; (9) The process of optimal will be stop if the value of objective function cannot be

reduced anymore and the process of (5)~(8) will be repeated otherwise. (10) Computing the flow field on
the new grid corresponding to the optimized airfoil till r, + Af(At > dt) at which the next control start;

(11) The program will be stop if the terminal condition is satisfied and let f, =1, + Ar, then repeat
(4)~(10) otherwise.

4. NUMERICAL RESULTS

4.1 Controlling the airfoil at fixed attack angle

The initial airfoil NACA0012 should be parameterized at first. The following special shape functions are
used

g =Vx-x, gx)=x(1-x), gx=x( —x)} ®

g.(x)=x1-x), g (x)=x'(1-x)
Both the upper and the lower surfaces are defined by these five shape functions. So the dimensions of our
parameter space is 10.
We use C type grid of total 240x40 at Re,=1000 and =12°. The objective function is

J(x)=|C, -0.6] +% 9)

where x is the vector of parameters which is to be optimized and 0.6 is the result of analyzing the lift
coefficient of NACA0012 at Re.=1000 and o=12°. The average lift coefficient in that condition is about
0.48. To increase the lift at the same time of decreasing the drag, we choose the moderate value as the
object of lift.

All of our constrains are geometry constrains. The geometry constrains can be added without any
additional running of flow solver. What we choose are: (1) The airfoil thickness is limited to 12% chord
length; (2) The camber is limited to 2% chord length; (3) The leading edge radius is controlled by the
distance between the two points which are adjacent to the leading edge point on the upper and lower
surface. The limitation of this distance is set to 0.4% chord length; (4) The limitation of the maximum
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distance between the two optimal airfoil which are adjacent to each other is set to 0.5% chord length.

The original and the optimal airfoils in the process of unsteady optimal control are shown in Fig.1. We
can see that the difference between the two optimal airfoils which are adjacent to each other is smaller
and smaller, and finally, the shape of the optimal airfoil is almost fixed.

The two airfoils shown in Fig.2 are NACA0012 and the optimal airfoil at #=15. The maximum thickness
of the optimal airfoil is 11.11% chord length; The maximum camber is 1.97% chord length; The leading
edge radius is 0.496% chord length. All of our constrains are satisfied and all of the maximum
geometrical parameters are very closed to their limitation. That is why the shape of the optimal airfoils is
almost fixed at last.
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Fig.1 NACAO0012 and the optimal airfoils Fig.2 NACAO0012 and the final optimal airfoils(#=15)

Figure 3(a) is the history of L/'D of NACAO0012 and the unsteady optimal airfoil. The total
computational time is 15, and the control is introduced in at £=1.5. The control interval time is Az =0.05.
From the figure, it can be seen that the L/D oscillates a lot before 1=2.0, and they are correspond to the big
changes of the shape of the airfoil, as shown in Fig.1. After £>2.0, due to the limit of constrains, the shape
changes smaller and make the optimal airfoil converges to a final state, therefore the amplitude of
oscillation of the corresponding L/D decreases and becomes much smaller than the one of NACA0012.
The final L/D increases from 3.827 to 5.001, which is 30.8% higher than the original one.

Figure 3(b) and Fig.3(c) are the time history of the lift and drag coefficients of NACAQ012 and the
unsteady optimal airfoil, respectively. From Fig.3(b), one can see that after the optimal airfoil reaches the
final shape, the average of lift coefficient increases from 0.481 to 0.602, or 25.3% larger, and from
Fig.3(c), the average drag is reduced about 4.1% (from 0.125 drops to 0.120).
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(a) the history of L/D (b) the history of C, (c) the history of C,
Fig.3 Aerodynamics parameter of NACA0012 and the optimal airfoils

In addition, we calculate the aecrodynamics parameters of the optimal airfoil in Fig.2 at =12° and a=14°
when Re=1000 and which at Re.=2 000, Re =3 333 and Re.=5 000 when a=12°. The results are listed in
Table 1.
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Table1l Comparison of E, , C_,, and L/D at variant attack angle and Reynolds number

R ® NACAO0012 Optimal airfoil (r=15) Increasment(%)
€, a — — — — J— R —_ J— -
‘ C ¢ LID ¢ C, LID AC, AC, ALID

:
1000 10 0.397 0093 4.287 0505 0.084 6.035 27363 -9507 40.778
1000 12 0481 0.125 3.827 0606 0.120 5.030 26.068 -3.973 31428
1000 14 0587 0.172 3405 0.700 0.170 4.103 19.191 -0.738 20474
2000 12 0482 0.132 3619 0712 0.149 4773 47.658 12.524 31.879
3333 12 0580 0.153 3.761 0811 0.179 4506 39969 16994 19.826

5000 12 0.868 0.194 4440 0.868 0.181 4774 -0053 -6.743 7.541

4.2 Optimal control of an oscillating airfoil
We take NACAO0012 again as the starting airfoil and solve the flow on C type grid (240x40) at Re.=1000.
The oscillating rule is o=y +3°sin(ax), where ap=9°; The period of oscillation is T=1.0. The objective
function is

J(x)=|C,-C|/C’+20C, 1 Cy (10)
The total time of optimal control is 10.0, and the control starts at r=2.0 with the control interval equals to
At =0.05 . Figure 4 shows the time history of the optimal airfoil. Figure 5 and Fig.6 are the time histories
of the aerodynamics coefficients of the pitching motions of NACAQQ12, unsteady optimal airfoil and the
fixed shape optimal airfoil(the shape of the airfoil is obtained at t=10), respectively. From the figures, we
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Fig4 NACAOQ012 and the optimal airfoils in the pitching motion

~—— Quciiato NACADO12 o1 ~—— Quctiats NACAGO12
07 --- - OQucilaty Opling_skfol Osciate Optng_airior

08 (1)
0.0 20 40 a0 80 100 2%, 20 40 80 80 100 00 20 40 80 80 100
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Fig.5 Aerodynamics parameter of NACAOQ012 and the optimal airfoils in the pitching motion
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Fig.6 Aerodynamics parameter of NACA0012 and the final optimal airfoils (+=10)

can find that the aerodynamics properties are improved, and even the properties of hysteresis loops of the
unsteady optimal airfoil are better than the one of NACAQ0012, as shown in Fig.7.
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Fig.7 Hysteresis loops comparison of the original airfoil and the final optimal airfoil

5. CONCLUSION

From above, one can conclude that: (1) Using the method of optimal control, the acrodynamics properties
of airfoil can be improved remarkably; (2) With certain geometrical constrains, the optimal airfoil will be
converged at last; (3) The aerodynamics characteristics of the final optimal airfoil at different angles of
attack are all superior than the original airfoil NACA0012; (4) The adaptive smart airfoil always performs
optimally under different flight conditions; (5) Even we did not aim at improving the hysteresis loop
properties of the pitching motion of airfoil, but the results show that the unsteady optimal airfoil has
better performs in the pitching motion.
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