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Abstract. A modified fourth order accurate compact scheme with group velocity con­
trol (GVC) is developed. The scheme is high order accurate with less stencil, simple, 
less computer consuming, and can capture the shocks with high cross pressure ratio 
and the contact discontinuity with high density ratio. The developed method is used to 
simulate Richtmyer-Meshkov (R-M) instability problem driven by a cylindrical shock. 
The behavior of R-M instability is studied. 

1 Introduction 

For solving shock-interface interaction with high cross density ratio and pressure 
ratio it is required that the numerical method can capture both shock and contact 
discontinuity well. There have been a lot of activities geared towards constructing 
efficient schemes with high resolution of the shock. These include TVD and 
ENO type schemes. Development of the shock capturing methods of TVD and 
ENO types is mainly from the viewpoint of mathematics. In the most existing 
TVD and ENO type schemes the physical reason of oscillation production is not 
considered directly. In [2] the relevance of group velocity in numerical solution to 
the behavior of the solution of finite difference schemes was considered. Schemes 
were divided into three groups with the group velocity of wave packets: slower 
(SLW), faster (FST) and mixed (MXD). For the SLW schemes the numerical 
wave packets are propagated slower than the physical ones, and the oscillations 
in numerical solutions may appear behind the shock. For the FST schemes the 
numerical wave packets are propagated faster than the physical ones and the 
oscillations may appear in front of the shocks. For the MXD schemes in some 
range of low and middle wave numbers the schemes are FST, but are SLW in 
the range of high wave numbers. In order to improve the numerical solutions 
the method of group velocity control (GVC) is presented in [2]. The basic idea 
of the GVC scheme is that the scheme used must be reconstructed so that it is 
FST jMXD behind the shock, and is SLW in front of the shock. According to 
the basic idea of the GVC method a modified fourth order accurate compact 
scheme is developed. The scheme is used to simulate Richtmyer-Meshkov (R-M) 
instability problem. The numerical results for interaction between the cylindrical 
shock and the cylindrical interface with small disturbance are presented. The 
behavior of R-M instability is studied. 
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2 Method Development 

2.1 Scheme description 

Consider the following model equation and its semi-discrete approximation 

au af -a + -a = 0, f = cu, c = canst. > 0 t x 

au· F 
_J +_J =0 
at Llx 

where Fj/Llx is an approximation of af lax and Fj is obtained from 

(1) 

(2) 

121 
{iFj+l + :-i Fj + {iFj - 1 + Hj+l/2 - H j- 1/2 = h]+1/2 - hj- 1/2 (3) 

Hi+1/2 = (102 - E4)i+1/2 (F]+1 + Fj ) 

h]+1/2 = (fj + f]+d /2 - 2104,]+1/2 (f]+1 - fj) 102,]+1/2 = [g]+1/2 (p)]3 

104,]+1/2 = [1 + /03]+1/2 (p)] gj+l/2 (p), 3]+1/2 (p) = sign lap/ax, a2p/a.T2] 

gj+l/2 (p) = [gj (p) + gj+l (p)] /2 

gj(p) = [Ipj+l- 2pj + pj-11/(P]+1 + 2pj + Pj_1]1/2 

The function g (p) is used to control the accuracy and dissipativity, 3 (p) is used 
to control the group velocity. The 3-stage TVD R-K method is used for time 
discretization. Here not any limiter and minmod function are used. 

2.2 Accuracy and behavior analysis of numerical solution 

According to the analysis in Ref. [2] for improvement of shock resolution the 
scheme should be constructed so that it is SLW in front of the shock and FST or 
MXD behind the shock. Fourier analysis shows that scheme (3) is dissipative for 
102 > 0 and 104 > 0, SLW for small 102 and 104, and MXD for 104 > 102 and 104 > EO 
(EO is a positive constant). In fig.1 is given variation of aki (0:) / ao: related to the 
group velocity of wave packet and kr (0:) related to the numerical dissipativity 
as function of 0:. The accuracy of the scheme is O(Ll:rE2 + Llx3E4). D (0:) is the 
group velocity of wave packet and 0: = kLlx, k is wave number. It is obvious that 
the constructed scheme is fourth order accurate in the smooth region. Numerical 
experiments show that the scheme has high resolution of the shock with high 
cross pressure ratio and high density difference across the interface. 
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Fig. I. (a) Variation of Kr·(a) for c2 = C4 = -f:t. (b) Variation of dki/da 

3 Numerical Experiments 

3.1 Model problems 

The scheme is used to solve the Euler equations for simulation of 1-D shock 
tube and Riemann problems. Numerical results of 1-D shock tube with steady 
shock for incoming Mach number Ma=30 are given in fig.2. Numerical results 
for 1-D Riemann problems at t = 0.4 with initial condition (t = 0) : Ul = 

U2 = O,PI/P2 = lO,pI/P2 = 800 and 8 are given in fig.3. U,p and P are velocity, 
pressure and density, respectively, the lower index 1 and 2 related to parameters 
in two sides of discontinuity. From fig.3.2 it can be seen that numerical results 
agree well with exact solutions. 

For 2-D Riemann problem the initial conditions are taken as shown in fig.4 : 
lower index corresponds to t he sub domain. The computational region is -0.5 :s: 
x :s: 0.5 , - 0.5 :s: y :s: 0.5 with grid points 400x400. Numerical results at t = 0.6 
are given in fig.5 for density counters and in fig.6 for pressure counters. From fig.5 
and fig.6 it can be seen that the double Mach reflection is formed, and obtained 
results including contact discontinuity, position of the mushroom cap and fine 
structures agree well with results obtained in ref. [1] . It should be noted that in 
our results there is not nonphysical discontinuity produced due to nonphysical 
oscillations. 

3.2 Richtmyer-Meshkov instability 

The developed scheme with three stage R-K method is used to solve the 2-D N­
S equations for simulation of Richtmyer-Meshkov(R-M) instability problem. A 
cylindrical shock collides a cylindrical interface with small sinusoid disturbances. 
The shock wave implodes from heavy fluid to light fluid. The initial interface is 
located as follows 

r = 1 + aocos (n8) 

b) 
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Fig. 3.2 Results of Sod model with pd P2 = 8 and comparison with exact solution 

where r = r / R o, a = a / Ro are dimensionless radius and perturbation am­
plitude, Ro is the mean radius of the interface at t = 0.0 (the radius of the 
unperturbed interface). In present computation the initial dimensionless per­
turbation amplitude at the interface is ao=0.033, and the Mach number of the 
shock is !vI a=1.2. The ratio between outside and inside densities of the interface 
is PI! P2=5 and 20. The Reynolds number is Re=5000. For getting fine structures 
in computation non-uniform mesh grid system near the disturbed region is used. 
The density counters at different times are given in fig.7 for pI! P2=5 , the pres­
sure and the density distributions along a radial direction of 45 degrees at the 
corresponding times are also given. From figures it can be seen when the incident 
shock collides the interface at t = 0.034 (where t is dimensionless time defined as 
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t = t Ro/U, and U is the speed of the incident shock), the shock bifurcates into 
a transmitted shock which is moving radially inward, two reflected rarefaction 
waves which are moving radially outward. After bifurcation the phase inversion 
at the interface is produced due to interaction, and the interface is flattened. 
There are a series of wave interactions behind the transmitted shock. At t = 1.0 
the phase inversion is completed, and the transmitted shock is reflected back 
from the center of the cylinder. The interface is re-shocked twice by the reflected 
back shock, second bifurcation is produced, and the interface is moving toward 
to the center. For second bifurcation the incoming shock from the center ex­
plodes from light fluid to heavy, so there is no phase inversion at the interface, 
and the reflected wave is reflected shock, which will move away from the center. 
In this case there are several re-shocks at the interface. From above results it can 
be seen that the numerical method used in present paper can capture shocks, 
reflected waves, interface and fine structures well. 
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PI = 1.5, PI = 1.5, UI = VI = 0.0 

P2 = 0.5323, P2 = 0.3, U2 = 1.206, V2 = 0.0 

P3 = 0.1379, P3 = 0.029, U3 = 1.206, V3 = 1.206 

P4 = 0.5323, P4 = 0.3, U4 = 0.0, V4 = 1.206 

Fig. 4. Initial conditions (xo = yo = 0.8) 


