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Abstract. Two particle approaches, namely the information preservation (IP) method and the direct simulation Monte
Carlo (DSMC) method, are used to simulate micro-cavity gas flows at low Mach numbers. In the continuum regime,
the velocity profiles given by the IP and DSMC methods agree well with the Navier-Stokes solution of Ghia and the
BGK solution of Su et al. The IP and DSMC results are in a satisfactory agreement at the Knudsen number (Kn) of
0.1, and agree on the whole with each other but slightly differ from each other in certain details at Kn of 1.0. This
small difference results from the strong singularity at the angle points that affects a larger and larger region as Kn
increases. At very small Mach number the statistical scatter inherent in the DSMC method becomes serious, whereas

the IP method still works well to obtain the flow fields and surface pressure distributions at a normal sample size.

INTRODUCTION

There is a great interest to understand in detail the aerodynamics of micro-electro-mechanical systems (MEMS).
The characteristic length scale of MEMS is usually comparable to the mean free path of molecules, and the Knudsen
number (Kn) is no longer small enough to be negligible, where Kn = A/L, A is the mean free path of the
molecules, and L is the characteristic length of the flow. Molecular-based numerical schemes, such as the direct
simulation Monte Carlo (DSMC) method [1], are physically appropriate for this kind of gas flows where
non-continuum, rarefied gas effects become important. In the DSMC method, macroscopic observable quantities,
such as velocity and temperature, are obtained through averaging appropriate microscopic properties over a small
space region. The simulated results are therefore inherently accompanied with statistical noise due to finite sample
size. Some researchers [2-4] applied the DSMC method to micro-scale gas flows like those in micro-channels, and
found it very difficult to obtain statistically convergent results under experimental conditions [5]. From equilibrium

statistical mechanics, a signal-to-noise ratio in a dilute gas may be written as [6]
$=—=MayW (1)
&/{ 2

where u is the characteristic flow velocity, ou is the statistical fluctuation, Ma is the Mach number, yis the specific
heat ratio, and N is the sample size. Micro-devices often operate at low Ma, e.g. a typical flow velocity in
micro-channel experiments [5] is about 0.2 m/s that corresponds to Ma of 10™. Relation (1) indicates that if we
require the signal to be larger in order than the noise, e.g. ¢ =10, N has to be 10'"°. Such an enormous sample size
is extremely time-consuming and beyond the capabilities of current computers [7].

There was a consideration [6] that when Ma is small enough for compressibility effects to be negligible,
favorable relative statistical errors may be obtained by performing simulations at a Ma increased to a level where

compressibility is still negligible. However, this is infeasible for rarefied gas flows MEMS is interested in, where the
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equality of both similarity parameters, Ma and Kn, must be guaranteed simultaneously. Millikan’s measurements of
drag of a small sphere over the entire flow regime [8] may serve as a clear demonstration of this fact. The fitting
formula of the measured data is dependent on two similarity parameters, Re and Kn. They can be transformed to Kn

and Ma because of the relation [9],
Kn =1255y (Ma/Re), 2)

The number of similarity parameters is reduced to one only at extreme situations, i.e. Kn—>0 or Kn—> o,
corresponding to the continuum and free molecular limits, respectively.

In the past few years, the information preservation (IP) method [10-17] emerged as an alternative numerical
technique to analyze subsonic, micro-scale gas flows. In this method [10], simulated molecules move through
physical space and undergo collisions appropriate to the thermal velocities using the same algorithms and models as
the DSMC method [1], while the macroscopic observable quantities, such as velocity and surface shear stress, are
obtained through averaging appropriate physical information carried along with the simulated molecules. The
physical information, updated by additional treatments [12-17], reflects the collective behavior of the enormous
number of real molecules represented by each simulated molecule in the DSMC method, and therefore is not subject
to the statistical noise caused by the thermal velocity. The IP method was successfully applied to benchmark

problems, namely Couette flow, Poiseuille flow and Rayleigh flow [10,11]. The characteristic velocities in these

flows ranged from 0.01 m/s to 1 m/s, corresponding to Ma of 107 ~1073. The statistically convergent results

obtained at a normal sample size of I 0% ~ 107 were in excellent agreement with the exact solutions in the

continuum and free molecular regimes, and those of linearized Boltzmann solutions [18,19] and also with the
experimental data [20] in the transition regime. Recently, Sun et al. [14] simulated low subsonic airflows past a
micro flat plate using the IP method, and the calculated drag coefficient compared well with experimental data of
Schaff & Sherman [21], and Janour [22]. Sun & Boyd [15] introduced an additional energy transfer model to update
the information temperature that successfully solved the thermal Couette flow over the entire flow regime. Xie et al.
[16] applied the IP method to varisized micro-channels at experimental conditions [23-25], and the simulated results
were in excellent agreement with measured data of stream-wise pressure distributions and mass fluxes.

In this paper, we consider micro square-cavity flows that are quite simple in geometry but are singular in the
regions near the angle points. Firstly, flow pattern around the angle points is analyzed, and the boundary conditions
used in IP calculations are given. Then cavity flows of continuum to transition regimes are simulated using the IP
and DSMC methods, and the results in the continuum regime are compared with the Navier-Stokes solution of Ghia
et al. [26] and the BGK scheme solution of Su et al. [27]. In the slip and transition regimes the IP and DSMC results
are compared between themselves. At extremely small Mach number the DSMC results give rise to serious statistic

scatter whereas the IP results have smooth patterns at relatively not so large sample size.

SINGULARITY OF THE ANGLE POINTS

Cavity flows are driven by the top plate BC moving uniformly from left to right with a velocity u,, (Fig.1).
The Knudsen number based on the side length of the cavity may be used to identify the degree of rarefaction of the

gas. In the continuum regime with Kn < 0.01, the previous studies based on the Navier-Stokes equation [26] and
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FIGURE 1. Schematic diagram of a square cavity gas flow.

the BGK scheme [27] showed that besides a primary vortex some secondary and additional vortices took place in
the regions around the angle points. For rarefied gas flows concerned here, Re is relatively small, and the flow
complication mainly results from the velocity-slip phenomenon at surface that becomes significant as Kn > 0.01.
For example, consider the angle point B. The slip velocity means non-zero tangential components relative to the
surfaces AB and BC. On the other hand, these tangential components must vanish in approaching the surface BC
and AB that are both impenetrable. Therefore, at the point B, large pressure gradients in the x direction and in the
reverse direction of y are essential. As shown later, this results in a discontinuity of pressure that considerably
enhanced as K7 increases.

For two-dimensional gas flows, the implementation of the IP method was described in details in Ref. [13] that is
employed in the present paper. The change of the information velocity due to a non-uniform pressure field may be
written as
M

Aui = 5
P Ox;

3)

where At is time step, and p is the gas density. A third-order scheme is used to discretize the pressure gradient
term. The pressure in the fictitious cell adjacent to the outer surface of cavity is determined through a linear
interpolation. For rarefied gas flows with Kn > 0.01, the velocity slip at surface makes this treatment inaccurate in
the angle-point regions with a radius of the mean free path. Further study is needed to improve the pressure

boundary condition for the rarefied flows.
MICRO-CAVITY GAS FLOWS

An orthogonal coordinate system is employed in the IP and DSMC simulation (Fig.1): the origin is at A, and
the x and y axes are along AD and AB, respectively. The computational domain is divided into rectangular grids, and
the sub-cell technique [1] is used to satisfy the requirement that the distance between a collision pair is to be smaller
than the local mean free path. The Mach number is defined as Ma =u,, /a, where a is the sound speed of the
initial stationary gas. The hard sphere model is employed to describe the interaction between molecules. All of the
cavity surfaces are assumed to be diffusely reflecting, and to have the same temperature as the gas.

The first example considers a situation with Re=100, where Re is defined based on u,, and the cavity side
length. Ghia et al. [26] and Su et al. [27] investigated this case using the incompressible Navier-Stokes equations
and the BGK scheme, respectively. The BGK scheme solution was given at different Mach numbers [27]. When
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under Ma=0.15, the relative difference in the peak velocity between the BGK solution and Ghia’s data was less than
1%. For Re=100 and Ma=0.15 relation (2) gives the corresponding Kn=2.48 x 107 . This indicates that the flow is in
the continuum regime and the Navier-Stokes solution is reliable.

IP and DSMC calculations employ five million of simulated molecules, the time step is a half of the mean
collision time, the number of cells is 100x100, and each cell contains 9x9 sub-cells. The DSMC calculation
takes 60,000 sampling time steps to reduce the statistical scatter, 300 times larger than that used in the IP calculation.
Figure 2a) shows the IP and DSMC profiles of the x-component of velocity along the vertical center line, which are
in excellent agreement with the Navier-Stokes and BGK scheme solutions [26,27]. Figure 2b) compare distributions
of the y-component of velocity along the horizontal center line given by the four above mentioned methods. In the
whole they agree with each other, but differ are slightly at two places, i.e. at x/L=0.25 and 0.8. The agreement
between the incompressible Navier-Stokes solution and the three other results indicates that the similarity parameter
is only Re for this continuum flow limit at low subsonic regime. This is well known in conventional aerodynamics.
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FIGURE 2. Comparison of the IP and DSMC velocity profiles with the Navier-Stokes solution [26] and the BGK scheme

solution [27] at Re=100, and Ma = 0.15 . (a) x- component of velocity along the vertical center line ; (b) y-component of

velocity along the horizontal center line.
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FIGURE 3. Normalized surface pressure distributions at Re=100, and Ma=0.15 given by the IP and DSMC methods.
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Figure 3 shows the IP and DSMC normalized surface pressure distributions along the cavity surface at Re=100
and Ma=0.15, where s is the distance from the point A in the clockwise direction. Except at the angle point C that
corresponds to s/L =2, they agree well with each other.

Comparison of the IP and DSMC results for the case of Kn =0.1, and Ma =0.14 is shown in Fig.4. As can
be seen, there is a satisfactory agreement between the velocity and normalized density ( p/ pg ) fields, whereas the
IP and DSMC normalized surface pressure distributions are slightly different between the angle points B and C. This
deviation of the results from DSMC may attribute to the pressure boundary condition used in IP calculations that

becomes inaccurate as Kn increases, especially at the angle points.
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(c) Pressure distributions along the cavity surface
FIGURE 4. The IP and DSMC normalized density and velocity fields, and the normalized surface pressure distributions at
Ma=0.14, and Kn=0.1. The IP and DSMC sample sizes are 2x10° and 5x10°, respectively.
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(c) Pressure distributions along the cavity surface
FIGURE 5. The IP and DSMC normalized density and velocity fields and normalized surface pressure distributions at Ma=0.14,
and Kn=1.0. The IP and DSMC sample sizes are 2x10° and 5x10°, respectively.

For the case of Kn=1.0 and Ma = 0.14, the IP and DSMC results on the whole are still in agreement (Fig.5),
whereas some local details are clearly different. For example, at the angle point (s/L of 3), there appears a
discontinuity in the surface pressure distribution of DSMC, whereas the IP profile varies relatively gently.
Comparison of the flow fields at the different Knudsen numbers shows that the influence region of an angle point
significantly enlarges as Kn increases, e.g. the distance of the isopycnic line 1.02 from the angle point C is obviously
larger at Kn=1.0 (Figs. 5a and 5b) than at Kn=0.1 (Figs. 4a and 4b).

Figure 6 shows the normalized density fields given by the IP and DSMC method for a case of Kn=0.1 and
Ma=2.8x10" (uy, =1.0m/s). In contrast to the serious statistical scatter of DSMC at a huge sample size of
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2x107 , the IP method yield the statistically convergent result at a sample size of 2x10°. The Mach number

dependence of rarefied gas flow patterns may be seen through comparison of the density fields at Ma of 0.15 and
2.8x107 (Figs. 4a and 6a).
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FIGURE 6. Normalized density fields given by the IP and DSMC method at Ma=2.8x10, and Kn=0.1. The IP and DSMC

sample sizes are 2x10° and 2x107, respectively.
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