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Abstract. Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information 

preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. Some important issues such as mass-flux 

convergence in IP calculations and the tangential momentum accommodation coefficient along micro-channel surfaces in 

experiment are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP 

method agree well with experimental data measured by Pong et al, Shih et al, and Arkilic et al, respectively.  

 
 

INTRODUCTION 
 

   The gas flows in micro-channel, a basic element of MEMS devices, have been studied experimentally and 
theoretically. In the experiments [1-7], the typical channel dimensions were about one micron high by several tens of 
microns wide and by several thousands microns long. The flow was driven by the pressure difference between the 
inlet and outlet that led to a typical inlet velocity of about 0.2 m/s [8]. It was observed that the stream-wise pressure 
profiles were non-linear. To take into account this non-continuum effect, a velocity-slip boundary condition was 
introduced in analytically or numerically solving the Navier-Stokes equation [2,9]. Properly choosing the tangential 
momentum accommodation coefficient σ , the slip Navier-Stokes solution agreed with the measured data when the 
Knudsen number, HKn λ=  is smaller than 0.1, where λ is the molecular mean free path, and H is the channel 

height [6,7,9]. Kinetic theory indicates that all continuum models break down at a sufficiently high Kn. This was 
also verified by further micro-channel experiment: the slope of the Navier-Stokes flow conductance obviously 
deviated from the experimental data at an outlet Knudsen number of about 1.95 [7]. 
   The purpose of the present work is to provide a kinetic description of micro-channel gas flows at different 
experimental conditions [1,5-7]. Because of a small characteristic velocity of 0.2 m/s, conventional kinetic schemes 
such as the direct simulation Monte Carlo (DSMC) method faces a serious statistical noise arising from the thermal 
velocity. It requires a sample size of 810  to isolate the flow velocity of 0.2 m/s from the noise. Because the DSMC 
computational amount is proportional to the sample size, such an enormous size is extremely time-consuming and 
beyond the current computer capabilities [10]. The authors proposed a particle-based method, called the information 
preservation (IP) method [11,12], which was proven highly effective to reduce the statistical noise, for instance, a 
sample size of 410  is enough for IP to resolve the velocity of 0.2 m/s, four orders less than that required by DSMC. 
The IP method has been successfully applied to benchmark problems, namely Couette flow, Poiseuille flow and 
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Rayleigh flow, over the entire Knudsen regime [11,12]. The macroscopic velocity, surface shear stresses, and mass 
fluxes given by IP were in excellent agreement with exact solutions in the continuum and free molecular regimes, 
and with experimental data [13] and the linearized Boltzmann solutions [14,15] in the transition regime. Recently, 
Sun, Boyd and Candler [16] simulated low subsonic airflows past a flat plate of 20 microns long over the entire 
Knudsen regime using IP. The drag coefficient given by IP compared well with experimental data of Schaff & 
Sherman [17], and Janour [18].  
   Application of the IP method to micro-channel flows is straightforward and has been demonstrated in 
preliminary studies [19,20]. For a micro-channel of 1.2 mµ high by 3000 mµ long, with the inlet and outlet pressures 

of 20 and 0 psig, respectively, the stream-wise pressure distribution obtained by IP agreed well with the 
experimental data of Pong et al [19]. Specific complications naturally arose. One of them was the accumulation of 
numerical error due to a large ratio of the length to height, which considerably delayed the mass-flux convergence in 
the calculation. In this article, we will simulate micro-channel gas flows, and compare the results with measured 
data available. Firstly, certain issues in IP calculation are addressed. Then the tangential momentum accommodation 
coefficient along micro-channel surfaces in experiment is discussed. Next, the IP method is used to simulate 
micro-channel gas flows at various experimental conditions. Finally, some conclusions are given. 
 

COMPUTATIONAL ISSUES 
 

   In the IP method, a relatively small number of model molecules is stored in a computer to represent the large 
number of molecules in real gas flows, and each simulated molecule is assigned two velocities: thermal velocity ic  
and information velocity iu  [11,12]. A simulated molecule moves through physical space and undergoes collisions 
appropriate to the thermal velocity, following the same algorithms and models as the DSMC method [21], while the 
information velocity corresponds to the collective velocity of the enormous number of real molecules represented by 
the simulated molecule. Implementation of the IP method for multi-dimensional flows has been described in detail 
[20,22,23], and may be briefly summarized as follows.  
1) Initially, iu  is set based on an initial velocity field. 
2) For simulated molecules diffusely reflected from a wall, iu  has the same velocity as the wall. 
3) For simulated molecules entering the computational domain from boundaries, iu  is set to satisfy the boundary 
condition.  
4) For two simulated molecules colliding each other, the post-collision velocities satisfy the momentum 
conservation 
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where superscript * denotes post-collision.  

5) If there are external forces acting on a cell, acceleration VFa ∆= ρ
r will contribute an velocity increment ta∆  to 

each simulated molecule during a time step t∆ , where F
r

 is the sum of the external forces, ρ  and V∆  are the 

density and volume of the cell, respectively. 
6) When there is a pressure gradient across a cell, the change of information velocity obeys the momentum equation  
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where iλ  is the normal vector of the surface. The right hand side of (2) is written in a non-viscous form, rather than 

a more general form ∫∫∆∆− dSlVt iijσρ )/( , where ijσ  is the stress tensor. Because the IP variables are carried by the 

molecules in a DSMC procedure, the transport process of viscosity and diffusion have done directly through 
molecular motion across the cell surfaces. Therefore, the IP method, though apparently controlled by a non-viscous 
momentum equation (2), essentially obeys a more universal transport relation applicable over the entire flow regime. 

7) Update the velocity, density and temperature of a cell each time step. 

       new
i

old
ii UUU )1( σσ −+= , (3) 

where the superscript old denotes the value of last time step, new
iU  is the arithmetic mean of information velocities 

of all the simulated particles within the cell during this time step, and σ is a relaxation factor ranging between 0 
and 1. 

       ρρρ ∆+= old , (4) 
where ρ∆  is the density variation during this time step, and is obtained from the mass conservation equation 
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   An additional energy transfer model has been developed to update temperature in the IP method [25]. For test 
cases such as the thermal Couette flows over the entire flow regime, the simulated results given by IP with this 
model and DSMC agreed well with each other. For low subsonic flows without external heating such as those 
through micro-channels concerned here, the isothermal assumption is valid that allows a further simplification, i.e. 
temperature keeps a constant over the whole flow field. The pressure field, required in calculating the velocity 
increment through Eq. (2), may be obtained from the density field through the ideal gas equation of state. 
   In micro-channel experiments [1,5-7], the flows driven by the pressure difference between the inlet and outlet 
started from an initially stationary state, and gradually reached a steady state with a constant mass flux at every cross 
section. IP simulation undergoes the same process [20, 21]: initially assumed velocity field is corrected time step by 
step in order to be consistent with the local pressure gradient caused by the inlet and outlet pressure difference. The 
ratios of the micro-channel length to height in experiments are as large as several thousands [1,5-7], which make 
accumulation of numerical error inherent in a non-conservative scheme become significant in the stream-wise 
direction. Test calculation shows that the mass fluxes at different cross sections can not adjust and converge to a 
uniform steady value when the non-conservative scheme is utilized to solve Eq. (5). Thus, it is necessary to employ 
a conservative scheme, or, equivalently, the integral form of the mass conservation. At two-dimensional situation, a 
second-order center difference conservative scheme of Eq. (5) yields  
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   Particle-based schemes such as DSMC and IP require a time step smaller than the mean collision time. This 

makes the flow field evolve quite slowly, e.g. the ratio of ρ∆  to ρ  is at order of 910− . To speed up the convergent 

process of IP calculations, a super-relaxation technique is used  
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where ω  is the super-relaxation factor. A large value is employed initially, and it gradually decreases and becomes 
unity to satisfy the mass conservation exactly as the stream-wise mass fluxes at different cross sections approach a 
steady and uniform state. The velocity of a cell given by Eq. (3) contains statistical noise that, though very small, 
may affect the accuracy of ρ∆  through Eq. (5). A least square technique is employed here to fit the mass fluxes of 

uρ and vρ , respectively, each time step. This provides the smooth mass flux distributions in both x and y directions, 
capable of calculating ρ∆  more accurately.   
 

COMPUTATIONAL CONDITIONS 
 

   In micro-channel experiments performed by Pong et al [1], Shih et al [5], Arkilic et al [6] and Arkilic [7], 

respectively, the channel width is much larger than the height (Table 1). This makes the span-wise influence 

negligible, and the flows can be simulated as two-dimensional. The degree of rarefaction may be measured by the 

Knudsen number based on the channel height. The Knudsen number at the outlet, oKn , indicated that the 

experimental conditions [1,5-7] were in the slip and transition regimes, respectively.  
Table 1. Flow conditions and computational parameters.* 

Case Pong et al (1994) Shih et al (1996) Arkilic et al (1997) 
Gas N2 He Ar 

Height ( mµ ) 1.2 1.2 1.33 
Width ( mµ ) 40 40 52.3 
Length ( mµ ) 3000 4000 7490 

op  (Pa) 51001.1 ×  51001.1 ×  51001.1 ×  
Kno  0.05 0.135 0.05 

tσ  1.0 1.0 0.8 
Cells 300 × 15 400 × 15 700 × 30 

Subcells 5 × 2 5 × 2 5 × 2 
*Gas and channel surfaces are assumed to be consistent with all these experiments that were carried out at room temperature 294 

K. 

   An orthogonal coordinate system is employed (Fig. 1), with the origin at point O, and x and y axes along OO′ 
and OA, respectively. Since the flows are symmetric about OO′, we consider a computational domain of OO′BA that 
is divided into uniform rectangular cells. Each of the cells is sub-divided into a set of uniform rectangular sub-cells 
within which collision pairs are selected. The numbers of cells and sub-cells are given in Table 1. The cell size is 
much smaller in the normal direction than in the stream-wise direction, so is the sub-cell size. As shown by Nance et 
al [24], the flow field is insensitive to the stream-wise cell size because of a relatively small velocity gradient in this 
direction. Our test calculations also verify this observation that the smaller stream-wise cell and sub-cell sizes 
provide the same results as the present ones. For all the cases studied in this article, the time step is equal to one 
third of the mean molecular collision time at the inlet, and molecular interaction is described by the variable 
hard-sphere (VHS) model [21]. The VHS model assumes that the scattering from molecular collision is isotropic in 
the center of mass frame of reference, whereas the collision diameter depends on the relative velocity. The reference 
collision diameter in VHS appropriate to the IP method has been determined for common gases [12]. A specular 
reflection is used along the symmetrical boundary OO′. The channel surfaces are assumed to be diffusely reflecting 
with a tangential momentum accommodation coefficient  
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Figure 1. Computational domain of micro-channel gas flows.    Figure 2. Comparison of stream-wise pressure distributions 
                                                   given by IP with data measured by Pong et al (1994). 

 

where iu  is the mean stream-wise velocity of incident molecules, ru  is the mean reflected stream-wise velocity, 

and su  is the surface stream-wise velocity. The value of tσ , ranging between 0 and 1, depends upon the surface 

roughness and gas properties,  

   Arkilic et al [6,7] developed a modified accumulation technique to measure low mass flux through 

micro-channels. Comparing the measured mass flow rate with that of the slip Navier-Stokes solution, they extracted 

tσ  of the micro-channel surfaces of single-crystal silicon in their system. The values appeared to range between 0.8 

and 0.9, e.g. 01.080.0 ±  for argon and 01.088.0 ±  for nitrogen.  

   The same means was also utilized by Shih et al [5] to extract tσ  for their micro-channel surfaces, which 

provided 0.9905 for nitrogen and 1.1620 for helium. However, the latter was beyond the physically realistic range of 

tσ . It is known that the slip Navier-Stokes solution is no longer accurate beyond the slip regime as 1.0>Kn . In the 

helium experiment [5], the Knudsen number increased from 0.1 at the inlet to 0.16 at the outlet, where the extraction 

of tσ  through the slip Navier-Stokes solution became improper. In contrast, the Knudsen number in the nitrogen 

experiment [5] ranged between 0.025 and 0.05 that indicated the flow was in the slip regime, and the thus obtained 

value of tσ , 0.9905, is also reasonable. This demonstrated that the micro-channel surfaces in the UCLA system 

was close to the fully diffusive reflection. 
 

RESULT AND DISCUSSION 
 

   In the first generation of experimental system for micro-channel gas flows developed by Pong et al [1], four 
micro pressure sensors were fabricated directly into the channel surfaces. Five inlet pressures of 5, 10, 15, 20 and 25 
psig were employed, respectively, while the outlet pressure maintained at 1 atm. Figure 2 compares the stream-wise 
pressure distributions given by the IP method with experimental data of Pong et al [1], with the error bars to show 
the measured confidence limits. The simulated and experimental results agree well with each other. Because of a 
height of only 1.2 mµ , the velocity gradient in the normal direction is quite large that leads to a strong viscous effect 

and a rapid loss of pressure in the stream-wise direction. The rarefied gas effect is clearly demonstrated by the non- 
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Figure 3. Evolution of mass flux distribution in IP simulation of a   Figure 4. Relation of mass flux versus the inlet pressure in  

     flow at experimental conditions of Shih et al (1996).                     the slip and transition regimes. 
 
linearity of the pressure profiles that become significant as the inlet pressure increases. The pressure loss is subject 
to the local shear stress of the micro-channel surfaces that becomes sensitive to the Knudsen number as 01.0>Kn  
[12]. For the same outlet pressure, the increase of the inlet pressure results in a more significant stream-wise 
variation of Kn. and therefore corresponds to a more obvious non-linear pressure profile. 

   In the second generation of experimental micro-channel system [5], thirteen micro pressure sensors were 

uniformly distributed along the channel surfaces of 4000 microns long. Figure 3 shows the evolution of mass flux of 

helium in IP calculating a case at an inlet pressure of 19.0 psig. The initial pressure distribution employs the slip 

Navier-Stokes solution. Since the flow is in the transition regime, this distribution is different from the real situation. 

This results in a non-uniform distribution of mass flux during the initial stage of simulation ( 3101×  time step). Using 

the conservative scheme (6) and the super relaxation technique (7), a steady state is approached after about 5102 ×  

time steps, while the least-square fitting technique effectively reduces the noise and gives a relatively smooth 

mass-flux distribution. Then the program starts to sample. The statistical scatter becomes quite small when the 

sample size reaches 4105 × , and the mass fluxes at different cross sections unanimously approaches skg12101.4 −× . In 

Fig.4, this simulated mass flux, together with those at the inlet pressures of 8.7, 13.6, 26, and 30 psig, respectively, is 

compared against measured data of Shih et al [6]. There is a remarkable agreement. Figure 5 shows the stream-wise 

pressure distributions at three different inlet pressures given by IP and experiment, which also agree with each other. 
   Because of a small height at order of micron, mass flux through micro-channels is as low as skg1210− . Arkilic et 

al [6,7] developed a modified accumulation technique to measure such a low mass flux accurately. Figure 6 
compares the mass flow rates of nitrogen at an outlet Knudsen number of 0.05 given by IP calculations and Arkilic 
et al experiment [6]. The flows were in the slip regime, and a remarkable agreement can be seen.  

   In addition to various experimental conditions, a two-dimensional short micro-channel is investigated over the 
entire Knudsen regime from continuum to free molecular using the IP and DSMC methods. The micro-channel is 
1 mµ high and 15 mµ  long. The normalized mass flow rates as functions of the Knudsen number at the inlet iKn are 
shown in Fig. 7, where the ratio of the outlet to inlet pressure is 0.7, the normalized factor of mass flux is 
( ) 2Hvmoi ρρ + , iρ  and oρ  are the inlet and outlet densities, respectively, and RTvm 2=  is the most 
probable 
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Figure 5. Comparison of stream-wise pressure distributions     Figure 6. Variation of mass flux versus the ratio of the inlet to 

    given by IP with data measured by Shih et al (1996).                   outlet pressure in the slip regime. 

Figure 7. Relation of the normalized mass flux versus the inlet Knudsen number (Kni) for a short micro-channel. 
 
 thermal speed. The IP and DSMC results are in excellent agreement over the entire Knudsen regime, and 
demonstrate a minimum around iKn  of 1. This phenomenon was first observed by Knudsen [26], and therefore is 

referred to as the Knudsen minimum. The slip Navier-Stokes solution deviates from IP and DSMC results in the 
transition regime and fails to predict the Knudsen minimum. 
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