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Abstrac t :  Numerical solutions of the large scale (LS) average equations and small 
scale (SS) interacting equations describing fluid flow presented by the authors are con- 
ducted for two-dimensional channel flow with multiscale structure. A pseudospectral 
method is used. In the range of Reynolds number from 102 to 3x 103, some impor- 
tant effects of nonlinear interaction between the large scale and small scale eddies are 
shown. Comparison of the numerical solutions of LS- and SS-equations with those of 
NS equations is also given. 

1 Introduct ion  

In normal cases of computing numerically flowfields of scientific and engineering in- 
terest, one needs to solve the Navier-Stokes(NS) equations in its laminar flow region 
and to assume the transitional region from laminar to turbulent flow and to solve 
the Reynolds equations or the Large Eddy Simulation(LES) equations with the aid 
of turbulence models in its turbulent flow region [1]. It is obviously difficult to make 
a guess at transitional region in complex three-dimensional flows and vortex flows. 
On the other hand, direct numerical simulations of the NS equations(DNS), i.e., com- 
puting numerically NS equations at the smallest time-space scale (AtN,AN) level, 
can predict the evolution of all significant scales of the flow without distinguishing 
between laminar-transition-turbulent flows as well as using any turbulence models [2]. 
The above-stated puzzled situation arises because a complex flow containing partly 
turbulent flow region contains a broad time-space scale range and there exist nonlinar 
interactions between large and small eddies with relatively large time-space scales 
(At . ,  Ai,~) , where 

AtN<<Atn<< L, AN<<Ai,n<<L (i = 1, 2, 3) 

U and L are the characteristic flow speed and length, respectively. However, NS 
equations do not contain terms describing interaction between relatively large scale 
eddies. Our qualitative and quantitative knowledge for complex flows depends on 
time-space scales Atn and Ai,,~(i = 1, 2,3) selected in measuring or computing the 
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flows. Therefore, from the theoretical viewpoint, it would be valuable to develop 
new equations governing fluid flow and corresponding numerical methods. The new 
equations can be used at the smallest and relatively large time-space scales and can 
describe nonlinear interaction between large and small scale eddies and would be 
simultaneously suitable to laminar-transition-turbulent flows [3]. 

2 B a s i c  E q u a t i o n s  

The basic equations presented by the authors are composed of the large scale(LS) 
average equations governing the large scale average motion of the flow and the small 
scale(SS) interacting equations governing the small scale (or edding) motion. For 
incompressible flows, the LS-and SS-equations axe respectively 
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ui(i = 1, 2, 3) and p are the flow speed components and the pressure, respectively. Atn 
and Ai,n(i = 1,2, 3) are the time and space scales selected in computing the flow; we 
call them cutoff scales. The second term of the right hand of the equations (2.1b) is 

a the molecular viscous term. b-~zj ( i j )  are called the eddy viscous terms, which express 
the nonlinear interaction between the eddies with scales smaller and larger than the 
cutoff scales. The fourth term of the right hand of the equations (2.2b) is the remote 
action term of the eddies with scales larger than the cutoff scales on the small scale 
eddies. 

The main properties and functions of the LS-and SS-equations are as follows. (1) 
When the cutoff time-space scales are small enough, or they are much smaller than the 
intrinsic physical scales of the flows, such as the cases of low Reynolds number laminar 
flows, the LS-equations reduce to the Navier-Stokes equations, while the SS-equations 
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can be cast away because they give zero solutions ( u i - ~ i ) ~ - O ( i  = 1, 2, 3) and (p -~ )~0 .  
(2) For turbulent flows, if only the cutoff time scale is small enough, the LS-equations 
are equivalent to the Large Eddy Simulation (LES) equations; on the other hand, if 
only the cutoff space scales are small enough, and let u l . u j  = u i . u j ,  the LS-equations 
are equivalent to the Reynolds equations; under the above two circumstances, the 
SS-equations determine the small scale motion of the flow and also close the LS- 
equations. (3) The LS-and SS-equations open a new way to compute large and small 
scale eddies as well as the nonlinear interaction between different scale eddies of 
the fl0w, which may be turbulent or transitional or laminar, such as the laminar 
bifurcation phenomenon caused by multiple-vortex secondary flow. (4) Using LS- 
and SS-equations we can compute in a unified manner laminar-transition-turbulent 
parts of the complex flow without supposing transitional regions and distinguishing 
between laminar and turbulent flows and using any turbulence models. Hence the 
solution of LS- and SS-equations links organically direct numerical simulation at the 
smallest scale level with the normal numerical computation at relatively large scale 
level. Especially, the solving of the SS-equations can be confined within certain local 
regions of the flowfield and lighten greatly the burden on computer. In a sense, the LS- 
and SS-equations open a relatively realistic way to compute high Reynolds number 
complex flows. 

3 Numerica l  Method  

We use a pseudospectral method to solve simultaneously LS- and SS-equations for 
two-dimensional channel flow with multiscale structure. Because only two first-order 
partial derivative terms are added into the SS-equations (2.2) compared with the LS- 
equations (2.1), the SS-equations (2.2) and LS-equations (2.1) can be solved using the 
same algorithm. Two discretizations, Fourier collocation and Chebyshevcollocation , 
are selected in the streamwise and normal directions, respectively. We adopt periodic 
boundary conditions and uniform grids in the streamwise direction and the Cheby- 
shev collocation (grids) distribution and the boundary condition of impermeable and 
no-slip in the normal direction, respectively. The finest and the coarsest grids are 
128x128 and 8x8, respectively. The time-stepping is a second-order semi-implicit 
scheme with the time-step chosen so small that the spatial errors predominate. 

4 Analys is  and Discussion 

The two-dimensional disturbances are added to initial flow. 

71" 
u = uo = 1 - yn  + e _ ~ l c o s k l x s m [ ( 2 k  2 + 1)~ry] 

sinklx 
v = v0 = -s(2k2_ + 1) {1 + cos[(2k~ + 1)~ry]} 

where n = 2 or 8, the amplitude parmeter s of the initial disturbance is about 10 - 4  

to 0.1 and the "wave number" k is about 1 to 80. The initial velocities satisfy the 
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continuity equation. The evolution of all significant scales and the important influ- 
ences of the eddying motion on the average variables ~i(i = 1, 2, 3) and fi are given 
by solving simultaneously the LS- and SS-equations and compared with the corre- 
sponding numerical results of NS equations. Some main results are as follows. In all 
the cases of relatively low Re, the eddying motion decays with the time (see Fig.1 
and 6). In the initial and intermediate stages the eddy viscous force, the nonlinear 
interaction between the large scale and small scale eddies, is larger than or compa- 
rable to the molecular Viscous force (see Fig.2 and 3), Fig.4 and 5 show that in the 
middle stage of the evolution (u - ~) and (v - ~) become larger than their initial 
values; this is because the small scale eddies are excited by the large scale average 
motion. The differences between the  numberical solutions of LS- and SS-equations 
and NS equations are remarkable (also see Table 1). In the later stage the eddying 
motion disappears and the solution of LS-equations becomes the same as that of NS 
equations. In the cases of relatively large Re, the small scale eddies do not roughly 
decay (see Fig.6), and the numerical solutions of both the LS- and SS-equations and 
NS equations are found to be sensitive to the initial disturbances and grid refinement. 
The critical Reynolds number at which the disturbances no longer decay is predicted 
numerically. The above statements agree with the theoretical inference for the math- 
ematical properties of LS- and SS-equations and also with other study results such 
as[4, 5] : 
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FIG.3 Sum of eddy viscous 
terms in y momentum eq. 
grid(16*17), Re=300, T=50 

FIG.2 Sum of eddy viscous 
t~cms in x momentum eq. 
grid(16*17), Re=300, T=50 

0.25 

0.2D 

0,15 
< 

0 . 1 0  • 

0,05 • 

0 . 0 0  

~\\\ __ Re= 100 

' ~ " ~  . . . . . . .  ~b' . . . . . . .  ~b' . . . . . . .  i b  . . . . . . .  gb  

T 

FIG.4 Sum of viscous 
terms in x momentum eq. 
grid(16*17), Re=300, T=50 

FIG.6 Evolution of small 
scale amplitude 
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FIG.5 Small scale velocity 
grid(64*65), Re=300, T=50 
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Table 1. Distribution of velocity U at X=O.335103E+OI 
grid(16*17), Re=300, T=50 


