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A rotating centrifuge introduces the centrifugal acceleration and the Coriolis force 
acting on melts while melt growth is being carried out in the centrifuge. These two forces 
influence melt convection and, in tum, modify the transport of dopant and impurities. In this 
paper the effects of varying the centrifugal acceleration and the Coriolis force were studied 
numerically. We paid attention to unsteady thermal convection of melts in a two
dimensional rectangular boat with relevance to crystal growth in a centrifuge by horizontal 
Bridgman technique. The mathematical model was constructed by the continuity, 
Navier-Stokes and energy equations with the Boussinesq approximation, which was solved 
by the finite control volume method with fully implicit, steady, time-marching, 
central-difference discretization. The calculations based on the simplified model reveal that 
the centrifugal acceleration enhances buoyancy force, which may dominate the conve.ction 
and induce oscillation, and the Coriolis force may stabilize or destabilize the flow depending 
on the rotation sense of the centrifuge. This numerical results as well as the experiments of 
temperature measurement l5 give a satisfactory explanation of the results described 
previouslyI2,13 . 

INTRODUCTION 

In crystal growth from melts, convection in the melt is of great importance in 
determining the quality and compositional uniformity of the grown crystal because it is 
usually oscillatory or fluctuating flow that causes compositional striations in the crystal. In 
order to grow single crystal within the environment of a stabilized melt crystal grower has to 
treat the growth system carefully. However, one only with experience obviously can not 
satisfy the increasing demand for more perfect single crystals (e.g. Si and GaAs). Thus, 
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scientists, such as Carruthers 1, Langlois2 and Muller3, exerted themselves much to study the 
role of melt convection and the relevant mechanisms in crystal growth. 

Gravitational effect is in general important, and even dominant, to thermal convection 
of melts unless melt growth is carried out in microgravity environment. It has been well 
known that growth of crystals in such environment has more advantages than on earth 
because microgravity effect hinders buoyancy convection. Unexpectedly, in recent years, 
when Muller and his colleagues studied the gravitational effect on crystal growth, they found 
that single crystal also could be grown under high gravity, i.e. the centrifugal acceleration 
produced by a centrifuge.3-9 Using the centrifuge in their laboratory, they grew InSb and 
GaSb crystals free of doping striations by an upside-down, tilted Bridgman method and a 
horizontal zone melting technique. Their finding now fascinates many crystal growers and 
scientists who have begun to do research work on this interesting subject. 10-15 

From the initial purpose of their experimental research it is natural for Muller et al. to 
attribute the results to the effect of high gravity. However, it must be noted that a 
centrifugal field does not produce high gravity monotonically. Besides the centrifugal 
acceleration, the Coriolis force simultaneously occurs in the melt and alters convection in 
the same centrifugal field. Certainly, when these two forces act in concert the flow 
structures are not in a simple form but quite complex. Thus, a more careful investigation on 
this problem is still needed. After a series of research work through experiments and 
numerical simulations, Muller et al. observed that steady convection could occur in the melt, 
and concluded in their review paper9 that the steady phenomena were not due to high 
gravity but the effect of the Coriolis force. For a different arrangement Regel et al. presented 
a dissimilar opinion on the subject. 10,11,14 

Unlike the methods used by Muller et al. and Regel et al., we take special interest in the 
horizontal Bridgman technique. Results of the GaAs crystals grown in a large centrifuge 
showed that the impurity striations became weak or less dense than their original onesI2,13. 

In order to obtain more understanding of convection under high gravity we carried out a 
model experiment of temperature measurement with molten Sn in the same centrifuge. 15 

Interesting phenomena due to the Corio lis effect were also observed in this model 
experiment. 

However, up to now we have only limited experimental data, which led to an 
incomplete understanding of the behavior of the melt in the horizontal Bridgman technique 
in the centrifuge. To understand and explain the melt behavior comprehensively, we need 
more information on the flow field. For the horizontal Bridgman technique, there is a 
problem of finding a method for direct observation of the melt flow, not to mention the 
difficulties in performing experiments in the centrifuge. Thus, we carried out a numerical 
simulation to serve these requirements. 

In this research the effects of varying the centrifugal acceleration and the Coriolis force 
were studied numerically. We paid attention to time-dependent thermal convection of melts 
in a two-dimensional, rectangular configuration of open boat with relevance to crystal 
growth in a centrifuge by horizontal Bridgman technique. In section 2 we describe the 
physical problem and discuss construction of the numerical model. Next, in section 3 we 
introduce time-dependent continuity, Navier-Stokes (with Boussinesq approximation) and 
energy equations in primitive variables. After section 3 we present the grid system and the 
algorithm for the calculation. Section 5 gives the numerical results. Finally, we draw some 
conclusions on the phenomena of convective flow in horizontal Bridgman technique in a 
centrifugal field. 

DESCRIPTION OF THE PHYSICAL MODEL 

The experimental arrangement of horizontal gradient freeze method 10 the large 
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centrifuge described previouslyl2,13 is schematically pictured in Figure 1. An open boat in 
the shape of a semi-circular horizontal cylinder was positioned within a horizontal furnace 
and subjected to a temperature gradient. To prevent the melt from spilling out of the boat 
during experiments the furnace, mounted at the end of the arm of the ce'ntrifuge, was hinged 
on the beam so that it would align itself with the resultant gravity vector g. Therefore, the 
upper surface of the melt was flat and stationary with respect to g. 
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Figure 1. Sketch of crystal growth by the horizontal Bridgman technique in the large centrifuge. 

For melt convection in a horizontal boat, a two-dimensional simulation is usually 
considered necessary to show some of the main characteristics of the real flow structure. 
However, at present, it is difficult for us to carry out this calculation because the buoyancy 
effects of both earth gravity and centrifugal acceleration, along with the Coriolis effect, may 
result in three-dimensional convection. 
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Figure 2. Configuration of the two-dimensional horizontal rectangular boat for the simulation of melt flow 
in a centrifugal field. 

We now set some assumptions for the two-dimensional model. First we eliminate earth 
gravity and assume that the buoyancy effect on melt convection is solely caused by 
centrifugal acceleration. If, for example, the centrifugal acceleration is six times earth 
gravity, the furnace will lie on a position near the plane of the arm of the centrifuge with the 
angle less than 10°. In this case, the buoyancy should be regarded as dominated by the 
centrifugal acceleration. Under the above assumption, the influence of earth gravity 
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therefore could be neglected and the centrifugal acceleration would be perpendicular to the 
melt surface. This two-dimensional idealized model is shown in Figure 2. It has a rectangular 
configuration of length L and thickness H. The upper boundary is the free surface of the 
melt. Both vertical side-walls are assumed to be held at different temperatures, THat the left 
and Te at the right, respectively, with TIf>Te. Here, we do not consider the case where Te is 
lower than the melting-point Tm, but rather Te>Tm' Then, standing on the centrifuge one 
would observe that the melt moves in a clockwise sense for either direction of centrifuge 
rotation. 

The Coriolis force entailed in a centrifugal field as well as the buoyancy effect of the 
centrifugal acceleration has also a vital influence on the convection. Indeed, if the Coriolis 
force did not occur in the centrifugal field the simulation could be treated as those described 
by Crochet et al. 16 and Fontaine et a1. 17 for conventional growth. Analysis shows that its 
effect cannot be ignored. From the definition of the Coriolis force, f. = -2(0 X U, two 
different effects of the Coriolis force can act on melt flow. For example, if only one single 
convective cell occurs in the boat as in Figure 2, these effects, I and II, will take place as 
shown in Figure 3. They depend strongly on the rotation sense of the centrifuge, similar to 
that described by Muller et al. 9. We discuss the results related to this problem in section 5. 
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Figure 3. The two patterns of the Coriolis effect on melt convection in the horizontal Bridgman boat, 
depending on the direction of rotation of the centrifuge. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Let us consider the simplified model in Figure 2. The boat and the two-dimensional 
coordinate system are both fixed on the arm of the centrifuge, and tum around the axis of 
the centrifuge when the centrifuge operates. The fundamental flow field variables are the 
two velocity components u and v, pressure p, and temperature T. The governing equations 
are: 

V·U = 0, 

au 1 2/3: - +(u· V)u = --Vp + vV U + g(T - Te)-2w x u, at p 

aT 
-+(u·V)T= 1('v2T, at 

(I) 

(2) 

(3) 

where u denotes the velocity vector of the flow field, w the angular velocity vector of the 
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centrifuge, p the density of the melt, v the kinematic viscosity, fJ the volumetic expansion 

coefficient and 1( the thermal diffusivity. Equations 1-3 are the continuity equation, 
Navier-Stokes equation, and energy equation, respectively. In equation 2 the validity of the 
Boussinesq approximation is presumed. The term -2m x u is the Coriolis force. 

In order to obtain a general understanding of melt behavior, we perform the simulation 
in a dimensionless form. However, it must be noted that there is no obviously typical 
velocity scale for us to select. Necessarily it should be obtained from momentum balance. 
Since the buoyancy force dominates convection in the present problem, the magnitudes of 

ter!lls (u· V)u and fJg(T - Te) in equation 2 should be considered the same. Then we have: 

(u· V)u - fJg(T - Te), (4) 

or in terms of typical parameters equation 4 become: 

(5) 

where H is the typical length scale, U the typical velocity scale, and Gr the Grashof number 
defined as: 

(6) 

Thus, the dimensionless variables are the following: 

• [Gr- 1/2 H] u = u, 
v 

x' =[ ~]x, 
H 

• _ [Gr1l2 VI 
t - 2 -Jt, 

H 

(7) 

where the variables with the asterisk * are dimensionless. For convenience we drop * so that 
the dimensionless equations become: 

au Ov 
-+-=0 Ox Oy , 

1 1
112 

au au au 8p -112 2 Ta . ) -+u-+v-=--+Gr V U+v--slgn(m at Ox Oy Ox Gr1l2 ' 

1 1
112 

Ov Ov Ov 8p -1/2 2 Ta. ( ) -+u-+v-= --+Gr V v+T-u--slgn m at Ox Oy Oy Gr I12 ' 

aT ar ar 1 2 
-+u-+v-=---V T at Ox Oy PrGrll2 ' 

The parameters appearing in equations 9-11 are the Prandtl number, 

(8) 

(9) 

(10) 

(11) 

(12) 
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and the Taylor number, 

v 
Pr=-, 

1( 

4alH4 
Ta = -yZ-sign(m). 

(13) 

(14) 

Equation 14 is a specialized definition for the Taylor number used in this study. As described 
in section 2 two different patterns of the Coriolis effect occur when the rotation direction of 
the centrifuge is changed. If Ta takes its normal definition by removing sign(m) from 
equation 14 the Coriolis effect will be expressed unclearly. From equation 14, according to 
the definition of m in the present coordinate system, m is a positive and Ta>O when the 
centrifuge rotates counter-clockwise; whereas Ta<O when the centrifuge runs in a clockwise 
direction. 

Generally, the kinetic and thermal boundary conditions for crystal growth are difficult 
to propose adequately. In this work we adopt those simplified boundary conditions 
considered by Crochet et al16 On all the walls of the boat the no-slip condition is applied, 
except on the free-surface where a stress-free condition is used. The upper and lower 
boundaries are subjected to a linear temperature gradient. At both ends of the boat the 
temperature is held constant. Therefore, the boundary conditions in dimensionless form are: 

x=O,O:S;y:S;H: 

x= L,O:S;y :s;H: 

O:s; x:s; L,y= 0: 

O:s;x:S;L,y=H: 

NUMERICAL METHOD 

u = 0, v = 0, T = 1; 

u = 0, v = 0, T = 0; 

u = 0, v = 0, T = 1- x I L; 

au 
-=0 v=O T=I-x/L By " . 

(15) 

(16) 

(17) 

(IS) 

The SIMPLE algorithm was employed for the simulation. We use the finite volume 
method with the pressure-velocity correction technique to solve the governing equations S-
11. The finite volume method divides the flow regimes into small control volumes, also 
called a staggered grid, illustrated in Figure 4. The pressure p and the temperature T are 
defined at the center, and the velocity components u, v on the faces of each control volume. 
The pressure-velocity correction, which is used to improve a guessed pressure distribution 
and to solve the velocity field, is derived via the continuity equation. A detailed description 
can be seen in reference 1 8. 

In the process of formulating the discretization equations from the governing equations 
one problem encountered is how to discretize the convective and diffusive term exactly. 
Four proposed schemes are18: the central difference scheme, the upwind scheme, the hybrid 
scheme and the power-law scheme. The easy way to judge which scheme is best is to 
compare the computed results with those obtained by other numerical methods. For the 
present work we chose the central difference scheme. A comparison of these four schemes is 
presented in the next section. 

The employed numerical method has the following characteristics: staggered control 
volumes, central-difference discretization for diffusive and advective fluxes, and fully 
implicit steady and time-marching schemes. 
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Figure 4. The staggered finite control volume and locations of variables u, v, p and T 
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Figure 5. The 50 x 20 nonuniform mesh used in this study. 

RESULTS AND DISCUSSION 

In this section we consider the case of a constant Prandtl number, Pr=0.02, and an 
aspect ratio LIH=4. A 50 x 20 nonuniform mesh was designed to handle the high gradients 
near the vertical walls of the boat, as shown in Figure 5. The time-dependent convection is 
started from rest and the melting-point temperature is assumed everywhere at (=0. The time 
step for the time-marching scheme is 0.02. 

The flow and temperature fields of the melt are displayed by using streamlines and 
isotherms. The stream function If/is defined via the relations: 

81f/ 
-=u ay , 

81f/ -=-v. 
Ox 

(19) 

The time-dependent behavior of the melt can be found from the kinetic energy: 

(20) 

where Q is the melt flow domain. 
First of all, we excluded the Coriolis force from the problem and studied only the effect 

of high gravity. Without the Coriolis effect (i.e. Ta=O) our model is much similar to those 
described in references l6,17. Therefore, we can easily make a comparison between the 
algorithm of this study and the finite element methodl6 or the Tau-Chebyshev 
pseudo spectral method 17. This comparison helped us to catch on more to the four schemes 
described in the above section. The results at Ta=O computed by the four schemes are 
shown in Figure 6. 
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Figure 6. A comparison among four schemes: the central difference scheme, the upwind scheme, the hybrid 

scheme, and the power-law scheme. Gr=5 x 103 and 5 x 105 at Ta=O and Pr=O.02. The streamlines are 
plotted at t=50(left) and t=100(right), respectively. 

When the Grashof number is low (Gr = 5 x 103 ) the kinetic energies and streamlines 
plotted in the left part are in a good agreement. But, when Gr is high enough, e.g. 

Gr = 5 x 105 , the schemes produce two different types of results. The central difference 
scheme gives an oscillatory solution whereas those obtained by the other three schemes are 
steady. The central difference scheme, compared with the finite element method 16 and the 
Tau-Chebyshev pseudospectral method l7, is valid for the time-dependent simulation of the 
present study. The difference among the results produced by the four schemes when Gr is 
high is a consequence of diffusive-type errors on the discretization. 19 The results for the 
different schemes should be the same if calculations are taken on a finer grid Bottaro and 
Zebib20 gave a detailed discussion on the problem of discretization and showed that a 
designed coarser grid, when the central difference scheme is used, provides the solutions 
agreeing well with those obtained by a very fine grid. 
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Figure 7. The time evolution of the kinetic energy K for Gr= (a)5 x 103 , (b)5 X 104 , and (c)5 x 105 at Ta=O 
with Pr=O.02. 

The unsteady behavior of melt flow at Ta=O is illustrated by the time evolution of the 

kinetic energy K. Figure 7 presents them for three Gr, 5 x 103 , 5 x 104 and 5 x 105 . In the 

case of Gr = 5 x 103 , K approaches a steady value. From Figure 6 we see only one 

convective roll in the boat. When Gr reaches 5 x 104 , a moderate value, K implies a 

dampened oscillatory solution. If Gr increases high enough, e.g. at 5 x 105 , K no longer 

converges but is periodic after several cycles. The flow at Gr = 5 xl 05 is oscillatory. We plot 
the streamlines and isotherms at several typical times in Figure 8. At first the melt rises at 
the hot wall, moves from left to right, and descends at the cold wall. After that the flow 
structure becomes quite complex. The primary convective roll is not a single one but 
presents patterns of two or three co-rotating vortices. Meanwhile, some small eddies are 
generated at the bottom of the boat. During one period of oscillation the primary convective 
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Figure 8. Streamlines and isothermal at several times for Gr=5 x 105 • Ta=O and Pr=O.02. 

roll is divided or merged accompanied by the growth or decay of these small eddies. 
The melt flow at Ta=O can be considered gravity-dependent via Gr, when the 

temperature difference between the ends of the boat is held constant. From the above results 
we see that centrifugal acceleration may enhance the strength of convection and induce 
oscillation in the melt but does not make stabilize the melt flow. 

In the following, we take the Coriolis force into account. To evaluate the Coriolis effect 

on the melt flow, especially on oscillatory convection, the case at Gr = 5 x 105 is considered. 

The simulations were performed for a variety of ITal, from 1 x 104 to 1 x 109 . When ITal is 

less than 1 x lOB, no difference between these results and those at Ta=O can be observed. 

However, when ITal reaches 1 x 109 the results shown in Figure 9 are much more interesting. 

Figure 9( a) shows the time evolution of the kinetic energy K for Gr = 5 x 105 and 

Ta = 1 xl 09 . According to the definition 14 the centrifuge rotates counterclockwise if 

Ta = 1 x 109 . Comparing with Figure 7(c), the melt flow still maintains a sustained periodic 
oscillation. The strength of the convection seems to be enhanced by the Coriolis force. 
When the centrifuge runs in clockwise direction, i.e. Ta = -1 x 109 , the result shown in 
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Figure 9. The time evolution of the kinetic energy K for Gr=5 x 105 , Ta= (a) I x 109 and (b)-l x 109 , and 
Pr=O.02. 

Figure 10. Streamlines at several times for Gr=5 x 105 , Ta=l x 109 and Pr=O.02. 

Figure 9(b) approaches a steady value, and the melt flow is not oscillatory, but steady. 
The results lead to a reexamination of stabilizing effects due to the Coriolis force 

observed in our model experimentsl5 It must be noted that the Coriolis force does not 
affect the melt flow by doing work. It influences the melt flow by altering the flow pattern, 
and then the balance of the system energy. In order to analyze the Coriolis effect on the flow 
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structure, we plot the streamlines in Figure 10 for Ta = 1 x 109 at several typical times and in 

Figure 11 for Ta = -1 x 109 at one time when the flow becomes steady. The isotherms for 
these two cases are nearly the same as those at Ta=O and not presented here. The 
.calculations demonstrate that the Coriolis effect on the melt is not so easy as shown in 
Figure 3. Both cases (I and II) may coexist in the flow regimes. Analysis reveals that, for 

Ta = 1 x 109 , the primary convective rolls tend to be cut by the Coriolis force when it helps 
the small eddies to grow. This indicates that the flow could not become steady but more 
oscillatory. On the contrary, the effects of the Coriolis force are opposite completely if 

Ta = -1 x 109 . This time the Coriolis force expands the primary vortex but prevents the 
growth of the small eddies. This is perhaps the reason why the steady state of the melt does 
occur. 

TIME=100 

Figure 11. Streamlines for Gr=5 x 105 , Ta=-l x 109 and Pr=0.02 at 1=100, at which the melt flow has 
become steady. 

CONCLUSIONS 

A numerical investigation was carried out for melt flow in a simplified two-dimensional 
rectangular boat influenced by both high gravity (i.e. the centrifugal acceleration) and the 
Coriolis force. The results show that the Coriolis force may have a stabilizing influence on 
melt flow but only under the conditions of co-rotation of the centrifuge and the main fluid 
flow of the melt within a certain range of Taylor number. When the Coriolis force is not 
involved the same stabilizing effect of high gravity does not occur. The results in this 
numerical study verify the observation of model experiments15, and partially explain why the 
striations of the grown GaAs crystals become weak or fade away .. 

In the present study we assume fixed temperature boundary conditions. The isotherms 
move only slightly for all the simulations. However, in all actual processes of crystal growth 
heat is exchanged between the melt and its growth environment, and the temperature field 
varies significantly. Thus a further study of the influence of large centrifugal acceleration and 
the Coriolis force on crystal growth, espeacially in considering radiative heat transfer on the 
surface of the melt and a solid-liquid interface, is needed. Moreover, a three-dimensional 
calculation also must be considered indispensable. 
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