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Abstract

The Navier-Stokes characteristic boundary conditions (NSCBC) approach is extended to compressible Rayleigh-Taylor flow (CRT-

F) with variable acceleration histories, whose time- and space- dependent open boundaries challenge the available methods. The

non-reflecting boundary conditions are realized by combining CRTF’s physical boundary conditions and NSCBC’s idea, and by

appending a dissipation region, where physics-consistent viscous terms are introduced to realize non-reflection without additional

effect. Numerical tests confirm the effectiveness and robustness of newly proposed schemes.
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1. Introduction

Compressible Rayleigh-Taylor flow (CRTF) occurs when a compressible fluid of heavy density is accelerated or

supported against gravity by a compressible fluid of light density [1], and is of fundamental importance in applica-

tions from combustion, to inertial confinement fusion, and to astrophysics[2]. Traditionally, CRTFs are studied under

constant acceleration histories[3]. Due to the nature of the processes, it is necessary to study CRTF with variable

acceleration histories g(t)[1,4–7]. Moreover, owing to the limitation of theoretical analysis and the difficulty of ex-

perimental measure, numerical simulation has became the most important tool in studying CRTFs[2]. In this aspect,

the time- and space- dependent open boundaries in CRTF with variable acceleration histories challenge the available

boundary treatments and consequently the realization of numerical simulations.

As for boundary treatments, mostly used approaches are to specify the boundary values of (i) primitive/conservative

variables U/˜U or (ii) the amplitudes of incoming characteristic waves Lin. The latter is the well-known Navier-Stokes

characteristic boundary conditions (NSCBC) approach[8], and has been systematically developed in 1-D[8],2-D[9],3-

D[10,11] and reactive[9,11,12] flows due to its speciality in controlling incoming waves using Lin[8-12] and/or addi-

tional relaxation termsRin[13–15]. However, for CRTF with variable acceleration histories, the unsteady and unknown

U(t) or ˜U(t) excludes approach (i), and prevents a straightforward application of the available[8–15] approach (ii), too.
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In this paper, NSCBC-based approach for CRTF with variable acceleration histories will be proposed to address the

mentioned challenges with the additional introduction of physics-consistent viscous terms to realize non-reflection.

We named this approach as physical-boundaries based characteristic boundary conditions (PBCBC) approach.

2. Methods

We first introduce some rules adopted in this paper: (1) using characters like F, F̃, F and F to denote terms in NS

equations written with primitive, conservative, characteristic and arbitrary variables, respectively; (2) using U, T, L, D,

s and S (=D + s − T) to denote the terms of equation variables, transverse convection, normal-to-boundary convection,

viscous diffusion, source and generalized source, respectively; (3) using xi, ui(i = 1, 2, 3) to denote respectively the

spatial coordinate and velocity component in the ith direction, and subscript n the acceleration or normal-to-boundary

direction and is assumed to be 2 in this paper; (4) defining the primitive, conservative and differential characteristic

variables as U = (ρ, u1, u2, u3, T , Y)T , Ũ = (ρ, ρu1, ρu2, ρu3, ρe, ρY)T , ∂U = (∂p−ρc∂u2, u1, c2∂ρ−∂p, ∂u3, ∂p+ρc∂u2,

∂Y)T , where ρ, p, T , e, c and Y are density, pressure, temperature, total energy, sound speed and concentration of heavy

fluid, respectively. Using the rules, NS equations can be rewritten as:

∂tU + An∂xn U = S, (1)

where An is the Jacobian/eigenvalue matrix, referring Refs.[10–12,16] for details.

NSCBC procedures start from the characteristic form of Eq.(1):

∂tU +L = S, (2)

where t is time,L = An∂xnU,An = diag λ� (� = 1, 2, ...6, λ1 = un−c, λ2 = λ3 = λ4 = λ6 = un, λ5 = un+c). TheL� (=

λ�∂xnU�, no summation) quantify the wave amplitude variations of incoming/outgoing (determined by the sign of λ�)
characteristic waves Lin/Lout[8–12]. The task of NSCBC is to determine the unknown Lin, leaving Lout determined

by one-sided upwind difference[10–12,16]. Previous NSCBC approaches are developed mostly for steady boundary

and/or vanishing S, obviously not suitable for CRTF. To overcome the difficulty of nonzero S by nonzero acceleration,

Reckinger et al.[16] attempted to decompose instantaneous U into the part of initial state (denote with U0) and the

part of deviation to U0 (denote with U
′
), leading to L = L0 + L′ . For CRTF with constant acceleration, the initial

hydrostatic field is steady and one hasL0 ≈ S. In consequence, one only need to specifyL′in with similar procedures of

NSCBC. Since only L′in are specified, we named this approach as fluctuating-quantities based characteristic boundary

conditions (FBCBC).

Following the logic presented above, FBCBC doesn’t suitable for unsteady boundaries, e.g. CRTF with variable

acceleration histories. To resolve this problem, we notice that the boundary conditions of u1 = 0, u3 = 0, ∂xn Y =
0, ∂xn T |t=0 = 0 always work for CRTF under constant or variable acceleration histories. With the conditions, energy

equation can be simplified to give

ρCV (∂tT + un∂xn T ) − ∂xn (k∂xn T ) = (4/3)∂xn [μun∂xn (un)] − p∂xn (un), (3)

where CV , μ and k are heat capacity at constant volume, dynamic viscosity and thermal conductivity, respectively. At

boundary of CRTF, ∂xn T |t=0 = 0, Eq.(3) has a physics-consistent solution of ∂xn (un,T ) = 0. Collecting the results, one

obtains

∂xn (u1, un, u3,T,Y) = 0. (4)

With Eq.(4), now L� can be simplified to give

L2,4,6 = 0,L1/λ1 = (γ − 1)−1L3/λ3 = L5/λ5, (5)

where γ is specific heat ratio. Following NSCBC, the unknown Lin can either be imposed as zero or be expressed

as a function of Lout (calculated by one-sided upwind difference) by utilizing Eq.(5), and hence closing boundary

treatments. Since this approach is derived from primitive or induced physical boundary conditions, we named this

approach as PBCBC.
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In PBCBC, the temperature at boundaries is fixed. This is no problem before the disturbed waves, generated from

interface of heavy and light fluids, arrive at boundaries. After that, however, unphysical waves will be reflected into

the mixing region of CRTF, similar to the discussions in Ref.[13] about fixed pressure or velocity. Since the interac-

tions between waves and flows have a potential influence on the evolution of CRTF, especially for lately developed

turbulent mixing, it is necessary to diminish the reflected waves. In this aspect, a series of techniques have been

developed, including grid-stretching and filtering[17], numerical sponge layers[18] and perfectly matched layers[19].

Unfortunately, the filtering is found to be instable for CRTF, and other techniques requires the expected boundary

values of U, unknown and consequently inappropriate for CRTF with variable acceleration histories.

To realize the non-reflection with PBCBC, we suggest to append dissipation regions at the two ends of compu-

tational domain, and to introduce physics-consistent artificial viscous terms Av in the regions to attenuate disturbed

waves. The Av is = (0, 0, f (xn)μ∂xn xn (un), 0, f (xn)k∂xn xn T , 0)T is added in the right hand side of primitive or conser-

vative form of Eq.(1), and f (xn) is carefully constructed with hyperbolic tangent function (tanh) to smoothly transit

from 0 at the starting location of dissipation region xstart
n to maximum b at the ending location of dissipation region

xend
n :

f (xn) = b
tanh[a(η − 0.5)] + 1

2
, η =

xn − xstart
n

xstart
n − xend

n
, (6)

where a and b characterize the increase rate and maximum amplitude of f (xn), and are set as a = 4, b = 200 in

this paper. Since the viscous terms are added only to normal-to-boundary momentum equation and energy equation,

whose physical solutions near boundaries are ∂xn (un,T ) = 0 (see Eq.(4)) for undisturbed CRTF boundaries. This

means artificial viscous terms do not work (Av = 0) if this is no disturbed waves. In other words, the one and only

effect of introducing Av is to attenuate disturbed waves.

3. Results

Now we test the proposed approaches. The NS equation[16] in non-dimensional form are solved with finite differ-

ence code OpenCFD[20]. The non-dimensional parameters based on referenced quantities (denote with subscript r)

are Re= ρrUrLr/μr = 6626, Fr = U2
r /(Lrgr) = 1.2, Pr = γCV rμr/kr = 1, S c = μr/(ρrDr) = 10 , γ= 1.4, where Lr and

Dr are referenced length scale and mass diffusion coefficient. Without loss of essence, coarse 3-D grids are used to test

the boundary treatments of NSCBC, FBCBC and PBCBC under variable acceleration histories, with procedures sim-

ilar to NSCBC[8–15]. The non-reflecting NSCBC approach is implemented by imposing Lin = 0 following Ref.[8].

Two grid-stretching dissipation regions are appended in −7.8≤xn≤−5 and 3.5≤xn≤4.3. The acceleration histories are

controlled by the non-dimensional parameter Fr[g(t)]: Frvar. = Frcon. + 0.4sin [5mod(t, 3)]. In this formula, Frcon.

= 1.2 is used because only this value gives a steady initial field with parameters given above, and this formula will

produce a variable and discontinued acceleration to challenge the robustness of PBCBC. To startup the evolution of

CRTF, a 3-D perturbation is imposed at the interface of x = 0. All tests are lasting to t = 6.0.

Fig.1 shows the test results. This figure plots the un distributions along a line parallel to xn direction. The figure

shows that only PBCBC give the physical results of constant and nonzero un nearby the two ends of boundaries, while

other approaches produce unphysical oscillations. In inset, we also plot the evolutions of normal-to-boundary Mach

number Mn(= un/c) at bottom boundary to validate the non-reflecting performance of artificial viscous terms. This

variations of Mbottom
n show that the boundary is indeed unsteady, and switches frequently between inflow (Mbottom

n > 0)

and outflow (Mbottom
n < 0). For case without Av, the disturbed waves arrive at bottom boundary at t ≈ 2.25 and are

reflected until t ≈ 2.75. In contrast, a smooth variation of Mbottom
n can be seen in case with Av between t = 2.25 ∼ 2.75,

hence successfully removing disturbed waves.

4. Discussions

Now we make some discussions. The PBCBC approach only applies to CRTF with subsonic open boundaries

because there are six Lin and zero Lout for supersonic inflow, and naturally Lin can not be expressed as a functions of

Lout, hence PBCBC fails. Finally, it is worthy noting that our numerical practices found that the stability of PBCBC
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Fig. 1. (color online) The un distributions in a line parallel to xn direction for CRTF under variable acceleration histories and at time t = 1.52.

Inset shows the evolutions of Mn at bottom boundary with time t for implementations with or without artificial viscous terms Av, respectively. The

transition at t = 3 is caused by the imposed discontinued acceleration.

can be greatly enhanced by imposing u1,3 = 0 at boundaries with reasons as follows: in this case of nonzero un, the

numerical error of un by one-sided difference would interact with u1,3 in nonlinear ways to lower the stability.

5. Conclusions

In summary, we have proposed an approach to extend previous NSCBC approaches to CRTF with variable ac-

celeration histories. For the flows, previous developed NSCBC approaches do not work because of the lack of a

way to specify unknown incoming waves under unsteady boundary, and specified in this paper by outgoing waves

(extrapolated from the interior) through relations in Eq.(5). The relations are derived by combining CRTF’s physical

boundary conditions and NSCBC’s idea, and named as PBCBC. Finally, the non-reflection of PBCBC is realized by

appending dissipation regions, where artificial but physics-consistent viscous terms are introduced without additional

effect. Numerical tests and comparisons confirmed the effectiveness and robustness of newly proposed method.
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