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Abstract The dispersive relations of Bloch waves in the periodic laminated structure formed by periodically
repeating two different gradient elastic solids are studied in this paper. First, the various wave modes in the
gradient elastic solid, which are different from those in the classical elastic solid, are formulated. Apart from
the dispersive P wave and SV wave, there are two evanescent waves, which become the P type and S type
surface waves at the interface of two different gradient elastic solids. Next, the continuity conditions of the
displacement vector, the normal derivative of the displacement vector and the monopolar and dipolar tractions
across the interface between two different gradient elastic solids are used to derive the transfer matrix of the
state vector in a typical single cell. At last, the Bloch theorem of Bloch waves in the periodical structure
is used to give the dispersive equation. The in-plane Bloch waves and the anti-plane Bloch waves are both
considered in the present work. The oblique propagation situation and the normal propagation situation are also
considered, respectively. The numerical results are obtained by solving the dispersive equation. The influences
of two microstructure parameters of the gradient elastic solid and the microstructure parameter ratio of two
different gradient elastic solids on the dispersive relation are discussed based on the numerical results.

1 Introduction

Since the conception of “phononic crystal” was proposed by [17], the propagation behavior of elastic waves
in the phononic crystal has attracted wide attention [18,23,27,28,30,36]. The so called phononic crystal is
an artificial composite material with designable periodical structure, which can control the propagation of
elastic waves. The one-dimensional phononic crystal is the periodical laminated structure. The propagation of
elastic waves through a one-dimensional phononic crystal may lead to the appearance of Bloch waves with a
periodically modulated amplitude and exhibits the band gap property which means the material is of frequency
selectivity for the elastic waves propagating through it. Apart from the periodic lattice, the material properties
of the components material are important for creating the band gap. Therefore, the reserved on the phononic
crystal gradually is extended to or more wide type of material from the classical isotropic elastic solids. Zhan
and Wei [39,40] studied band gaps of a 2D phononic crystal with orthotropic cylindrical fillers and a 3D
phononic crystal with orthotropic spherical inclusions embedded in the isotropic host. Zhao and Wei [37,38]
studied the one-dimensional crystal phononic and the two-dimensional phononic crystal with viscoelastic host.
The influences of viscoelastic properties on the dispersive relation and band gap are investigated based on the
complexmoduli.Wang et al. [34,35] studied the propagation of elastic waves in phononic crystals consisting of

Y. Li · P. Wei (B) · Y. Zhou
Department of Applied Mechanics, University of Sciences and Technology Beijing, Beijing 100083, China
E-mail: weipj@ustb.edu.cn

P. Wei
State Key Laboratory of Nonlinear Mechanics (LNM), Chinese Academy of Science, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-015-1495-z&domain=pdf


1006 Y. Li et al.

piezoelectric or piezomagnetic elastic solids. The influences of the mechanical and electrical coupling effects
on the dispersive relation and band gaps are considered. Pang et al [27] studied the propagation behaviors of
elastic waves in 1D piezoelectric/piezomagnetic phononic crystals with line defects by the stiffness matrix
method. Lan andWei [19,20] further studied the dispersive characteristics of elastic waves propagating through
a laminated piezoelectric phononic crystal with mechanically imperfect interfaces and the gradient interlayer.
These above-mentioned investigations are basically applicable to the Bloch waves with long wavelength.
Because the wavelength of Bloch waves is much larger than the characteristic length of the microstructure in
the macroscopical homogeneous medium, the microstructure effects can be ignored.

With the development of micro- and nano-phononic crystals, the propagation behavior of Bloch waves
with short wavelength gets attention gradually. When the wavelength of Bloch waves is comparable to the
characteristic length of the microstructure, the microstructure effects cannot be ignored anymore. In order
to take the microstructure effects into consideration, the classical elasticity theory should be replaced by the
advanced elasticity theory with consideration of microstructure effects, for example the couple stress theory
[24,31], the non-local theory [7], themicropolar andmicromorphic theory [4,5]. Parfitt andEringen [26] studied
the propagation of an elastic wave in the micropolar solid. It is found that there are four kinds of dispersive
bulk waves, which are different from those in the classical elastic solid. Tomar and Gogna [32] further studied
the reflection and refraction of a wave at an interface between two micropolar elastic solids at welded contact.
Tomar and Monika [33] studied the reflection and transmission of waves from a plane interface between two
microstretch solid half-spaces. Georgiadis et al. [11] studied the propagation behavior of the Rayleigh wave
along the surface of a half-space of a microstructure solid characterized by dipolar gradient elasticity (or strain
gradient elasticity of grade two). Their investigation showed that the Rayleigh wave is dispersive, which is
consistent with the experimental observation. This remedies the shortcoming of the classical theory of elasticity
which predicts that a Rayleigh wave is not dispersive at any frequency. Gourgiotis et al. [12] further studied
the reflection of elastic waves at the free boundary of the microstructured solids governed by the dipolar
gradient elasticity. This theory was actually introduced by Green and Rivlin [8], Green [9], and Mindlin [25]
in an effort to model the mechanical response of materials with microstructure. The term “dipolar gradient
elasticity” was first used when [10] studied the crack problem in the microstructure solids. The theory begins
with the very general concept of a continuum containing elements or particles (called macromedia), and such a
macro-particle is further viewed as a collection of smaller subparticles (called micro-media). Each particle of
the continuum is endowed with an internal displacement field, which is expanded as a power series in internal
coordinate variables. Within the above context, the lowest order theory (dipolar or grade-two theory) is the
one obtained by retaining only the linear term. Since the strain energy is dependent on the strain gradients in
the theory, the new material constants imply the presence of characteristic lengths in the material behavior,
and thus, the size effects can be incorporated into the constitutive equation. Recently, [13] also studied the
existence of torsional and SH surface waves in a half-space of a homogeneous and isotropic material and in the
context of the complete Toupin–Mindlin theory of gradient elasticity where five additional material constants
having dimensions of [force] are introduced. Li and Wei [21] further studied the reflection and transmission
of plane waves at the interface between two different gradient elastic half-spaces. Their investigation shows
that the microstructure effects have evident influences on the propagation behavior of the elastic waves when
the wavelength of the elastic waves is comparable to the characteristic length of the microstructure.

In this paper, the one-dimensional phononic crystal consisting of two different gradient elastic solids
which repeat periodically is studied. The microstructure effects are embodied by two microstructure constants
in the present gradient elastic model. One is related to the micro-strain gradient, while the other is related to
the micro-inertia. The transfer matrix of a typical single cell is obtained by considering the dispersive bulk
waves and the dispersive surface waves in the gradient elastic solids and the continuous conditions for the
displacement vector, the normal derivative of the displacement vector, and the monopolar and dipolar tractions
at the interface of two different gradient elastic solids. The dispersive equation is obtained by the application of
the Bloch theorem and is solved numerically. The influences of the microstructure constants on the dispersive
curves and the band gaps are discussed based on the numerical results obtained.

2 The theory of dipolar gradient elasticity

According to Mindlin’s [25] elastic theory of solids with microstructure, the strain energy density can be
expressed as
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W = 1

2
ci jklεi jεkl + 1

2
bi jklγi jγkl + 1

2
ai jklmnχi jkχlmn + di jklmγi jχklm + fi jklmχi jkεlm + gi jklγi jεkl (1)

where ci jkl , bi jkl , ai jklmn, di jklm, fi jklm and gi jkl are the components of the elastic tensor. εi j , γi j (=u j,i −ψi j )
and χi jk(=ψ jk,i ) are the macro-strain of macro-medium, relative deformation (the difference between the
macro-displacement gradient and the micro-deformation), and the micro-deformation gradient (the macro-
gradient of the micro-deformation), respectively. If the relative deformation is ignored, namely γi j = 0, then
the strain energy density function is simplified as

W = 1

2
ci jklεi jεkl + 1

2
ai jklmnχi jkχlmn + fi jklmχi jkεlm . (2)

It means that the strain energy density is dependent on not only the strain but also the strain gradient. For an
isotropic and centrosymmetric medium, the last term in Eq. (2) should be discarded. Here, a phenomenological
simplified version is given as follows:

W =
(
1

2
λεi iε j j + μεi jεi j

)
+

(
1

2
λcεi i,kε j j,k + μcεi j,kε j i,k

)
(3)

where the first term is the contribution from the strains; the second term is the contribution from the strain
gradient. Define

τi j = ∂W

∂εi j
= λδi jεpp + 2μεi j , (4.1)

μki j = ∂W

∂χki j
= c

(
λδi jεpp + 2μεi j

)
,k (4.2)

where λ and μ are the classical Lamé constants; c is a microstructure parameter with dimension of m2; τi j

is the Cauchy stress or monopolar stress; and μi jk is the dipolar stress with the dimensions of Nm−1. The
monopolar stress and the dipolar stress are corresponding with the notion of monopolar force and the dipolar
force, respectively. The monopolar forces are the classical forces, and the dipolar forces are the anti-parallel
forces acting between the micro-media contained in the continuum with microstructure. It is noted that there
is a microstructure parameter c involved in the constitutive equations. Therefore, the microstructure effects
can be captured to a certain extent.

The kinetic energy density includes two terms. One involves the velocity, and the other term involves the
velocity gradient,

T = 1

2
ρu̇ j u̇ j + 1

6
ρd2u̇k, j u̇k, j , (5)

where ρ is the mass density and d is the characteristic length of the microstructure.
The work done by the external forces is

W1 =
∫
V
FkukdV +

∫
S
PkukdS +

∫
S
Rk DukdS, (6)

where Fk is the body force, Pk is the monopolar traction, and Rk is the dipolar traction
Hamilton’s variational principle requires

δ

∫ t1

t0

∫
V

(T − W )dV dt +
∫ t1

t0

∫
S
δW1dSdt = 0, (7)

which leads to the motion equation and the boundary condition

(
τ jk − μi jk,i

)
, j + Fk = ρük − ρd2

3
ük, j j , in V , (8)

Pk = n j
(
τ jk − μi jk,i

) − Dj
(
niμi jk

) + (Dlnl) nin jμi jk + ρd2

3
n j ük, j , on surface (9.1)

Rk = nin jμi jk, on surface (9.2)

where n j is the normal of the boundary of the solid. Dj = (δ jl − n jnl)∂l , D = nl∂l .
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3 The elastic wave in the dipolar gradient elastic solid

Inserting Eq. (4) into Eq. (8) and ignoring the volume force lead to the equation of motion in terms of the
displacement,

(
1 − c∇2) [

(λ + μ) ∇∇ · u + μ∇2u
] = ρü − ρd2

3
∇2ü, (10)

where ∇2 is the Laplace operator. Equation (10) reduces to the Navier equation in the classical elastic theory
when the microstructure parameters c and d are taken to be zero. It is noted that the microstructure parameters
c and d appear in the motion equation. It means that the microstructure effects will influence the wave
propagation modes in the solid. Next, let us discuss the elastic wave propagation in the dipolar gradient
elastic solid. Supposing the propagation plane is oxy, we will discuss the in-plane wave and the anti- plane
wave, respectively.

(i) In the case of an anti-plane wave, the displacement vector u can be expressed as u = uz (x, y) ez .
Accordingly, Eq. (10) reduces to

c∇4uz −
(
1 − ω2d2

3V 2
s

)
∇2uz − ω2

V 2
s
uz = 0. (11)

Equation (11) can be rewritten as
(∇2 + σ 2

sh

) (∇2 − τ 2sh
)
uz = 0 (12)

where

σsh =
{
1

2c
[s − (1 − ms)]

} 1
2

, τsh =
{
1

2c
[s + (1 − ms)]

} 1
2

,

ms = ω2d2

3V 2
s

, V 2
s = μ

ρ
, s =

[
(1 − ms)

2 + 4cω2

V 2
s

] 1
2

.

Equation (12) means that there are two SH type waves. One of them has real wavenumber σsh ; the other has
imaginary wavenumber iτsh . The real wavenumber signifies the propagating wave without attenuation, while
the imaginary wavenumber signifies the attenuation nature. At the interface between two different dipolar
gradient elastic solids, the solution of Eq. (12) can be expressed as

uz = H1 exp [i (ξ y + βshx − ωt)] + H2 exp [i (ξ y − βshx − ωt)]

+ F1 exp
[−γshx + i (ξ y − ωt)

] + F2 exp
[+γshx + i (ξ y − ωt)

]
(13)

where ξ is the apparent wavenumber along the y-axis, β2
sh = σ 2

sh − ξ2 and γ 2
sh(=τ 2sh + ξ2). Equation (13)

means that there are one SH type bulk wave and one SH type surface wave induced at the interface. βsh is the
projection of the wave vector of the bulk wave on y-axis. H1 and H2 are the amplitudes of two bulk waves
toward and away the interface (also called as the forward and backward SH waves); γsh is the attenuation
coefficient of surface waves. F1 and F2 are the amplitudes of two surface waves (called SSH waves), which
are located at two sides of the interface but propagate along y-axis. It is noted that both SH bulk wave and SH
type surface wave are dispersive, and the dispersive relations of them can be expressed as

ω2 = σ 2
shV

2
sh(1 + cσ 2

sh)

(
1 + d2

3
σ 2
sh

)−1

, (14.1)

ω2 = τ 2shV
2
s (1 − cτ 2sh)

(
d2

3
τ 2sh − 1

)−1

. (14.2)

(ii) In the case of an in-plane wave, the application of Helmholtz vector decomposition,

u (x, y) = ux (x, y) ex + uy (x, y) ey = ∇ϕ(x, y) + ∇ × ψ(x, y)ez, (15)
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leads to (
∇2 + σ 2

p

) (
∇2 − τ 2p

)
ϕ = 0, (16.1)(∇2 + σ 2

s

) (∇2 − τ 2s
)
ψ = 0. (16.2)

Equation (16) means that there are two traveling waves of wavenumber σp and σs and two evanescent waves
with imaginary wavenumber or attenuation factor τp and τs . At the interface between two different dipolar
gradient elastic solids, the solution of Eq. (16) can be expressed as

ϕ (x, y, t) = ϕ̃ (x) exp [i (ξ y − ωt)] , (17.1)

ψ (x, y, t) = ψ̃ (x) exp [i (ξ y − ωt)] . (17.2)

Inserting Eq. (17) into Eq. (16) leads to(
d2

dx2
+ β2

p

)(
d2

dx2
− γ 2

p

)
ϕ̃ (x) = 0, (18.1)

(
d2

dx2
+ β2

s

)(
d2

dx2
− γ 2

s

)
ψ̃ (x) = 0 (18.2)

where

β2
p = σ 2

p − ξ2, γ 2
p = τ 2p + ξ2, β2

s = σ 2
s − ξ2, γ 2

s = τ 2s + ξ2,

σp =
{
1

2c

[
p − (

1 − mp
)]} 1

2

, τp =
{
1

2c

[
p + (

1 − mp
)]} 1

2

,

σs =
{
1

2c
[s − (1 − ms)]

} 1
2

, τs =
{
1

2c
[s + (1 − ms)]

} 1
2

,

mp = ω2d2

3V 2
p

, ms = ω2d2

3V 2
s

, p =
[(

1 − mp
)2 + 4cω2

V 2
p

] 1
2

, s =
[
(1 − ms) + 4cω2

V 2
s

] 1
2

,

V 2
p = λ + 2μ

ρ
, V 2

s = μ

ρ
.

Inserting the solution of ϕ̃ (x) and ψ̃ (x) into Eq. (17), we obtain

ϕ = A1 exp
[
i
(
ξ y + βpx − ωt

)] + A2 exp
[
i
(
ξ y − βpx − ωt

)]
+C1 exp

[−γpx + i (ξ y − ωt)
] + C2 exp

[+γpx + i (ξ y − ωt)
]
, (19.1)

ψ = B1 exp [i (ξ y + βs x − ωt)] + B2 exp [i (ξ y − βs x − ωt)]

+ D1 exp
[−γs x + i (ξ y − ωt)

] + D2 exp
[+γs x + i (ξ y − ωt)

]
(19.2)

where Ai , Bi ,Ci and Di are the amplitudes of various waves. Equation (19) means that there is a traveling
wave (P wave) of wavenumber σp and a traveling wave (SVwave) of wavenumber σs , respectively. In addition,
there is a P type surface wave with imaginary wavenumber iτp and an S type surface wave with imaginary
wavenumber iτs . It is noted that not only P wave and SV wave but also the P type surface and the S type
surface waves are dispersive, and the dispersive relations of them can be expressed as

ω2 = σ 2
pV

2
p (1 + cσ 2

p)

(
1 + d2

3
σ 2
p

)−1

, (20.1)

ω2 = σ 2
s V

2
s (1 + cσ 2

s )

(
1 + d2

3
σ 2
s

)−1

, (20.2)

ω2 = τ 2pV
2
p (1 − cτ 2p)

(
d2

3
τ 2p − 1

)−1

, (20.3)

ω2 = τ 2s V
2
s (1 − cτ 2s )

(
d2

3
τ 2s − 1

)−1

. (20.4)
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We also note some special cases. (a) When β2
p = 0 and β2

s = 0, this means that both P wave and SV wave
propagate along the direction parallel to the interface. (b) When β2

p < 0 and β2
s < 0, this means all bulk waves

disappear. (c) When β2
p > 0 and β2

s > 0, this means the bulk wave and the surface waves coexist. The third
case is our main concern in this paper. Recall that β2

p = σ 2
p − ξ2, β2

s = σ 2
s − ξ2, σp = ω/v

g
p, σs = ω/v

g
s . For

a given apparent wavenumber ξ , there is a cutoff frequency, namely

ω
p
cr = ξv

g
p, (21.1)

ωs
cr = ξv

g
s (21.2)

for P wave and SV wave, respectively. Wherein v
g
p(=ω/σp) and v

g
s (=ω/σs) are the phase speeds of P wave

and SV wave, respectively.

4 Dispersion relation of a Bloch wave in an oblique propagation situation

Consider a typical single cell in the one-dimensional laminated structure of gradient elastic solids. The single
cell is composed of two different gradient elastic solids with thickness of a1 and a2, see Fig. 1. The wave
propagation plane is assumed to be oxy, where the x-axis is along the normal direction of the laminated
structure and the y-axis is along the interface.

4.1 Dispersion relation of an anti-plane Bloch wave

In the anti-plane situation, the monopolar traction and the dipolar traction in Eqs. (9) and (10) reduce to

Pz = μ
[
(1 − as) uz,x − c

(
uz,xxx + 2uz,xyy

)]
, (22.1)

Rz = μcuz,xx . (22.2)

(b)
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Fig. 1 The sketch of a typical single cell in the periodic laminated structure of gradient elastic solids. a The periodic laminated
structure of gradient elastic solids; b the anti-plane and in-plane waves in a typical single cell in oblique propagation situation
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The displacement field in any layer in a typical single cell is formed by the forward and the backward SH bulk
waves plus two surface waves propagating along the interface, which are expressed in Eq. (13). Define the
state vector

V = [
uz, uz,x , Pz, Rz

]T
. (23)

Then, the state vector at the left and right boundaries of a layer can be expressed as

VL = P [H1, H2, F1, F2]
T exp [i (ξ y − ωt)] , (24.1)

VR = PG [H1, H2, F1, F2]
T exp [i (ξ y − ωt)] (24.2)

where VL = [
uLz , uLz,x , P

L
z , RL

z

]T
and VR = [

uR
z , uR

z,x , P
R
z , RR

z

]T
. G is a diagonal matrix, namely

G=diag(exp(iβsi ai ), exp(−iβsi ai ), exp(−γsi ai ), exp(γsi ai )). Let the transfer matrix T relate the state vectors
at the left and right boundaries of a layer by

VR = TVL . (25)

Then,

T = PGP−1. (26)

The transfer matrix T is determined by the material constants, the thickness of this layer and the various wave
modes in this layer. The explicit expressions of transfer matrix T are given in “Appendix 1”. Let

VR
A = TAVL

A, (27.1)

VR
B = TBVL

B (27.2)

where TA and TB are the transfer matrix of layer A and layer B, respectively. For the perfect interface situation,
the state vector is continuous across the interface between layer A and layer B, namely

VR
A = VL

B . (28)

This interface condition leads to

VR
B = TBTAVL

A. (29)

The Bloch theorem for the wave propagation in the periodic structure can be expressed as

VR
B = exp(ikxa)VL

A (30)

where a(=a1 + a2) is the thickness of a typical single cell. kx is the wavenumber of a Bloch SH wave in the
periodic laminated structure.

Inserting Eq. (29) into Eq. (30) leads to

[
TBTA − I · exp(ikxa)

]
VL

A = 0. (31)

The existence of non-trivial solution requires

|TBTA − I exp(ikxa)| = f (ω, ξ, kx ) = 0. (32)

Equation (32) is the dispersive relation of a Bloch SH wave.
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4.2 Dispersion relation of an in-plane Bloch wave

In the in-plane wave situation, the monopolar traction and the dipolar traction in Eqs. (9) reduce to

Px = (
1 − c∇2) [

λ∇2ϕ + 2μ
(
ϕ,xx + ψ,xy

)]

− cμ
[∇2ψ + 2

(
ϕ,xy − ψ,xx

)]
,xy − ρd2ω2

3

(
ϕ,xx + ψ,xy

)
(33.1)

Py = (
1 − c∇2) [

μ∇2ψ + 2μ
(
ϕ,xy − ψ,xx

)]

− c
[
λ∇2ϕ + 2μ

(
ϕ,yy − ψ,xy

)]
,xy − ρd2ω2

3

(
ϕ,xy − ψ,xx

)
, (33.2)

Rx = c
[
λ∇2ϕ + 2μ

(
ϕ,xx + ψ,xy

)]
,x , (33.3)

Ry = c
[
μ∇2ψ + 2μ

(
ϕ,xy − ψ,xx

)]
,x . (33.4)

The displacement field in any layer in a typical single cell is formed by the forward and the backward P and
SV bulk waves plus two P type surface waves and two S type surface waves propagating along the interface,
which are expressed in Eq. (19). Define the state vector

V = [
ux , uy, ux,x , uy,x , Px , Py, Rx , Ry

]T
. (34)

Then, the state vector at the left and right boundaries of a layer can be expressed as

VL = P [A1, A2,C1,C2, B1, B2, D1, D2]
T exp [i (ξ y − ωt)] , (35.1)

VR = Q [A1, A2,C1,C2, B1, B2, D1, D2]
T exp [i (ξ y − ωt)] (35.2)

where G is a diagonal matrix, namely G=diag(exp(iβpi ai ), exp(−iβpiai ), exp(−iγpi ai ),
exp(iγpi ai ), exp(iβsi ai ), exp(−iβsi ai ), exp(−iγsi ai ), exp(iγsi ai )).

Let

VR = TVL . (36)

Then, the transfer matrix T can be obtained by

T = PGP−1. (37)

The explicit expressions of T are given in “Appendix 2”. Further, by application of the continuous condition
of the state vector across the interface between two gradient elastic solids, the state vector at the left and right
boundaries of a typical single cell can be related by

VR
B = TBTAVL

A (38)

where TA and TB is the transfer matrix of layer A and layer B, respectively, namelyVR
A = TAVL

A,V
R
B = TBVL

B .
Similar as in the anti-plane situation, the application of the Bloch theorem leads to the dispersive relation of
an in-plane Bloch wave,

|TBTA − I exp(ikxa)| = f (ω, ξ, kx ) = 0. (39)

Although Eq. (39) has the same form like Eq. (32), solving Eq. (39) is much more complicated than solving
Eq. (32). This can be understandable when we recall that the transfer matrices TA and TB are of 8 × 8 orders
in in-plane Bloch wave situation and are of 4 × 4 order in anti-plane Bloch wave situation.
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5 Dispersion relation of a Bloch wave in normal propagation situation

In the normal propagation situation, the P wave, SV wave and SH wave are decoupled from each other. The
dispersive equations of Bloch SH wave, Bloch P wave and Bloch SV wave have the same form, namely

|TBTA − I exp(ika)| = f (ω, k) = 0. (40)

The displacement field of a Bloch SH wave and the corresponding monopolar traction and the dipolar traction
are

uz = H1 exp [i (σshx − ωt)] + H2 exp [i (−σshx − ωt)]

+ F1 exp (−τshx − iωt) + F2 exp (+τshx − iωt) , (41.1)

uz,x = iσsh H1 exp [i (σshx − ωt)] − iσsh H2 exp [i (−σshx − ωt)]

− τsh F1 exp (−τshx − iωt) + τsh F2 exp (τshx − iωt) , (41.2)

Pz = μ
[
(1 − as) uz,x − cuz,xxx

]
, (41.3)

Rz = μcuz,xx . (41.4)

The displacement field of a Bloch P wave and the corresponding monopolar traction and the dipolar traction
are

ux = iσp A1 exp
[
i
(
σpx − ωt

)] − iσp A2 exp
[
i
(−σpx − ωt

)]
− τpC1 exp

(−τpx − iωt
) + τpC2 exp

(+τpx − iωt
)
, (42.1)

ux,x = −σ 2
p A1 exp

[
i
(
σpx − ωt

)] − σ 2
p A2 exp

[
i
(−σpx − ωt

)]
+ τ 2pC1 exp

(−τpx − iωt
) + τ 2pC2 exp

(+τpx − iωt
)
, (42.2)

Px = (λ + 2μ)
[(
1 − c∇2) − ap

]
ux,x , (42.3)

Rx = c (λ + 2μ) ux,xx . (42.4)

The displacement field of a Bloch SV wave and the corresponding monopolar traction and the dipolar traction
are

uy = iσs B1 exp [i (σs x − ωt)] − iσs B2 exp [i (−σs x − ωt)]

− τs D1 exp (−τs x − iωt) + τs D2 exp (τs x − iωt) , (43.1)

uy,x = −σ 2
s B1 exp [i (σs x − ωt)] − σ 2

s B2 exp [i (−σs x − ωt)]

+ τ 2s D1 exp (−τs x − iωt) + τ 2s D2 exp (τs x − iωt) , (43.2)

Py = μ
[(
1 − c∇2) − as

]
uy,x , (43.3)

Ry = μcuy,xx . (43.4)

The explicit expressions of the transfer matrix T for the Bloch SH wave, Bloch P wave and Bloch SV wave
are given, respectively, in “Appendix 3”.

6 Numerical results and discussions

The dispersive relation (the dependence of wavenumber kx upon the angular frequency ω) of Bloch waves in
the periodical laminated structure is dependent upon (i) the thickness (a1, a2) of two gradient elastic solids;
(ii) the material constants (Vpi , Vsi , ρi , ci , di ) of two gradient elastic solids; (iii) the apparent wavenumber
(ξ) of Bloch waves (in the oblique propagation situation). In general, the dispersive equation can be written as

f
(
Vp1, Vs1, ρ1, c1, d1, Vp2, Vs2, ρ2, c2, d2, a1, a2, kx , ξ, ω

) = 0. (44)

Choose (a, ρ1, ω) as the basic physical quantities; then, the non-dimensional form of the dispersive equation
can be rewritten as

f

(
Vp1

Vs1
,
Vs1
ωa

, 1,
√
c1
a

,
d1
a

,
Vp2

Vp1
,
Vs2
Vs1

,
ρ2

ρ1
,
c2
c1

,
d2
d1

,
a1
a

, 1, kxa, ξa, 1

)
= 0. (45)
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In this numerical example, we mainly concern the influences of the following parameters: c̄1 = √
c1/a,

d̄1 = d1/a, c̄ = c1/c2, d̄ = d1/d2, ξ̄ = ξa. Other parameters are given as follows: Vp1/Vs1 = 2.6621,
Vp2/Vp1 = 0.562, Vs2/Vs1 = 0.5947, ρ2/ρ1 = 0.1573, a1/a = 0.5.

6.1 Anti-plane Bloch SH wave

For convenience of comparison, the dispersive curves of Bloch waves in the periodic laminated structure
consisting of the classical elastic solids and the gradient elastic solids are given in Figs. 2 and 3, respectively.
The horizontal axis denotes the normalized wavenumber (ka/π) of a Bloch SH wave in the first Brillouin
zone. The vertical axis denotes the normalized angular frequency (ωa/2πvm, vm = a/(a1/VsA + a2/VsB)).
ξ̄ (=ξa) denotes the normalized apparent wavenumber. ξ̄ = 0 stands for the normal propagation situation,
while ξ̄ �= 0 stands for the oblique propagation situation. The shadow zone denotes the band gap. From Figs. 2
and 3, it is observed that not only the dispersive curves but also the band gaps of the Bloch SH wave in the
periodical laminated structure formed by the gradient elastic solids have evident deviation from those formed
by the classical elastic solids. There are two kinds of dispersive wave modes (dispersive SH wave and SH type
surface wave), which are different from the wave modes in the classical elastic solids (only non-dispersive SH
bulk wave). This results in the deviation of dispersive curves and the band gaps. It is also observed that the
dispersive curves shift toward the high frequency in the gradient elastic solids compared with the dispersive
curves in the classical elastic solids. But the dispersive curves at low-frequency range shift more evident than

Fig. 2 The dispersive curves and band gaps of anti-plane Bloch waves in the periodic structure consisting of the classical elastic
solids. Left in the normal propagation situation (ξ̄ = 0); right in the oblique propagation situation (ξ̄ �= 0); middle the change of
upper and lower band edge

Fig. 3 The dispersive curves and band gaps of anti-plane Bloch waves in the periodic structure consisting of the gradient elastic
solids (c̄1 = 0.5, c̄ = 0.77, d̄1 = 0.5, d̄ = 2). Left in the normal propagation situation (ξ̄ = 0); right in the oblique propagation
situation (ξ̄ �= 0); middle the change of upper and lower band edge
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Fig. 4 The influences of the microstructure constant c̄1 on dispersive curves and band gaps of anti-plane Bloch waves (c̄ =
0.77, d̄ = 2, d̄1 = 0.5, ξ̄ = 1)

Fig. 5 The influences of the microstructure constant d̄1 on the dispersive curves and the band gaps of anti-plane Bloch waves
(c̄1 = 0.5, c̄ = 0.77, d̄ = 2, ξ̄ = 1)

those at the high-frequency range. As a result, the first and second band gaps become narrow. The influences
of the apparent wavenumber ξ are also shown in Figs. 2 and 3. Regardless of the gradient elastic solids or the
classic elastic solids, the dispersive curves shift toward the high-frequency range as the apparent wavenumber ξ
increases and the dispersive curves at low-frequency range shift more evident than those in the high-frequency
range. Therefore, the increase in the apparent wavenumber ξ , in general, makes the low-frequency band gaps
narrower.

Figures 4 and 5 show the influences of microstructure constant c̄1(=√
c1/a) and d̄1 = d1/a in the gradient

elastic solid on the dispersive curves and the band gaps. It is observed that the dispersive curves shift toward
the high-frequency range with the increase in microstructure constant c̄1, while the dispersive curves shift
toward the low-frequency range with the increase in microstructure constant d̄1. The microstructure constant
c1 is related to the strain gradient effects, and the microstructure constant d1 is related to the micro-inertia. The
two microstructure constants reflect different aspects of the microstructure. It is understandable why the two
microstructure constants have different influences on the dispersive curves. It is also noted that the dispersive
curves have more evident change near ξ̄ = ξa = 1 than near ξ̄ = ξa = 0. This means the microstructure
effects are more evident for the Bloch wave with shorter wavelength than for the Bloch waves with longer
wavelength.

It is well known that the larger contrast of the elastic constants of two solids in a typical single cell of
periodic structure is important for the appearance of band gaps. So, it is interesting how the microstructure
constant ratio of two gradient elastic solids influences the dispersive curves and the band gaps. Figures 6 and
7 are given to show the influences of the microstructure constant ratio of two gradient elastic solids. It is
observed that the dispersive curves shift toward high-frequency range when c̄(=c1/c2) increases while the
dispersive curves shift toward low-frequency range when d̄(=d1/d2) increases. Concomitant with the change
of the dispersive curves, the band gaps may become wide or narrow.
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Fig. 6 The influences of the microstructure constant ratio c̄ on the dispersive curves and the band gaps of anti-plane Bloch waves
(c̄1 = 0.5, d̄1 = 0.5, d̄ = 2, ξ̄ = 1)

Fig. 7 The influences of the microstructure constant ratio d̄ on the dispersive curves and the band gaps of anti-plane Bloch waves
(c̄1 = 0.5, c̄ = 0.77, d̄1 = 0.5, ξ̄ = 1)

6.2 In-plane Bloch wave

In the normal propagation situation, the Bloch P wave is uncoupled with the Bloch SV wave. Figure 8 shows
the dispersive curves of an in-plane Bloch wave in the normal propagation situation. It is observed that the
dispersive curves in the periodic structure consisting of gradient elastic solids shift toward the high-frequency
range when compared with the dispersive curves in the periodic structure consisting of classical elastic solids.
The deviation results from the microstructure effects in the gradient elastic solids. There are four kinds of
dispersive waves, i.e., the dispersive P wave and SV wave and two dispersive surface waves. However, there
are only two non-dispersive bulk waves, i.e., P wave and SVwave, in the classical elastic solids. It is also noted
that the deviation is more evident near ξ̄ = ξa = 1 than near ξ̄ = ξa = 0. This phenomenon is also noted in
the anti-plane propagation situation and can be explained by that the microstructure effects are more evident
for a Bloch wave with short wavelength than for a Bloch wave with long wavelength.

Figures 9 and 10 show the dispersive curves of in-plane Bloch waves in the normal propagation situation
and in the oblique propagation situation. Regardless of the normal propagation or the oblique propagation, the
dispersive curves of Bloch waves in the periodic structure consisting of the gradient elastic solids shift toward
the high-frequency range when compared with that in the periodic structure consisting of the classical elastic
solids. This means that the microstructure effects exist in both normal propagation situation and the oblique
propagation situation and have the same influences in both oblique propagation and normal propagation. As
in the anti-plane Bloch wave, the dispersive curves at low-frequency range shift more evident than those at
the high-frequency range. Besides, the dispersive curves shift toward the high-frequency range as the apparent
wavenumber ξ increases, and the dispersive curves at low-frequency range shift more evident than those in the
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Fig. 8 The dispersive curves of an in-plane Bloch wave in normal propagation situation a for the periodic structure consisting of
classical elastic solids; b for the periodic structure consisting of gradient elastic solids (c̄1 = 0.15, d̄1 = 0.25, c̄ = 0.77, d̄ = 0.77)

Fig. 9 The dispersive curves and band gaps of in-plane Bloch waves in the periodic structure consisting of the classical elastic
solids. Left in the normal propagation situation (ξ̄ = 0); right in the oblique propagation situation (ξ̄ �= 0); middle the change of
upper and lower band edge

Fig. 10 The dispersive curves and band gaps of in-plane Bloch waves in the periodic structure consisting of the gradient elastic
solids (c̄1 = 0.15, d̄1 = 0.25, c̄ = 0.77, d̄ = 0.77). Left in the normal propagation situation (ξ̄ = 0); right in the oblique
propagation situation (ξ̄ �= 0); middle the change of upper and lower band edge

high-frequency range, regardless of the periodical laminated structure consisting of the classical elastic solids
or the gradient elastic solids.

In order to show the influences of two microstructure constants, Figs. 11 and 12 are presented. It is
observed that the dispersive curves shift toward the high-frequency range as the microstructure constant c1
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Fig. 11 The influences of the microstructure constant c̄1 on the dispersive curves and the band gaps of in-plane Bloch waves
(c̄ = 0.77, d̄ = 0.77, d̄1 = 0.25, ξ̄ = 1)

Fig. 12 The influences of the microstructure constant d̄1 on the dispersive curves and the band gaps of in-plane Bloch waves
(c̄1 = 0.15, c̄ = 0.77, d̄ = 0.77, ξ̄ = 1)

Fig. 13 The influences of the microstructure constant ratio c̄ on the dispersive curves and the band gaps of in-plane Bloch waves
(c̄1 = 0.15, d̄ = 0.77, d̄1 = 0.25, ξ̄ = 1)

increases while the dispersive curves shift toward the low-frequency range as the microstructure constant d1
increases. However, two microstructure constants, c1 and d1, have more evident influences on the dispersive
curves at high-frequency range than on those at low-frequency range. A similar phenomenon is observed in
the anti-plane Bloch wave situation. The influences of microstructure constant ratio of two gradient elastic
solids are also studied and shown in Figs. 13 and 14. Similar with the anti-plane Bloch wave situation, the
increase of c̄(=c1/c2)makes the dispersive curves shifting toward the high-frequency range while the increase
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Fig. 14 The influences of the microstructure constant ratio d̄ on the dispersive curves and the band gaps of in-plane Bloch waves
(c̄1 = 0.15, c̄ = 0.77, d̄1 = 0.25, ξ̄ = 1)

of d̄(=d1/d2) makes the dispersive shifting toward low-frequency range. But the dispersive curves at the
high-frequency range shift more evident than those at the low-frequency range.

7 Conclusions

The dispersive relations of Bloch waves in the one-dimensional periodical laminated structure consisting of
two gradient elastic solids which are repeated periodically are studied in the present work. Compared with
the classical elastic solid, the gradient elastic solid includes the microstructure effects. With the development
of micro- and nano-phononic crystal, the influences of microstructure effects on the propagation behavior of
elastic waves with short wavelength become more and more important. It is our main concern in the present
work that there are the influences of two microstructure constants, c1 and d1, in the gradient elastic solid. The
dispersive curves are obtained by solving the dispersive equation numerically. The anti-plane Bloch wave and
the in-plane Bloch wave are both considered. Based on these numerical results, the following conclusions can
be drawn.

(i) There are three dispersive bulk waves and three dispersive surface waves in the gradient elastic solids.
These wave modes make the in-plane and anti-plane Bloch waves in the periodical laminated structure
consisting of gradient elastic solids exhibiting evident different dispersive curves from those in the period-
ical laminated structure consisting of classical elastic solids. Accordingly, the width and central frequency
of band gaps have evident deviation.

(ii) There are twomicrostructure constants, c1 and d1, in the present gradient elastic model. c1 is related to the
micro-strain gradient and d1is related to the micro-inertia. Two microstructure constants have opposite
influences on the dispersive curves, namely the dispersive curves shifting toward the high-frequency range
with the increase of c1 while shifting toward low-frequency range with the increase of d1.

(iii) The microstructure effects have more strong influences on the dispersive curves at the high-frequency
range than those at low-frequency range.Moreover, Blochwaveswith short wavelength aremore sensitive
to the microstructure effects than the Bloch waves with long wavelength.

(iv) In the oblique propagation situation, in-plane Bloch waves result from the interference between the
dispersive P wave and the dispersive SV wave. In the normal propagation situation, the in-plane Bloch
waves get decoupled and degrade to the Bloch P wave and Bloch SV wave. Regardless of the oblique
propagation or the normal propagation, the dispersive curves of Bloch waves are influenced by the
microstructure effects.

(v) The anti-plane Bloch waves result from the interferences of dispersive SH waves, which are different
from the in-plane Bloch waves, even though the microstructure effects have similar influences on the
anti-plane Bloch waves as on the in-plane Bloch waves. Moreover, the microstructure constants ratio,
c1/c2 and d1/d2, of two gradient elastic solids in a typical single cell of periodical structure have also
evident influences on the dispersive curves, but their influences are opposite, regardless of anti-plane
Bloch waves or in-plane Bloch waves.
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Appendix 1

In the anti-plane Bloch wave situation, the transfer matrix is Tj =
[
1/

(
σ 2
s j + τ 2s j

)] (
t ( j)kn

)
4×4

( j (= A, B)

indicates layer A or layer B), where

t ( j)k1 = e( j)
k1

(
σ 2
s j + τ 2s j − β2

s j

)
+ β2

s j e
( j)
k2 ,

t ( j)k2 =
[(

τ 2s j − ξ2
)

− (
1 − msj

)
/c j

]
e( j)
k3 +

[(
1 − msj

)
/c j +

(
σ 2
s j + ξ2

)]
e( j)
k4 ,

t ( j)k3 = e( j)
k3 − e( j)

k4

μ j c j
, t ( j)k4 = e( j)

k2 − e( j)
k1

μ j c j
, k = 1, 2, 3, 4,

e( j)
11 = cos

(
βs j a j

)
, e( j)

12 = cosh
(
γs j a j

)
, e( j)

13 = sin
(
βs j a j

)
/βs j , e( j)

14 = sinh
(
γs j a j

)
/γs j ,

e( j)
21 = −βs j sin

(
βs j a j

)
, e( j)

22 = γs j sinh
(
γs j a j

)
, e( j)

23 = cos
(
βs j a j

)
, e( j)

24 = cosh
(
γs j a j

)
,

e( j)
31 = μ j

[
−βs j

(
1 − msj

)
sin

(
βs j a j

) − c jβs j

(
σ 2
s j + ξ2

)
sin

(
βs j a j

)]
,

e( j)
32 = μ j

[
γs j

(
1 − msj

)
sinh

(
γs j a j

) − c jγs j
(
τ 2s j − ξ2

)
sinh

(
γs j a j

)]
,

e( j)
33 = μ j

[(
1 − msj

)
cos

(
βs j a j

) + c j
(
σ 2
s j + ξ2

)
cos

(
βs j a j

)]
,

e( j)
34 = μ j

[(
1 − msj

)
cosh

(
γs j a j

) − c j
(
τ 2s j − ξ2

)
cosh

(
γs j a j

)]
,

e( j)
41 = −μ j c jβ

2
s j cos

(
βs j a j

)
, e( j)

42 = μ j c jγ
2
s j cosh

(
γs j a j

)
,

e( j)
43 = −μ j c jβs j sin

(
βs j a j

)
, e( j)

44 = μ j c jγs j sinh
(
γs j a j

)
.

Appendix 2

In the in-plane Bloch wave situation, the transfer matrix Tj =
(
t ( j)kn

)
4×4

( j (= A, B) indicates layer A or layer

B) is

t ( j)k5 =
(
iξe( j)

k7 − e( j)
k5

)
−

(
e( j)
k6 − e( j)

k5

)
σ 2
pj

/(
σ 2
pj + τ 2pj

)
+ iξ

(
e( j)
k8 − e( j)

k7

)
σ 2
s j

/(
σ 2
s j + τ 2s j

)
(
λ j + 2μ j

)
c jσ 2

pjτ
2
pj

,

t ( j)k8 = e( j)
k8 − e( j)

k7

μ j c j
(
σ 2
s j + τ 2s j

) − t ( j)k5 iξ,

t ( j)k3 = e( j)
k6 − e( j)

k5

σ 2
pj + τ 2pj

− t ( j)k5

[(
λ j + 2μ j

) − μ jms j + (
λ j + 2μ j

)
c j

(
σ 2
pj − τ 2pj

)]
− t ( j)k8 2μ j c j iξ,

t ( j)k2 = e( j)
k7 + iξ t ( j)k3 + t ( j)k5 μ j iξ

[
2 − msj + c j

(
σ 2
s j + 2ξ2

)]
+ t ( j)k8 μ j c j

(
σ 2
s j − 2ξ2

)
,

t ( j)k6 =
(
e( j)
k3 − iξe( j)

k1

)
−

(
e( j)
k3 − e( j)

k4

)
σ 2
s j

/(
σ 2
s j + τ 2s j

)
+ iξ

(
e( j)
k1 − e( j)

k2

)
σ 2
pj

/(
σ 2
pj + τ 2pj

)
μ j c jσ 2

s jτ
2
s j

,

t ( j)k7 = t ( j)k6 iξ − e( j)
k1 − e( j)

k2(
λ j + 2μ j

)
c j

(
σ 2
pj + τ 2pj

) ,
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t ( j)k4 = e( j)
k3 − e( j)

k4

σ 2
s j + τ 2s j

− t ( j)k6 μ j

[
1 − msj + c j

(
σ 2
s j − τ 2s j

)]
+ t ( j)k7 2μ j c j iξ,

t ( j)k1 = e( j)
k1 − iξ t ( j)k4 + t ( j)k7 c j

(
λ jσ

2
pj + 2μ jβ

2
pj

)

− t ( j)k6 iξ
{(
2 − msj

)
μ j + c j

[(
λ j + 2μ j

)
σ 2
pj + 2μ jξ

2
]}

, k = 1, 2, . . . , 8

where

e( j)
11 = cos

(
βpj a j

)
, e( j)

12 = cosh
(
γpj a j

)
, e( j)

13 = iξ cos
(
βs j a j

)
, e( j)

14 = iξ cosh
(
γs j a j

)
,

e( j)
15 = −βpj sin

(
βpj a j

)
, e( j)

16 = γpj sinh
(
γpj a j

)
, e( j)

17 = −iξ sin
(
βs j a j

)/
βs j ,

e( j)
18 = −iξ sinh

(
γs j a j

)/
γs j , e( j)

21 = iξ sin
(
βpj a j

)/
βpj , e( j)

22 = iξ sinh
(
γpj a j

)/
γpj ,

e( j)
23 = βs j sin

(
βs j a j

)
, e( j)

24 = −γs j sinh
(
γs j a j

)
, e( j)

25 = iξ cos
(
βpj a j

)
,

e( j)
26 = iξ cosh

(
γpj a j

)
, e( j)

27 = cos
(
βs j a j

)
, e( j)

28 = cosh
(
γs j a j

)
,

e( j)
31 = −βpj sin

(
βpj a j

)
, e( j)

32 = γpj sinh
(
γpj a j

)
, e( j)

33 = −iξβs j sin
(
βs j a j

)
,

e( j)
34 = iξγs j sinh

(
γs j a j

)
, e( j)

35 = −β2
pj cos

(
βpj a j

)
, e( j)

36 = γ 2
pj cosh

(
γpj a j

)
,

e( j)
37 = −iξ cos

(
βs j a j

)
, e( j)

38 = −iξ cosh
(
γs j a j

)
, e( j)

41 = iξ cos
(
βpj a j

)
, e( j)

42 = iξ cosh
(
γpj a j

)
,

e( j)
43 = β2

s j cos
(
βs j a j

)
, e( j)

44 = −γ 2
s j cosh

(
γs j a j

)
, e( j)

45 = −iξβpj sin
(
βpj a j

)
,

e( j)
46 = iξγpj sinh

(
γpj a j

)
, e( j)

47 = −βs j sin
(
βs j a j

)
, e( j)

48 = γs j sinh
(
γs j a j

)
,

e( j)
51 =

{(
−λ jσ

2
pj − 2μ jβ

2
pj

)
+ μ jms jβ

2
pj − c j

[
λ jσ

4
pj + 2μ j

(
σ 4
pj − ξ4

)]}
sin

(
βpj a j

)/
βpj ,

e( j)
52 =

{(
λ jτ

2
pj + 2μ jγ

2
pj

)
− μ jms jγ

2
pj − c j

[
λ jτ

4
pj + 2μ j

(
τ 4pj − ξ4

)]}
sinh

(
γpj a j

)/
γpj ,

e( j)
53 = μ j

[
−2 + msj − c j

(
σ 2
s j + 2ξ2

)]
iξβs j sin

(
βs j a j

)
,

e( j)
54 = μ j

[
2 − msj + c j

(
−τ 2s j + 2ξ2

)]
iξγs j sinh

(
γs j a j

)
,

e( j)
55 =

{(
−λ jσ

2
pj − 2μ jβ

2
pj

)
+ μ jms jβ

2
pj − c j

[
λ jσ

4
pj + 2μ j

(
σ 4
pj − ξ4

)]}
cos

(
βpj a j

)
,

e( j)
56 =

{(
λ jτ

2
pj + 2μ jγ

2
pj

)
− μ jms jγ

2
pj − c j

[
λ jτ

4
pj + 2μ j

(
τ 4pj − ξ4

)]}
cosh

(
γpj a j

)
,

e( j)
57 = −μ j

[
2 − msj + c j

(
σ 2
s j + 2ξ2

)]
iξ cos

(
βs j a j

)
,

e( j)
58 = −μ j

[
2 − msj + c j

(
−τ 2s j + 2ξ2

)]
iξ cosh

(
γs j a j

)
,

e( j)
61 =

{(
2 − msj

)
μ j + c j

[(
λ j + 2μ j

)
σ 2
pj + 2μ jξ

2
]}

iξ cos
(
βpj a j

)
,

e( j)
62 =

{(
2 − msj

)
μ j − c j

[(
λ j + 2μ j

)
τ 2pj − 2μ jξ

2
]}

iξ cosh
(
γpj a j

)
,

e( j)
63 = μ j

[(
β2
s j − ξ2

)
− msjβ

2
s j + c j

(
σ 4
s j − 2ξ4

)]
cos

(
βs j a j

)
,

e( j)
64 = μ j

[
−

(
ξ2 + γ 2

s j

)
+ msjγ

2
s j + c j

(
τ 4s j − 2ξ2

)]
cosh

(
γs j a j

)
,

e( j)
65 = −

{(
2 − msj

)
μ j + c j

[(
λ j + 2μ j

)
σ 2
pj + 2μ jξ

2
]}

iξβpj sin
(
βpj a j

)
,

e( j)
66 =

{(
2 − msj

)
μ j − c j

[(
λ j + 2μ j

)
τ 2pj − 2μ jξ

2
]}

iξγpj sinh
(
γpj a j

)
,

e( j)
67 = −μ j

[(
β2
s j − ξ2

)
− msjβ

2
s j + c j

(
σ 4
s j − 2ξ4

)]
sin

(
βs j a j

)/
βs j ,
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e( j)
68 = −μ j

[
−

(
ξ2 + γ 2

s j

)
+ msjγ

2
s j + c j

(
τ 4s j − 2ξ2

)]
sinh

(
γs j a j

)/
γs j ,

e( j)
71 = −c j cos

(
βpj a j

) (
λ jσ

2
pj + 2μ jβ

2
pj

)
, e( j)

72 = c j cosh
(
γpj a j

) (
λ jτ

2
pj + 2μ jγ

2
pj

)
,

e( j)
73 = −2μ j c jβ

2
s j iξ cos

(
βs j a j

)
, e( j)

74 = 2μ j c jγ
2
s j iξ cosh

(
γs j a j

)
,

e( j)
75 = c j sin

(
βpj a j

) (
λ jσ

2
pj + 2μ jβ

2
pj

)
, e( j)

76 = c jγpj sinh
(
γpj a j

) (
λ jτ

2
pj + 2μ jγ

2
pj

)
,

e( j)
77 = 2μ j c jβs j iξ sin

(
βs j a j

)
, e( j)

78 = −2μ j c jγs j sinh
(
γs j a j

)
iξ,

e( j)
81 = −2μ j c jβpj sin

(
βpj a j

)
iξ, e( j)

82 = 2μ j c jγpj sinh
(
γpj a j

)
iξ,

e( j)
83 = −μ j c jβs j

(
β2
s j − ξ2

)
sin

(
βs j a1

)
, e( j)

84 = −μ j c jγs j
(
ξ2 + γ 2

s j

)
sinh

(
γs j a j

)
,

e( j)
85 = 2μ j c jβ

2
pj iξ cos

(
βpj a j

)
, e( j)

86 = 2μ j iξγ 2
pj c j cosh

(
γpj a j

)
,

e( j)
87 = −μ j c j cos

(
βs j a1

) (
β2
s j − ξ2

)
, e( j)

88 = μ j c j cosh
(
γs j a j

) (
ξ2 + γ 2

s j

)
.

Appendix 3

In the normal propagation situation, the transfer matrix Tj =
[
1/

(
σ 2
r j + τ 2r j

)] (
t ( j)kn

)
4×4

( j (= A, B) indicates

layer A or layer B) of Bloch SH wave, Bloch P wave, and Bloch SV wave is

t ( j)11 = σ 2
r j cosh

(
τr j a j

) + τ 2r j cos
(
σr j a j

)
, t ( j)12 = σr j sin

(
σr j a j

) + τr j sinh
(
τr j a j

)
,

t ( j)13 = [
τr j sin

(
σr j a j

) − σr j sinh
(
τr j a j

)]/
c jε jσr jτr j ,

t ( j)14 = [
cosh

(
τr j a j

) − cos
(
σr j a j

)]/
c jε j , t ( j)21 = σ 2

r jτr j sinh
(
τr j a j

) − τ 2r jσr j sin
(
σr j a j

)
,

t ( j)22 = σ 2
r j cos

(
σr j a j

) + τ 2r j cosh
(
τr j a j

)
, t ( j)23 = [

cos
(
σr j a j

) − cosh
(
τr j a j

)]/
c jε j ,

t ( j)24 = [
τr j sinh

(
τr j a j

) + σr j sin
(
σr j a j

)]/
c jε j ,

t ( j)31 = −c jε jσr jτr j

[
σ 3
r j sinh

(
τr j a j

) + τ 3r j sin
(
σr j a j

)]
,

t ( j)32 = c jε jσ
2
r jτ

2
r j

[
cos

(
σr j a j

) − cosh
(
τr j a j

)]
, t ( j)33 = τ 2r j cos

(
σr j a j

) + σ 2
r j cosh

(
τr j a j

)
,

t ( j)34 = τr jσr j
[
τr j sin

(
σr j a j

) − σr j sinh
(
τr j a j

)]
,

t ( j)41 = c jε jσ
2
r jτ

2
r j

[
cosh

(
τr j a j

) − cos
(
σr j a j

)]
,

t ( j)42 = c jε j

[
τ 3r j sinh

(
τr j a j

) − σ 3
r j sin

(
σr j a j

)]
,

t ( j)43 = −τr j sinh
(
τr j a j

) − σr j sin
(
σr j a j

)
, t ( j)44 = τ 2r j cosh

(
τr j a j

) + σ 2
r j cos

(
σr j a j

)
.

r = s denotes Bloch SH wave and Bloch SV wave, and r = p denotes Bloch P wave. ε = μ for Bloch SH
wave and Bloch SV wave, and ε = λ + 2μ for Bloch P wave.
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