
Acta Mech 227, 1799–1811 (2016)
DOI 10.1007/s00707-016-1597-2

ORIGINAL PAPER

Yin Yao · Shaohua Chen

Buckling behavior of nanowires predicted by a new surface
energy density model

Received: 11 December 2015 / Revised: 29 January 2016 / Published online: 23 March 2016
© Springer-Verlag Wien 2016

Abstract The axial buckling behavior of nanowires is investigated with a new continuum theory, in which the
surface effect of nanomaterials is characterized by the surface energy density. Only the surface energy density
of bulk materials and the surface relaxation parameter are involved, instead of the surface elastic constants in
the classical surface elasticity theory. Two kinds of nanowires with different boundary conditions are discussed.
It is demonstrated that the new continuum theory can predict the buckling behavior of nanowires very well.
Similar to the prediction of the classical elasticity theory, the critical compressive load of axial buckling of
nanowires predicted by the new continuum theory increases with an increasing characteristic length, such as
the diameter or height of nanowires. With the same aspect ratio, a nanowire with a rectangular cross section
possesses a larger critical buckling load than that with a circular one. However, the surface effect could enhance
the critical buckling load not only for a fixed–fixed nanowire but also for a cantilevered one in contrast to the
classical elastic model. All the results predicted by the new continuum theory agree well with predictions by the
surface elasticity models. The present research not only verifies the validation of the new continuum theory, but
also gives a muchmore convenient characterization of buckling behaviors of nanowires. This should be helpful
for the design of nanodevices based on nanomaterials, for example, nanobeams in NEMS or high-precision
instruments.

1 Introduction

As a basic building component, nanowires have awide range of potential applications inminiature devices, such
as sensors, resonators and atomic force microscopy (AFM) tips [1–3]. In contrast to bulk materials, the elastic
property of nanowires exhibits a distinct size-dependent behavior due to a large surface-to-volume ratio [4,5].
Both static and dynamic bending tests have been widely adopted in order to investigate the special mechanical
feature of nanowires [6–11], in which it was found that the elastic modulus of a fixed–fixed nanowire increases,
while that of a cantilevered one decreases with a decreasing characteristic length scale of nanowires. However,
such a size (surface) effect cannot be predicted within the framework of the classical elasticity theory. New
continuum theoretical models should be developed. Surface elasticity theory as an optional theory, which
takes the surface effect into account [12,13], has been widely adopted to study the static and dynamic bending
behaviors of nanowires successfully [14–17]. Molecular dynamics (MD) simulation method as a feasible
numerical technique is also extensively used to investigate the size-dependent modulus of nanowires [18–21],
besides the surface Cauchy–Born model [22] and the finite element calculation based on the surface elasticity
theory [23].
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Besides the bending behaviors of nanowires, during practical applications, for example, in nanodevices or
nanoelectromechanical systems (NEMs), it is unavoidable for nanowires to sustain an axial compressive load,
which, as a result, would induce buckling of nanowires [24–26].

Actually, many experiments about the buckling behavior of nanowires have been carried out. The critical
buckling force of fixed–fixed zinc oxide (ZnO) nanowires is found to increase with an increasing nanowire
radius [27,28]. A decreasing aspect ratio of a fixed–fixed silicon nanowire would induce an increasing critical
buckling load [25]. The critical buckling force of a cantilevered silver-gallium alloy nanowire was measured
by Dobrokhotov et al. [24]. MD calculations about the buckling behavior of nanowires were also done [26,29].
A common finding is that the critical buckling force measured experimentally is obviously larger than the
prediction by the classical elasticity theory.

To precisely predict the critical buckling load of nanowires theoretically is an obviously significant prob-
lem. Consequently, surface elasticity beam models have been extended to analyze buckling of nanowires.
Considering a nanowire as a composite system consisting of an elastic surface layer and a core part, Wang and
Feng [30,31] proposed a core shell model and achieved closed-form solutions of the critical buckling force
for both Euler and Timoshenko nanowires. Similar work was done by Yao and Yun [32] and Challamel and
Elishakoff [33]. Chiu and Chen [17] introduced a surface flexural stiffness into the surface elasticity model
to characterize the curvature-dependent surface energy of buckling nanowires. Juntarasaid et al. [34] carried
out the buckling analysis considering effects of both surface elasticity and nonlocal elasticity. Wang et al. [35]
analyzed effects of the surface elasticity and the residual surface tension on the in-plane buckling behavior of
nanowires on elastomeric substrates.

Almost all of the above analyses on the critical buckling force are based on the surface elasticity model,
which depends significantly on the surface elastic constants [17,30,36]. An open question of how to achieve
the surface elastic constants still exists. No experiment technique is available to measure the surface elastic
constants of nanomaterials. MD simulation is the only method to provide the constants [37–39], which are,
however, inevitably influenced by several numerical aspects, including how to choose a proper atomic potential,
how to choose the size of the numerical model and how many atom layers can be regarded as the surface of
nanomaterials. Furthermore, a negative surface modulus adopted in the buckling analysis of metal nanowires
was regarded as an ambiguous choice [16,17]. In the core–shell model [30,31], the surface elastic modulus
was defined as a product of the bulk modulus and the thickness of the surface layer. How to determine the
thickness of the surface layer still needs further investigations.

A new elasticity theory for nanomaterials and nanostructures has been developed recently [40], which
provides an alternative way to account for the surface effect at nanoscales [41–43]. In the new theory, the
surface of nanomaterials is also regarded as a zero-thickness layer. However, a surface-induced traction as
a function of the surface-free energy density is introduced to characterize the surface effect. The involved
parameters are only the bulk surface energy density (surface energy density of bulk materials) and the surface
relaxation parameters induced by the self-relaxation of nanomaterials, instead of the surface elastic constants in
the classical surface elasticity theory. Both parameters are easy to find inmaterial handbooks orMDsimulations
[40,44].

The buckling behavior of nanowires is investigated in this paper using the new developed theory. One
of the aims is to verify whether the new theoretical model is reasonable to predict the buckling behavior of
nanowires. The other one is to achieve a closed-form solution of the critical buckling load, which may be more
convenient for applications. The remainder of this paper is organized as follows. The new theory is briefly
introduced first. Both the surface effects of the buckling behavior in nanowires with a fixed–fixed boundary
condition and those with a cantilevered one are analyzed theoretically in Sect. 3. Discussions of the present
results and comparisons with the existing theoretical and MD predictions are given in Sect. 4. Conclusions are
finally provided in Sect. 5.

2 Brief introduction of the new theory for nanomaterials

A new continuum theory for nanomaterials was developed recently by Chen and Yao [40], in which nanosolids
with idealized crystal structures are considered with three kinds of configurations, i.e., an initial one without
deformation, an intermediate one after the self-relaxation of nanomaterials and a current one subjected to an
external loading as shown in Fig. 1. A Lagrangian coordinate system is embedded in the surface and attached
to the atoms [45], where a01 and a02 represent the initial lattice lengths parallel to the two basic vectors of the
surface unit cell, and β denotes an angle between the two basic vectors. Due to the surface relaxation, the lattice
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Fig. 1 Schematic of a surface unit cell in the initial (reference), relaxed (intermediate) and current configuration. Due to the
self-relaxation and the external loading, the initial lattice constants a0i (i = 1, 2) become ai (i = 1, 2) through ari (i = 1, 2)

lengths become ar1 and ar2, which further become a1 and a2 in the current configuration under an external
loading. The Lagrangian surface energy density φ0 with regard to the initial (reference) configuration can be
divided into a structural part φstru

0 related to the surface strain energy and a chemical part φchem
0 originating

from the surface dangling-bond energy,

φ0 = φstru
0 + φchem

0 ,

φstru
0 = Eb

2 sin β

2∑

i=1

a0iηi {[3 + (λi + λiεsi )
−m − 3(λi + λiεsi )]

[
λ2i ε

2
si + (λi − 1)2 + 2λi (λi − 1)εsi

]}
,

φchem
0 = φ0b

(
1 − w1

D0

D

)
, η1 = a01/a02, η2 = a02/a01 (1)

whereφ0b is the bulk surface energy density and D0 is a critical size (D0 = 3da for nanoparticles and nanowires,
D0 = 2da for nanothin films, where da is the atomic diameter). D is a characteristic scale of nanomaterials
(e.g., height, diameter). w1 is a parameter governing the size-dependent behavior of φchem

0 . Eb is Young’s
modulus of a bulk material. λi = ari/a0i denotes the surface relaxation parameter, and εsi = (ai − ari )/ari
is the surface strain induced only by the external loading. m is a parameter describing the dependence of bond
lengths on the binding energy (m = 4 for alloys or compounds and m = 1 for pure metals) [46].

For nanomaterials, the total potential energy � in the current configuration can be expressed as

�(u) =
∫

V−S
ψ(ε)dV +

∫

S
φdS −

∫

V−S
f · udV −

∫

Sp
p · udS (2)

where ψ is the elastic strain energy density in the bulk and the second term at the right of Eq. (2) is the surface
energy of nanomaterials. φ is the Eulerian surface energy density in the current configuration. f and p denote
the body force and the external surface traction, respectively. u and ε are the displacement and the strain
induced by f and p. Variation analysis of Eq. (2) yields the equilibrium equations and the stress boundary
conditions of nanosolids,

σ · ∇ + f = 0 (inV − S),
n · σ · n = p · n − γnn (onS),
(I − n ⊗ n) · σ · n = (I − n ⊗ n) · p − γ t (on S)

(3)

where σ is the bulk Cauchy stress tensor, n is the unit normal vector perpendicular to the boundary surface S
of the nanosolid, I is a unit tensor; γn and γ t are the normal and tangential components of a surface-induced
traction vector, respectively, which characterize the force disturbance at boundaries due to the surface effect.
Based on an infinitesimal element, the virtual workmethod yields the surface-induced traction, which is related
to the Eulerian surface energy density [40] by

γ t = ∇sφ, γnn = φ

(
1

R1
+ 1

R2

)
n = φ (n · ∇s)n (4)
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where ∇s is a surface gradient operator, and R1 and R2 are the two principal radii of curvature of a curved
surface.

According to Chen and Yao [40], Nix and Gao [45] and Huang andWang [47], the Eulerian surface energy
density φ in the current configuration is related to the Lagrangian surface energy density φ0 by

φ = φ0

Js
(5)

where Js is a Jacobian determinant characterizing the surface deformation from the reference configuration to
the current one.

Substituting Eqs. (4) and (5) into Eq. (3) yields the governing equations in terms of the Lagrangian surface
energy density,

σ · ∇ + f = 0 (in V − S),

n · σ · n = p · n − φ0(n·∇s)
Js

(on S),

(I − n ⊗ n) · σ · n = (I − n ⊗ n) · p + φ0(∇s Js )
J 2s

− ∇sφ0
Js

(on S).

(6)

In contrast to the G–M theory [12], the advantage of the new theory is that the surface elastic constants are
no longer required. The Lagrangian surface energy density φ0 serves as a unique quantity characterizing the
surface effect of nanomaterials, which depends only on the bulk surface energy density and the relaxation
parameter [40]. Both parameters have clear physical meanings and are very easy to be determined through
material handbooks and simple MD simulations.

3 Surface effect in buckling nanowires

As shown in Fig. 2, a nanowire buckles due to an axially compressive load P larger than the critical buckling
one Pcr . Two kinds of boundary conditions, i.e., a cantilevered nanowire beam and a fixed–fixed one, are
investigated as shown in Fig. 2a, b. Here, the fixed–fixed nanowire can be regarded as a beam with a clamped
end and a slidingly hinged one [48]. The length of the nanowire in the x direction is L with a vertical deflection
in the z direction. The cross section of the nanowire is rectangular with a height h and a width b(b ≥ h), or
circular with a diameter d as shown in Fig. 2c.

3.1 Deflection equation of nanowires

When buckling occurs, the nanowire will deflect. ux , uz and εx denote the axial displacement, the vertical
displacement, and the axial strain of the buckling nanowire, respectively, which can be obtained with the
assumption of Euler–Bernoulli beam as [48]

ux = −z
dw

dx
, εx = −z

d2w

dx2
, uz = w(x), 0 ≤ x ≤ L . (7)

For simplicity, consider a [100] axially oriented nanowire with a symmetrically lateral surface and an equal
atom spacing in both bond directions, e.g., the (001) or (010) surface [15,16,30]. Therefore, the Lagrangian
surface energy density can be written as [40,42,43]

φ0 = φ0b

(
1 − 3da

4D

)
+

√
2Eba0
2

[
3+ 1

λ (1 + εx/2)
−3

(
λ + λεx

2

)] [
λ2ε2x

4
+ 2λ(λ − 1)

εx

2
+ (λ − 1)2

]

(8)

where λ and a0 represent the surface relaxation parameter in both bond directions of the (001) surface and the
bulk lattice constant, respectively; D is the diameter or height of nanowires.

The variation of the bulk strain energy is written as

δU = δ

∫

V

1

2
σxεxdV = δ

∫ L

0

1

2
Eb I

(
d2w

dx2

)2

dx =
∫ L

0
Eb I

d2w

dx2
d2(δw)

dx2
dx (9)
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Fig. 2 Schematic of a nanowire with different boundary conditions under an externally compressive load P . a A cantilevered
nanowire; b a fixed–fixed nanowire; c the cross section of the nanowire, one is rectangular and the other is circular

where I = ∫
Anw

z2dA is the inertia moment and Anw denotes the nanowire’s cross section, and Eb is Young’s
modulus of bulk materials.

The variation of the surface energy can be written as [49]

δ� =
∫

Snw

γ · δudS =
∫ L

0
dx

∫

Cnw

(γxδux + γnδun)dC (10)

where Snw represents the surface of nanowires, Cnw is the perimeter of a rectangular or circular cross section.
γx and γn represent the axial and normal components of the surface-induced traction, respectively. δux and
δun are the corresponding displacement components of δu. Combining Eqs. (4), (5), (7), and (8) and noting
that Js = λ2(1 + εx/2)2 yield the axial surface-induced traction γx [42,43],

γx =
[
C0z + C1z

2 d
2w

dx2
+ C2z

3
(
d2w

dx2

)2
]
d3w

dx3
,

C0 = φ∗
0 (5 − 4λ) −

√
2Eba0A2(3 − 2λ)

2
,

C1 = 2φ∗
0 + √

2Eba0A1(3 − 2λ) −
√
2Eba0A2(5 − 4λ)

2
,

C2 =
√
2Eba0A1(7 − 4λ)

2
− √

2Eba0A2, φ∗
0 = φ0b

(
1 − 3da

4D

)
+

√
2Eba0
2

(λ − 1)2,

A1 = 1 − 10(λ − 1) − 17(λ − 1)2

4
, A2 = (λ − 1) − 5(λ − 1)2. (11)

Noting the curvature κ = −(n · ∇s) = d2w/dx2 and δun ≈ δw[16,50], the variation of the energy induced
by the normal surface-induced traction γn can be expressed as

γnδun ≈ −φκδw = −
[
D0z + D1z

d2w

dx2
+ D2z

2
(
d2w

dx2

)2

+ D3z
3
(
d2w

dx2

)3
]
d2w

dx2
δw,

D0 = φ∗
0 (3 − 2λ), D1 = φ∗

0 −
√
2Eba0A2(3 − 2λ)

2
,

D2 =
√
2Eba0A1(3 − 2λ)

2
− √

2Eba0A2, D3 =
√
2Eba0A1

2
. (12)
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With a small deformation assumption, the work done by the compressive load can be written as [48]

Wp = P

[
L −

∫ L

0
ds

]
= P

[
L −

∫ L

0

dx√
1 + (dz/dx)2

]
≈ P

2

∫ L

0

(
dw

dx

)2

dx . (13)

Based on Eqs. (9)–(13), the variation of the potential energy is obtained,

δ� = δU + δ� − δWp

=
∫ L

0
Eb I

d2w

dx2
d2(δw)

dx2
dx −

∫ L

0

[
C0 Is1 + C2 Is2

(
d2w

dx2

)2
]
d3w

dx3
d(δw)

dx
dx

−
∫ L

0

[
D0 Ic + D2 Is1

(
d2w

dx2

)2
]
d2w

dx2
δwdx −

∫ L

0
P
dw

dx

d(δw)

dx
dx (14)

where Is1 = ∫
CNW

z2dC , Is2 = ∫
CNW

z4dC and Ic = ∫
Cnw

n2wdC . Here, nw represents the vertical component
of the unit normal vector n, which is parallel to w(x).

With regard to cross sections of different shapes, we have

Rectangular: I = bh3

12
, Is1 = bh2

2
+ h3

6
, Is2 = bh4

8
+ h5

80
, Ic = 2b,

Circular: I = πd4

64
, Is1 = πd3

8
, Is1 = 3πd5

128
, Ic = πd

2
. (15)

Ignoring high-order terms yields

δ� =
∫ L

0
(Eb I + C0 Is1)

d4w

dx4
δwdx +

∫ L

0
(P − D0 Ic)

d2w

dx2
δwdx

+
[
Eb I

d2w

dx2
d(δw)

dx

]x=L

x=0
−

{[
(Eb I + C0 Is1)

d3w

dx3
+ P

dw

dx

]
δw

}x=L

x=0
. (16)

Then, letting δ� = 0 yields the deflection equation and the boundary conditions,

(Eb I + C0 Is1)
d4w

dx4
+ (P − D0 Ic)

d2w

dx2
= 0,

[
Eb I

d2w

dx2
d(δw)

dx

]x=L

x=0
= 0,

{[
(Eb I + C0 Is1)

d3w

dx3
+ P

dw

dx

]
δw

}x=L

x=0
= 0. (17)

It is interesting to find that the deflection equation in (17) has an analogous form to that derived by the
surface elasticity models [30,33]. However, the terms characterizing the surface effect C0 Is1 and D0 Ic do
not contain any surface elastic constants. For wires (beams) with relatively large scales, we have C0 = 0
and D0 = 0. The deflection equation is well degraded to the classical one without the surface effect, i.e.,
Eb Iw(4)(x) + Pw′′(x) = 0 [48].

3.2 The critical buckling load

3.2.1 The case of a fixed–fixed nanowire

Solving Eq. (17) yields the general solution of the deflection function w(x),

w(x) = S1 + S2x + S3 cos(kx) + S4 sin(kx),

k =
√

P − D0 Ic
Eb I + C0 Is1

, 0 ≤ x ≤ L , P > D0 Ic (18)
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where S1 ∼ S4 are unknown coefficients. The boundary conditions of a fixed–fixed buckling nanowire are

x = 0 : w = 0,
dw

dx
= 0,

x = L : w = 0,
dw

dx
= 0. (19)

Combining Eqs. (18) and (19) leads to the governing equation with respect to the compressive load P ,

cos

(√
P − D0 Ic

Eb I + C0 Is1
L

)
= 1 (20)

which further gives

P − D0 Ic
Eb I + C0 Is1

= 4n2π2

L2 , n = 1, 2, 3, . . . (21)

Letting n = 1, one can find the critical buckling load Pcr of fixed–fixed nanowires,

Pcr = 4π2(Eb I + C0 Is1)

L2 + D0 Ic. (22)

The critical buckling load in Eq. (22) can be well reduced to the solution predicted by the classical elasticity
theory only when the characteristic length of wires is large enough [48], i.e.,

P0
cr = 4π2Eb I

L2 . (23)

It is very obvious to find that the critical buckling load predicted by the present model should be larger than that
achieved by the classical elasticity theory. That is to say, the classical theory without considering the surface
effect would underestimate the critical buckling load of nanowires.

3.2.2 The case of a cantilevered nanowire

The general solution of the deflection functionw(x) in Eq. (18) is also fit for the case of cantilevered nanowires
as shown in Fig. 2a, but with different boundary conditions,

x = 0 : w = 0,
dw

dx
= 0,

x = L : Eb I

(
d2w

dx2

)
= 0, (Eb I + C0 Is1)

d3w

dx3
+ P

dw

dx
= 0. (24)

Combining Eqs. (18) and (24) yields a transcendental equation with respect to P ,

cos

(√
P − D0 Ic

Eb I + C0 Is1
L

)
= D0 Ic

P
(25)

which is analogous to the following equation based on the surface elasticity theory [33]:

cos

(√
P − 2τ0D

Eb I + Es Is1
L

)
= 2τ0D

P
. (26)

Es and τ0 are the surface elastic modulus and surface residual tension, respectively [33]. D represents a
characteristic length of nanowires (diameter or height).

The smallest solution of Eq. (25) within P > D0 Ic can be numerically solved, which is referred to
as the critical buckling load of cantilevered nanowires. Equation (25) would be reduced to the equation
cos(

√
P/Eb I L) = 0 predicted by the classical beam theory when the wire (beam) owns a relatively large

characteristic scale. As a result, the critical buckling load for a cantilevered beam obtained by the classical
beam theory is P0

cr = π2Eb I/4L2[48].
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4 Results and discussion

The critical buckling loads in Eqs. (22) and (25) for a fixed–fixed nanowire and a cantilevered one will be
analyzed, respectively, for typical nanowires. The material parameters for a silver nanowire can be found from
Sheng et al. [51] with da = 0.2889 nm, a0 = 0.418 nm, Eb = 78GPa, φ0b(001) = 1.2 J/m2. For simplicity,
let the rectangular nanowire have a square cross section, i.e., b = h. Then the surface relaxation parameter λ
is proportional to the height or diameter of nanowires, which has been expressed as λ = 1 − cr/D (cr > 0,
D = h or d) [26,40,52] with cr ≈ 0.016 nm for the (001) surface of Ag [40]. One can see that λ tends to be
unity when the characteristic length is relatively large, for example D ≥ 5 nm. Comparatively, in the theoretical
analysis with the surface elasticity theory, the involved surface elastic modulus and the surface residual tension
of Ag nanowires were taken as Es = 1.2N/m and τ0 = 0.89N/m, respectively [30].

The critical buckling load of Ag nanowires with a circular cross section but two different boundary condi-
tions is given in Fig. 3a, b as a function of the diameter of the nanowires, respectively, where not only the result
predicted by the new model but also the one achieved by the surface elasticity theory is shown. The prediction
of the classical beam theory is further exhibited for comparison. It is found that the present result predicted

Fig. 3 The critical buckling load predicted by the present model, the surface elasticity one and the classical ones [30,33] as a
function of the diameter of Ag nanowires with different aspect ratios and boundary conditions. a For a fixed–fixed nanowire; b
for a cantilevered one
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Fig. 4 The normalized critical buckling load Pcr/P0
cr predicted by the present model, the surface elasticity ones [30,33] and the

classical one as a function of the characteristic length (diameter or height) of Ag nanowires with different boundary conditions.
a For a fixed–fixed nanowire; b for a cantilevered one

by the new model agrees very well with the ones predicted by the surface elasticity theory models [30,33].
Without loss of generality, the critical buckling load predicted by all the models with or without the surface
effect increases with an increasing diameter or a decreasing aspect ratio of nanowires. However, the critical
buckling load predicted by models considering the surface effect is obviously larger than that predicted by the
classical beam theory not only for the fixed–fixed nanowire but also for the cantilevered one. It means that the
critical buckling load of nanowires may be underestimated without considering the surface effect. That is to
say, the surface effect in nanowires may improve their resistance to buckling.

The shape effect of the nanowires’ cross section on the critical buckling load is studied and shown in Fig.
4, where the results for a fixed–fixed boundary case and a cantilevered one are given in Fig. 4a, b, respectively.
With the same aspect ratio for nanowires with a rectangular cross section and a circular one, an obvious finding
is that the critical buckling load of nanowires with a rectangular cross section is significantly larger than that
with a circular cross section not only for fixed–fixed nanowires but also for cantilevered ones. Both the present
model and the surface elasticity theory model could give such a conclusion. Furthermore, the critical buckling
load predicted by the models considering the surface effect agrees well with the other ones not only for the
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Fig. 5 Comparison of the normalized critical buckling load Pcr/P0
cr as a function of the diameter of Ag nanowires predicted by

the present model and the surface elasticity ones [30,33]. a For a fixed–fixed nanowire; b for a cantilevered one

rectangular cross-sectional case but also for the circular one, which, however, is larger than that achieved by
the classical beam theory.

To investigate the surface effect on the critical buckling load, we normalize the critical buckling load
predicted by the models considering the surface effect with the one predicted by the classical theory, i.e.,
Pcr/P0

cr , which is shown in Fig. 5a, b as a function of the diameter of nanowires for fixed–fixed Ag nanowires
and cantilevered ones, respectively. The results obtained by the surface elasticity theory models are also given
for comparison [30,33]. It shows that the surface effect on the critical buckling load of nanowires is weakened
with an increasing characteristic length (diameter) or a decreasing aspect ratio for both the fixed–fixed nanowire
case and the cantilevered one. Comparing both cases yields that the surface effect in cantilevered nanowires
can be found at a much larger characteristic length (diameter) than that in fixed–fixed ones. Interestingly, such
a phenomenon was also found experimentally by Dobrokhotov et al. [24] for a Silver-Gallium alloy (Ag2Ga)
cantilevered nanowire with a submicron diameter d = 157 nm and a length L = 15.6µm, in which the
critical buckling load was measured to be about 200 nN, almost ten times higher than the classical prediction
P0
cr = 20.36 nN [24]. However, quantitative comparison between the theoretical and experimental predictions

cannot be carried out now due to the unavailable alloy material parameters. Experiments on the buckling
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Fig. 6 Comparison of the critical buckling load predicted by the present model, the classical one and MD simulations [29] for
Au nanowires as a function of a the diameter and b the aspect ratio

behavior of a simple metal need to be done in the future, which may be very useful for further checking the
theoretical results.

Figure 6a, b gives the critical buckling load as a function of the diameter and the aspect ratio of fixed–fixed
gold nanowires, respectively, in which not only the result predicted by the present model but also those given by
the classical elasticity one andMD simulation [29] is shown for comparison. The material parameters involved
in the present model are taken as da = 0.2884 nm, a0 = 0.42 nm, Eb = 79GPa, φ0b(001) = 1.63 J/m2,
cr ≈ 0.025 nm [40,51]. It is found that the theoretical predictions agree well with the numerical one only
when the diameter is relatively small (d ≤ 5 nm) or the aspect ratio is relatively large (ρ ≥ 7). From the
above, we know that the critical buckling load would increase if the diameter of nanowires increases or the
aspect ratio decreases. As a result, the critical buckling load may exceed the yield plasticity limit of nanowires,
leading to irreversible plastic deformation, such as surface reconstruction, crystal twins and partial dislocations
[29]. Energy dissipation and a reduction in load-bearing capacity should occur [53], resulting in a much lower
critical buckling load than the theoretical prediction with an assumption of perfect elasticity.
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5 Conclusions

The buckling behavior of nanowires subjected to a compressive load is analyzed in this paper using a recently
developed elastic continuum model [40]. Two kinds of boundary conditions, i.e., a fixed–fixed one and a
cantilevered one, are considered. The buckling equation is obtained as well as the critical buckling load.
Comparison among the present theoretical prediction of the critical buckling load, the results given by the
surface elasticity models [30,33] and the classical elasticity theory demonstrates that the surface effect in
nanowires could improve the resistance of buckling, while the classical elastic theory would underestimate
the critical buckling load of nanowires. No matter for nanowires with a fixed–fixed boundary condition or
a cantilevered one, the critical buckling load increases with an increasing characteristic length (diameter or
height) or a decreasing aspect ratio. The shape of the cross section can also show influence on the critical
buckling load, and a rectangular one is found better than a circular one. This study can not only provide
evidence of efficiency of the new developed model for predicting the buckling behavior of nanowires but also
be helpful for the design of nanodevices with nanowires.
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